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ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is highly possible to progress to cirrhosis, malignancy, 
and liver failure through fibrogenesis. The enormous potential of pathogenetic and therapeutic 
targets in NAFLD has been revealed. This study aimed to explore novel factors potentially 
indicating or mediating NAFLD progression. Multiple bulk and single-cell RNA sequencing data-
sets were used, in which landscapes of cell populations were clarified to characterize immune cell 
infiltration. Significantly high infiltration of macrophages (MPs) was discovered during NAFLD 
progression. Samples in bulk NASH datasets were regrouped by MP level. Highly differentially 
expressed genes (DEGs) were identified in the Ctrl vs. NASH comparison, low MP vs. high MP 
comparison, and the weighted gene co-expression network analysis (WGCNA) clusters. Eight hub 
genes were identified as promising targets by protein–protein interaction analysis and validated 
in fibrosis progression, microRNA (miR)–protein interactions were predicted, and the hub genes 
were verified in a free fatty acid (FFA)-induced macrophage injury model. The results showed that 
Gasdermin D (GSDMD) was upregulated with fibrosis progression in NAFLD and was associated 
with macrophage infiltration. In addition, a potential regulator (miR-4715-3p) was correlated with 
GSDMD. The miR-4715-3p/GSDMD axis potentially modulates macrophage-associated immunity 
and indicates fibrosis progression in NAFLD.
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Highlight

1. Macrophage infiltration is potentially correlated 
with NAFLD progression.

2. Macrophage-associated key gene GSDMD is 
upregulated in NAFLD progression.

3. has-miR-4715-3p and GSDMD are parallelly 
activated in fatty acid-induced macrophage 
injury.

4. has-miR-4715-3p/GSDMD axis potentially 
modulates macrophage-associated immunity 
and indicates fibrosis progression in NAFLD.

1. Introduction

onalcoholic fatty liver disease (NAFLD) is one of the 
most common chronic liver diseases worldwide. 
Lipid deposition and steatosis are independent 
causes of NAFLD, independent of drug-related, 
alcohol-related, or genetic risks. The pathogenesis 
and progression of NAFLD are fundamentally 
mediated by the complex interactions among stea-
tosis, fibrosis, and inflammation [1]. Although early 
symptoms rarely appear in nonalcoholic steatohepa-
titis (NASH) patients, chronic liver cirrhosis even-
tually leads to liver failure or hepatocellular 
carcinoma (HCC). Notably, multiple types of 
immune modulation occur during NAFLD progres-
sion. As executors and directors in the immune 
microenvironment, immune cells, especially macro-
phages and T cells, are requisite factors in the patho-
genesis, cirrhogenesis, metabolic compensation, and 
progression of NAFLD [2,3].

In almost all chronic liver diseases, fibrosis 
occurs and progresses with inflammatory reac-
tions, which are involved in liver macrophage 
modulation. Systematically, the liver macrophage 

population generally consists of Kupffer cells 
(KCs) and monocyte-derived macrophages 
(MoMFs). Liver macrophages play an essential 
role in fibrogenesis through interactions with 
hepatic stellate cells (HSCs) [4]. As a feedback 
regulatory mechanism, chemokines and cytokines 
secreted by HSCs enhance macrophage infiltration 
and expansion, which promote the fibrotic pheno-
types and survival of HSCs. Passively activated M2 
macrophages are associated with liver injury in 
NAFLD and mediate fibrotic responses conducive 
to liver remodeling and regeneration by secreting 
transforming growth factor-β (TGF-β) and plate-
let-derived growth factor (PDGF) [5]. Although 
crucial roles of macrophages in NAFLD and 
other inflammatory liver diseases have gradually 
been revealed, the exact mechanisms of macro-
phage involvement in the pathogenesis and pro-
gression of these diseases remain unclear. In recent 
decades, transcriptome analysis was rapidly 
increased and has provided logical and scientific 
guidance to traditional biological studies. 
Fundamentally, computational analysis based on 
high-throughput datasets can indicate both target 
genes and biological processes regarding specific 
research goals [6,7]. Therefore, in NAFLD with 
a chronic fibrosis progression, bioinformatics ana-
lysis would bring out unique advantages to under-
stand disease characteristics and therapeutic 
targets.

The hypothesis of this study is that miR-4715- 
3p/GSDMD axis associating macrophage infiltra-
tion potentially indicates NAFLD progression. 
Based on the analysis of high-throughput bulk/ 
single-cell RNA sequencing datasets, this study 
aims to reveal immune cell landscapes in NAFLD 
livers during fibrosis progression. Thereby, 

Table 1. Human dataset resources.
GEO series Experiment Platform Overall design

GSE164760 Bulk RNA-seq GPL13667 74 NASH livers, 8 cirrhotic livers, and 6 healthy livers
GSE89632 Bulk RNA-seq GPL14951 19 NASH livers, 20 steatotic livers, and 24 healthy livers
GSE49541 Bulk RNA-seq GPL570 40 mild fibrotic NASH liver and 32 advaced fibrotic NASH
GSE139602 Bulk RNA-seq GPL13667 5 fibrosis (eCLD), 8 compensated cirrhosis, 12 decompensated cirrhosis, 8 ACLF, and 6 control healthy 

livers
GSE123661 scRNA-seq GPL17303 4 cirrhotic and 5 healthy KC samples
GSE136103 scRNA-seq GPL20301 5 healthy livers, 5 cirrhotic livers, and 4 PBMC samples
GSE98782 scRNA-seq GPL17021 2 MoMFs and 2 KCs from chronic injured livers
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through further MP-associated analyses, the miR- 
4715-3p/GSDMD axis could be determined as 
a potential mediator in liver macrophages and 
cirrhosis progression.

2. Materials and methods

2.1. Data resources and DEG analysis

In this study, expression profile datasets from bulk 
RNA-sequencing and single-cell RNA (scRNA)- 
sequencing analyses were downloaded from the 
Gene Expression Omnibus (GEO) database (http:// 
www.ncbi.nlm.nih.gov/geo). Basic information is 
listed in Table 1. Probes from the raw data were 
matched with the official gene symbols with the 
DAVID online tool (https://david.ncifcrf.gov/)[8] 
and noncoding RNAs were excluded. Differentially 
expressed gene (DEG)-related analyses were per-
formed using R Studio (limma package) [9]. Fold 
change (FC) >2 and p < 0.01 were used as the 
statistical criteria to identify significant DEGs. In 
addition, overlapping gene clusters were identified 
by the generation of Venn diagrams (http://bioinfor 
matics.psb.ugent.be/webtools/Venn/) [10].

2.2. Immune cell infiltration analysis and 
dataset regrouping

To investigate immune cell infiltration, raw 
data from bulk RNA-seq datasets were included 
and evaluated by multiple computational meth-
ods. The xCell package (https://xcell.ucsf.edu/) 
[11] in R Studio was applied, and the results 
were compared and validated with the 
CIBERSORT (https://cibersort.stanford.edu) 
[12] and EPIC (https://github.com/GfellerLab/ 
EPIC) [13] methods. Then, raw data from 74 
NASH liver samples in the GSE164760 dataset 
were classified into the high MP and low MP 
groups based on the cell-type enrichment scores 
from Xcell. Thereby, DEG-related analyses were 
performed using R Studio (limma package).

2.3. Weighted gene co-expression network 
analysis (WGCNA)

To outline the gene expression patterns in multi-
ple samples, the WGCNA package (http://www. 

g e n e t i c s . u c l a . e d u / l a b s / h o r v a t h /  
CoexpressionNetwork/Rpackages/WGCNA), 
which is a comprehensive method used to clus-
ter co-expressed genes and compare the associa-
tions between modules and specific traits, was 
used with R Studio [14]. The expression matrix 
of NASH samples in the GSE164760 dataset 
regrouped by MP level was analyzed by 
WGCNA. The correlation analysis implemented 
in the WGCNA package is based on the Pearson 
method, and specific parameters (min Module 
Size = 30, reassign Threshold = 0, and merge 
Cut Height = 0.25) were used to run the pro-
gram. The clusters of co-expressed genes were 
then displayed as modules labeled in multiple 
colors, with correlation coefficient values and 
significance (p values).

2.4. Functional enrichment and protein–protein 
interaction (PPI) analysis

Functional enrichment was analyzed and classified 
primarily according to Kyoto Encyclopedia Genes 
and Genomes (KEGG) pathways [15] and Gene 
Ontology (GO) terms [16]. With the KEGG 
Orthology-Based Annotation System (KOBAS) 3.0 
web server (http://kobas.cbi.pku.edu.cn/kobas3) [17] 
and Gene Set Enrichment Analysis (GSEA) software 
(https://www.gsea-msigdb.org/gsea) [18], highly 
relevant functional clusters were identified, and 
data were plotted. PPI analysis was conducted with 
the STRING web tool (https://string-db.org/) [19], 
and the topological network was then constructed 
with Cytoscape software (version 3.8.2) [20]. Then, 
hub clusters and genes were identified using the 
MCODE plugin (degree cutoff = 2, node score cut-
off = 0.2, and K-cor = 2).

2.5. Identification of miRNA–protein interactions

Databases (MirWalk: www.mirwalk.umm.uni- 
heidelberg.de21; TargetScan: www.targetscan.org22; 
mirDB: www.mirdb.org [23]; and miRTarBase: 
www.mirtarbase.cuhk.edu.cn) [24] were used for 
prediction of miRNA–mRNA interactions. 
Associated miRNA alternatives were screened out 
by inputting mRNA targets. Results were filtered 
with p < 0.05 and downloaded from websites.
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2.6. Cell culture and treatment

The human monocyte line THP-1 was pur-
chased from the National Collection of 
Authenticated Cell Cultures (Shanghai, China) 
and cultured in RPMI 1640 medium supplied 
with 10% FBS (Gibco, Australia) in an incuba-
tor with 5% CO2 at 37°C. Macrophage differ-
entiation of THP-1 monocytes was induced 
with 100 nmol/L phorbol 12-myristate-13- 
acetate (PMA) (Sigma–Aldrich, USA) for 48 h. 
Palmitic acid (PA) and oleic acid (OA) (both 
from Sigma–Aldrich, USA) were dissolved at 
a 2:1 ratio (final concentration of 30 µM) in 
RPMI 1640 medium supplemented with 0.1 M 

NaOH and 0.1% BSA (both from Sigma– 
Aldrich, USA) [25].

2.7. RNA quantification

Total RNA was extracted from cultured cells using 
TRIzol® reagent (Invitrogen; Thermo Fisher 
Scientific, USA). Reverse transcription was con-
ducted with a PrimeScript™ RT Reagent Kit 
(Takara Biotechnology Co., Ltd.), and real-time 
quantification was subsequently performed using 
a SYBR® Premix Ex Taq Kit (Takara Biotechnology 
Co., Ltd.). The relative RNA expression levels were 
calculated using the 2-ΔΔCt method [26]. The 

Figure 1. PRISMA flow.
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primer pairs used in this study are listed in 
Supplementary Table 1.

2.8. Statistical analysis

SPSS 26.0 (SPSS Statistics, USA) was used for 
general statistical analysis. GraphPad Prism 9.0 
software (GraphPad Software, USA) and 
R Studio were used to generate plots. 
Significant differences were identified using 
one-way ANOVA with the Bonferroni post hoc 
test. Pearson correlation analysis was performed 
to calculate correlation coefficients. Data are 
presented as the mean ± SEM values. p < 0.05 

indicated a statistically significant difference 
(labeled ‘*’).

3. Results

We hypothesized that miR-4715-3p/GSDMD axis 
may play as a mediator for macrophage infiltration 
and NAFLD progression. Multiple RNA-seq data-
sets were included in this study, and therefore, 
immune infiltration and hub genes were deter-
mined. GSDMD was identified as the key factor 
both associated with high macrophage infiltration 
and NAFLD progression. Predicted as a regulator 
to GSDMD, miR-4715-3p was validated in FFA- 

Figure 2. (a) Both significantly up- and downregulated DEGs were screened out from GSE164760 and displayed in the volcano plot. 
(b) Top significantly up- and downregulated genes were displayed in a heatmap. (c) Functional enrichment was analyzed with GSEA. 
p < 0.05 is regarded as statistical significance.

Figure 3. Immune infiltration of GSE164760 is assessed with Xcell (a), CIBERSORT (b), and EPIC (c). Enrichment of MP clusters (total 
MP, M1-MP, and M2-MP) from GSE89632 (d), GSE49541 (e), and GSE139602 (f) are shown in plots. p < 0.05 (‘*’) is regarded as 
statistical significance.
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induced macrophage injury, which was signifi-
cantly correlated with GSDMD.

3.1. Identification of DEGs and immune cell 
landscape in NASH livers

The overall flow chart of the technical paths fol-
lowed in this study is shown in Figure 1. In 74 

NASH and 6 healthy control liver samples, DEGs 
were identified as genes with |log2 (fold change)| > 
1.5 and p < 0.05 (Figure 2a); the DEGs comprised 
444 upregulated genes and 83 downregulated 
genes. The top-ranked DEGs were displayed in 
a clustering heatmap. The top 10 upregulated 
genes were C1orf162, COL10A1, NUCKS1, SPPL3, 
ZNF362, KIAA0831 (ATG14), VDAC3, PPIL2, 

Figure 4. (a) NASH samples of GSE164760 are grouped with MP ES from Xcell (low MP: ES = 0 and high MP >0). (b) Both significantly 
up- and downregulated DEGs were screened out from regrouped NASH samples of GSE164760 and displayed in the volcano plot. 
MP-associated gene cluster is selected with WGCNA. Module–trait relationships (c) and cluster dendrogram (d) are shown in charts. 
(e) 171 overlapping genes are generated from high DEGs of GSE164760 and regrouped NASH samples, as well as WGCNA gene 
cluster. GO enrichment analysis (f) and PPI analysis (g) are carried out from 171 overlapping genes. Hub genes are labeled in red and 
round shape. p < 0.05 is regarded as statistical significance.
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KIAA1147 (DENND11), and TIPLR. The top 10 
downregulated genes were PDIA4, SERPING1, 
CDK2AP2, C19orf60, NT5C, BLVRB, ASPA, 
MRPL41, GALR3, and ADRA1B. GSEA was then 
used to perform functional enrichment analysis on 
the upregulated gene cluster and visualize the 
results. Among the leading enrichment patterns, 
biological processes associated with immune cells 
(Th cells and macrophages) were revealed to be 
statistically significant (Figure 2c).

Accordingly, Xcell, CIBERSORT, and EPIC were 
applied to investigate and compare immune cell infil-
tration in NASH. Excluding nonimmune cells, the 
main myeloid cells and lymphocytes were evaluated 
and displayed. As shown in Figure 3a, the infiltration 
levels of B cells, Th2 cells, basophils, MPs, and M2- 
MPs were significantly increased in the NASH group 
compared with the control group. In contrast, the 
infiltration level of Th1 cells was decreased. As 
shown in Figure 3b, the infiltration levels of CD4+ T 
cells, T helper cells, gamma delta T cells, M0-MPs, and 

M2-MPs were significantly increased in the NASH 
group compared with the control group. In contrast, 
the infiltration level of plasma cells was decreased. As 
shown in Figure 3c, the infiltration levels of fibroblasts 
and MPs were increased. These findings conclusively 
show that MP infiltration is commonly elevated in 
NASH livers compared with healthy livers. To further 
explore the correlations between MP infiltration and 
cirrhosis progression in NAFLD, MP clusters (total 
MPs, M1-MPs, and M2-MPs) were evaluated with 
xCell in multiple RNA-seq datasets (GSE89632, 
GSE49541, and GSE139602). Increasing trends in 
infiltration were found for both steatosis (Figure 3d) 
and cirrhosis progression (Figure 3e and f).

3.2. The identification of macrophage - 
associated hub genes in NAFLD progression

Based on the xCell scores of MPs, 74 NASH liver 
samples from GSE164760 were divided into the 
high-MP (n = 37) and low-MP (n = 37) groups 

Figure 5. Expressions of eight hub genes are compared, respectively, from GSE49541 (a), GSE1647560 (b), GSE139602 (c), and 
GSE123661 (d). (e) Distribution of cell populations and disease conditions are generated from GSE136103 with tSNE. (f) Expression of 
GSDMD is shown in multiple cell populations from GSE136103. p < 0.05 is regarded as statistical significance.
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(Figure 4a). The DEGs were then sorted and are 
shown in Figure 4b. In addition, WGCNA was 
conducted to generate gene coexpression modules, 
from which the module–trait relationships 
(Figure 4c) and cluster dendrograms (Figure 4d) 
were generated. Considering both the correlation 
coefficients and p values, the MEblue module, with 
3166 genes, was identified. After overlapping three 
gene clusters, 171 genes were identified as the 
most significantly upregulated macrophage- 
associated genes in NASH livers (Figure 4e). 
Then, GO enrichment analysis was carried out 
with these 171 genes, and the results are shown 
in Figure 4f; the terms NLRP3 inflammasome, 
interleukin-1 beta (IL-1β), and tumor necrosis fac-
tor (TNF) were found to be significantly enriched. 
A PPI network was constructed to visualize func-
tional interactions. Hub clusters and seed genes 
were also identified (Figure 4g).

To assess clinical correlations, the expression 
levels of eight hub/seed genes (GSDMD, REEP5, 
CHD9, TNRC6A, UBE3A, PGAM1, PAPOLA, and 
KPNA1) were verified on bulk RNA-seq datasets 
(GSE49541, GSE164760, and GSE139602) and sin-
gle-cell RNA-seq datasets (GSE123661, 
GSE136103, and GSE98782). All eight genes were 
upregulated in NASH livers at advanced fibrosis 
stages compared with mild fibrosis stages 
(Figure 5a). In contrast to NASH livers, GSDMD 
and TNRC6A were upregulated in cirrhotic livers 
(Figure 5b). Among all stages of progression, 

a continuously increasing trend in GSDMD and 
TNRC6A expression was identified (Figure). At the 
single-liver MP level, GSDMD was significantly 
upregulated in cirrhotic KCs (Figure 5d). The dis-
tribution of cell populations in NAFLD-related 
cirrhosis is shown in Figure 5e. After single-cell 
analysis, GSDMD was found to be upregulated in 
the liver MP population (Figure 5f). Moreover, 
among macrophages in cirrhotic livers, monocyte- 
derived macrophages (MoMFs) expressed more 
GSDMD than KCs (Figure 5g). These results indi-
cate that GSDMD may not only play crucial roles 
as a biomarker for NAFLD progression but also 
function through liver macrophages.

3.3. Correlative upregulation of miR-4715-3p 
and GSDMD in FFA-induced macrophage injury

By searching an online database, multiple miRNA 
clusters highly correlated with GSDMD were iden-
tified. Then, hsa-miR-4715-3p was found in all 
miRNA clusters (Figure 6a). To mimic immune 
modulation in NAFLD, an in vitro model of FFA- 
induced macrophage injury was applied. Then, 
THP-1 cells were treated sequentially with PMA 
to induce differentiation into macrophages and 
with FFA solution for 1 week (the cytotoxicity of 
FFA in THP-1-derived macrophages is shown in 
Supplementary Figure 1). MoMFs were harvested 
at sequential time points (on the first, second, 
third, and seventh days) for RNA quantification. 

Figure 6. (a) hsa-miR-4715-3p is screened out from GSDMD-associated miRNAs. Expressions of hsa-miR-4715-3p (b) and eight hub 
genes (c) in FFA-treated THP1-derived macrophages are displayed. (d) Pearsoncorrelation analysis is conducted,respectively, between 
hsa-miR-4715-3p and eight hub genes. p < 0.05 is regarded as statistical significance.
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The expression levels of hsa-miR-4715-3p 
(Figure 6b) and the eight hub genes (Figure 6c) 
are shown at different time points. hsa-miR-4715- 
3p and GSDMD were generally upregulated after 
FAA treatment, and their expression peaked on 
the third day. In contrast, only REEP5 was upre-
gulated at all time points. Therefore, Pearson cor-
relation analysis was conducted on hsa-miR-4715- 
3p and the hub genes (Figure 6d), and GSDMD 
expression was found to be significantly positively 
correlated with hsa-miR-4715-3p expression 
(R = 0.96, p = 0.04). The results indicate that co- 
expression of miR-4715-3p and GSDMD is signifi-
cantly induced in response to FFA stimulation in 
macrophages.

4. Discussion

NASH is considered an inflammatory subtype of 
NAFLD with steatosis and evidence of hepato-
cyte injury and multiple immune cell interac-
tions [27]. Furthermore, fibrosis consistently 
occurs with hepatic cell injury and gradually 
progresses to cirrhosis, which results in hepato-
carcinoma and liver failure [28]. Generally, stea-
tosis and liver function can be measured by 
serological and imaging approaches. However, 
liver fibrosis could historically be assessed only 
by biopsy, which is sensitive and accurate but 
results in unavoidable injury and pain in 
patients [29]. Currently, the most effective non-
invasive methods are ultrasonic transient elasto-
graphy (for example, fiber scanning) and 
magnetic resonance elastography. Moreover, 
noninvasive estimation systems can evaluate the 
fibrosis stage in patients without biopsy, with the 
NAFLD fibrosis score and fibrosis-4 index (FIB- 
4) commonly used. The complex pathophysiolo-
gical mechanism of NASH progression remains 
unrevealed [30,31]. Currently, multiple therapies 
aimed at several targets, such as changes in the 
microbiome and intestinal permeability, oxida-
tive stress, insulin resistance, apoptosis, lipotoxi-
city, inflammation, bile acid metabolism, and 
fibrogenesis. Given that the therapeutic effects 
of traditional drugs on NASH progression are 
poor, the discovery of disease targets and 
research on targeted therapies are of great 
importance [32]. Generally, liver macrophages 

(including KCs and MoMFs) play pivotal roles 
in the progression and resolution of fibrosis. 
With the development of fibrosis, injury- 
induced inflammation further enhances macro-
phage recruitment and HSC activation [33]. In 
addition, a variety of matrix metalloproteinases 
(MMP-9, MMP-12, and MMP-13) secreted by 
liver macrophages participate in matrix degrada-
tion, thus contributing to the alleviation of liver 
injury and fibrosis [34,35].

The initial goal of this study was to characterize 
immune cell infiltration and identify progression- 
related mediators in NAFLD. Bulk and single-cell 
RNA sequencing datasets of NASH and fibrosis 
progression were introduced as basic data sources. 
Then, multiple bioinformatic methods and data-
bases were used to reveal the immune cell land-
scape and important factors. Of note, a novel 
method of dataset regrouping was developed in 
this study based on xCell and WGCNA to identify 
macrophage-associated DEGs. Subsequently, hub 
genes were identified from the PPI network. 
Further screening and validation were carried out 
with single-cell RNA-seq datasets and a model of 
FFA-induced macrophage injury. As a result, 
GSDMD and hsa-miR-4715-3p were found to be 
co-upregulated, indicating NAFLD progression.

GSDMD is a key pyroptotic substrate of inflam-
mation-triggered caspase modules. GSDMD initi-
ates pyroptosis directly via caspase-1-induced 
cleavage. Moreover, GSDMD-related pyroptosis 
mainly occurs in macrophages and is directly 
mediated by inflammasomes [36,37]. In addition 
to pyroptotic factors (caspase-1/-4 and IL-1β), 
NLRP3 and NLRC4, which act as classical regulators 
of inflammasomes [38], were also included in the 
final gene cluster. Accordingly, inflammasome- 
induced pyroptosis is considered a crucial macro-
phage-fate-accompanying NAFLD progression. In 
addition, miRNA–protein interaction analysis 
revealed that hsa-miR-4715-3p might act as 
a potential upstream regulator of GSDMD. 
Previous studies have revealed multiple roles and 
function of several microRNAs in NAFLD and 
liver fibrosis [39–42]. According to a literature 
review, hsa-miR-4715-3p has been reported in only 
a few cancer studies [43,44]. In conclusion, the miR- 
4715-3p/GSDMD axis may be a novel signaling 
pathway that mediates not only macrophage 
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functions but also NAFLD progression. Although 
this study provided robust evidence at the transcrip-
tome level, further investigations are required to 
validate the functions of the GSDMD protein as an 
executor of inflammasome-mediated pyroptosis.

However, this study is mostly based on RNA-seq 
datasets and computational analysis, leading to 
inevitable limitations. Baseline levels and batch 
effects of different clinical cohorts could not be 
entirely adjusted, referring to statistical biases. 
Moreover, molecular validations were included but 
not emphasized in this study. Hence, to determine 
the exact relationship between GSDMD and hsa- 
miR-4715-3p, more molecular studies are required.

5. Conclusions

During fibrosis progression in NAFLD, the macro-
phage infiltration and highly associated gene – 
GSDMD – are elevated. The hsa-miR-4715-3p is 
upregulated in FFA-induced macrophage injury and 
parallelly altered by GSDMD expression. Thus, the 
macrophage-associated miR-4715-3p/GSDMD axis 
potentially indicates fibrosis progression in NAFLD.

Acknowledgments

This research was supported by Nanjing Medical University 
and Charité Universitätsmedizin Berlin. Bioinformatic data 
materials were obtained from multiple public databases. All 
biological experiments were conducted in laboratory plat-
form of the Affiliated Changzhou No. 2 People’s Hospital. 
The graphical abstract was created with Biorender.com.

Disclosure statement

No potential conflict of interest was reported by the authors.

Availability of data and materials

The datasets used and analyzed in the current study are avail-
able from the corresponding author on reasonable request.

Author contributions

Xiurong Cai and Yu Shen performed bioinformatic analysis. 
Shuai Chen and Yu Liu carried out biological experiments. 
Adrien Guillot and Frank Tacke worked as academic coun-
selors in this study. Liming Tang revised the manuscript. 
Hanyang Liu designed the whole study and wrote the original 
paper.

Funding

This study is funded by the Natural Science Foundation of 
Jiangsu Province (grant no.BK20181155), Changzhou High- 
level Health Talents Foundation (grant no. RC201602), 
Young Talents Project of Changzhou Health Commission 
(grant no. QN202121), and Young Talents project of 
Changzhou No. 2 People’s Hospital (grant no. 2018K003). 
Xiurong Cai and Hanyang Liu are funded by the China 
Scholarship Council (CSC) Foundation.

ORCID

Hanyang Liu http://orcid.org/0000-0002-1035-4895

References

[1] Byrne CD, Targher G. NAFLD: a multisystem disease. 
J Hepatol. 2015;62:S47–64.

[2] Cobbina E, Akhlaghi F. Non-alcoholic fatty liver dis-
ease (NAFLD) – pathogenesis, classification, and effect 
on drug metabolizing enzymes and transporters. Drug 
Metab Rev. 2017;49:197–211.

[3] Eslam M, Valenti L, Romeo S. Genetics and epigenetics 
of NAFLD and NASH: clinical impact. J Hepatol. 
2018;68:268–279.

[4] Tacke F, Zimmermann HW. Macrophage heterogene-
ity in liver injury and fibrosis. J Hepatol. 
2014;60:1090–1096.

[5] Wynn TA, Vannella KM. Macrophages in tissue repair, 
regeneration, and fibrosis. Immunity. 2016;44:450–462.

[6] Udhaya Kumar S, Thirumal Kumar D, Bithia R, et al. 
Analysis of differentially expressed genes and molecu-
lar pathways in familial hypercholesterolemia involved 
in atherosclerosis: a systematic and bioinformatics 
approach. Front Genet. 2020;11:734.

[7] Udhaya Kumar S, Saleem A, Thirumal Kumar D, et al. 
A systemic approach to explore the mechanisms of 
drug resistance and altered signaling cascades in exten-
sively drug-resistant tuberculosis. Adv Protein Chem 
Struct Biol. 2021;127:343–364.

[8] Huang da W, Sherman BT, Lempicki RA. Systematic 
and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nat Protoc. 
2009;4:44–57.

[9] Ritchie ME, Phipson B, Wu D, et al. limma powers 
differential expression analyses for RNA-sequencing 
and microarray studies. Nucleic Acids Res. 2015;43:e47.

[10] Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. 
Brief Bioinform. 2021;22(5):bbab108. ISBN: 1477-4054.

[11] Aran D, Hu Z, Butte AJ. xCell: digitally portraying the 
tissue cellular heterogeneity landscape. Genome Biol. 
2017;18:220.

[12] Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor 
infiltrating immune cells with CIBERSORT. Methods 
Mol Biol. 2018;1711:243–259.

BIOENGINEERED 11749



[13] Racle J, Gfeller D. EPIC: a tool to estimate the propor-
tions of different cell types from bulk gene expression 
data. Methods Mol Biol. 2020;2120:233–248.

[14] Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008;9:559.

[15] Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: 
new perspectives on genomes, pathways, diseases and 
drugs. Nucleic Acids Res. 2017;45:D353–d61.

[16] Carbon, S , Thomas, P.D , Albou, L.P et al. The gene 
ontology resource: 20 years and still GOing strong. 
Nucleic Acids Res. 2019;47:D330–d8.

[17] Wu J, Mao X, Cai T, et al. KOBAS server: a web-based 
platform for automated annotation and pathway 
identification. Nucleic Acids Res. 2006;34:W720–4.

[18] Subramanian A, Tamayo P, Mootha VK, et al. Gene set 
enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc 
Natl Acad Sci U S A. 2005;102:15545–15550.

[19] Szklarczyk D, Gable AL, Nastou KC, et al. The 
STRING database in 2021: customizable 
protein-protein networks, and functional characteriza-
tion of user-uploaded gene/measurement sets. Nucleic 
Acids Res. 2021;49:D605–d12.

[20] Shannon P, Markiel A, Ozier O, et al. Cytoscape: 
a software environment for integrated models of bio-
molecular interaction networks. Genome Res. 
2003;13:2498–2504.

[21] Dweep H, Gretz N, Sticht C. miRWalk database for 
miRNA-target interactions. Methods Mol Biol. 
2014;1182:289–305.

[22] Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools 
for sequence-based miRNA target prediction: what to 
choose? Int J Mol Sci. 2016;17:1987.

[23] Chen Y, Wang X. Wang X. miRDB: an online database 
for prediction of functional microRNA targets. Nucleic 
Acids Res. 2020;48:D127–d31.

[24] Huang HY, Lin YC, Li J, et al. miRTarBase 2020: updates 
to the experimentally validated microRNA-target inter-
action database. Nucleic Acids Res. 2020;48:D148–d54.

[25] Liu H, Kai L, Du H, et al. LPS inhibits fatty acid 
absorption in enterocytes through TNF-α secreted by 
macrophages. Cells. 2019;8(12):1626.

[26] Hawkins SFC, Guest PC. Multiplex analyses using 
real-time quantitative PCR. Methods Mol Biol. 
2017;1546:125–133.

[27] Younossi Z, Anstee QM, Marietti M, et al. Global burden of 
NAFLD and NASH: trends, predictions, risk factors and 
prevention. Nat Rev Gastroenterol Hepatol. 
2018;15:11–20.

[28] Chalasani N, Younossi Z, Lavine JE, et al. The diag-
nosis and management of nonalcoholic fatty liver dis-
ease practice guidance from the American Association 

for the Study of Liver Diseases. Hepatology. 
2018;67:328–357.

[29] Pai RK, Kleiner DE, Hart J, et al. Standardising the 
interpretation of liver biopsies in non-alcoholic fatty 
liver disease clinical trials. Aliment Pharmacol Ther. 
2019;50:1100–1111.

[30] Sheka AC, Adeyi O, Thompson J, et al. Nonalcoholic 
steatohepatitis: a review. Jama. 2020;323:1175–1183.

[31] Di Mauro S, Scamporrino A, Filippello A, et al. Clinical 
and molecular biomarkers for diagnosis and staging of 
NAFLD. Int J Mol Sci. 2021;23:22.

[32] Parola M, Pinzani M. Liver fibrosis: pathophysiology, 
pathogenetic targets and clinical issues. Mol Aspects 
Med. 2019;65:37–55.

[33] Iredale JP. Models of liver fibrosis: exploring the 
dynamic nature of inflammation and repair in a solid 
organ. J Clin Invest. 2007;117:539–548.

[34] Dou L, Shi X, He X, et al. Macrophage phenotype and 
function in liver disorder. Front Immunol. 
2019;10:3112.

[35] Kazankov K, Jørgensen SMD, Thomsen KL, et al. The 
role of macrophages in nonalcoholic fatty liver disease 
and nonalcoholic steatohepatitis. Nat Rev 
Gastroenterol Hepatol. 2019;16:145–159.

[36] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves 
gasdermin D for non-canonical inflammasome 
signalling. Nature. 2015;526:666–671.

[37] Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by 
inflammatory caspases determines pyroptotic cell 
death. Nature. 2015;526:660–665.

[38] Rathinam VA, Fitzgerald KA. Inflammasome com-
plexes: emerging mechanisms and effector functions. 
Cell. 2016;165:792–800.

[39] Xu A, Zhong G, Wang J, et al. MicroRNA 200a inhibits 
liver fibrosis of schistosoma. Bioengineered. 
2021;12:4736–4746.

[40] Calvente CJ, Tameda M, Johnson CD, et al. 
Neutrophils contribute to spontaneous resolution of 
liver inflammation and fibrosis via microRNA-223. 
J Clin Invest. 2019;129:4091–4109.

[41] Zhang T, Hu J, Wang X, et al. MicroRNA-378 pro-
motes hepatic inflammation and fibrosis via modula-
tion of the NF-κB-TNFα pathway. J Hepatol. 
2019;70:87–96.

[42] Yu Y, Tian T, Tan S, et al. MicroRNA-665-3p exacer-
bates nonalcoholic fatty liver disease in mice. 
Bioengineered. 2022;13:2927–2942.

[43] Gomaa A, Peng D, Chen Z, et al. Epigenetic regulation 
of AURKA by miR-4715-3p in upper gastrointestinal 
cancers. Sci Rep. 2019;9:16970.

[44] Yu W, Yao J, Lyu P, et al. XPG is modulated by 
miR-4715-3p and rs873601 genotypes in lung cancer. 
Cancer Manag Res. 2021;13:3417–3427.

11750 S. CHEN ET AL.


	Abstract
	Highlight
	1.  Introduction
	2.  Materials and methods
	2.1.  Data resources and DEG analysis
	2.2.  Immune cell infiltration analysis and dataset regrouping
	2.3.  Weighted gene co-expression network analysis (WGCNA)
	2.4.  Functional enrichment and protein–protein interaction (PPI) analysis
	2.5.  Identification of miRNA–protein interactions
	2.6.  Cell culture and treatment
	2.7.  RNA quantification
	2.8.  Statistical analysis

	3.  Results
	3.1.  Identification of DEGs and immune cell landscape in NASH livers
	3.2.  The identification of macrophage - associated hub genes in NAFLD progression
	3.3.  Correlative upregulation of miR-4715-3p and GSDMD in FFA-induced macrophage injury

	4.  Discussion
	5.  Conclusions
	Acknowledgments
	Disclosure statement
	Availability of data and materials
	Author contributions
	Funding
	References

