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Abstract
Background: One of the goals of global metabolomic analysis is to identify metabolic markers that
are hidden within a large background of data originating from high-throughput analytical
measurements. Metabolite-based clustering is an unsupervised approach for marker identification
based on grouping similar concentration profiles of putative metabolites. A major problem of this
approach is that in general there is no prior information about an adequate number of clusters.

Results: We present an approach for data mining on metabolite intensity profiles as obtained from
mass spectrometry measurements. We propose one-dimensional self-organizing maps for
metabolite-based clustering and visualization of marker candidates. In a case study on the wound
response of Arabidopsis thaliana, based on metabolite profile intensities from eight different
experimental conditions, we show how the clustering and visualization capabilities can be used to
identify relevant groups of markers.

Conclusion: Our specialized realization of self-organizing maps is well-suitable to gain insight into
complex pattern variation in a large set of metabolite profiles. In comparison to other methods our
visualization approach facilitates the identification of interesting groups of metabolites by means of
a convenient overview on relevant intensity patterns. In particular, the visualization effectively
supports researchers in analyzing many putative clusters when the true number of biologically
meaningful groups is unknown.

Background
Metabolomics is a fundamental approach in basic
research to detect and quantify the low molecular weight
molecules (metabolites) in a biological sample. Besides
the other so-called "omics" technologies (genomics, tran-

scriptomics, proteomics), metabolomics is becoming a
key technology that facilitates the measurement of the
ultimate phenotype of an organism [1]. In particular,
metabolomics allows undirected global screening
approaches based on the measurements of signal intensi-
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ties for a large number of intracellular metabolites under
varying conditions, such as disease or environmental and
genetic perturbations [2-8]. In order to identify relevant
metabolites in terms of indicative metabolic markers, it is
essential to provide tools for exploratory analysis of
metabolome data generated by high-throughput analyti-
cal measurements [9,10]. For instance, the analysis of
complex mass spectrometry data can cover relative inten-
sities for a large number of metabolites under different
conditions and requires advanced data mining tools to
study the corresponding multivariate intensity patterns.

Clustering of intensity profiles from mass spectrometry
measurements is an unsupervised approach to analyze
metabolic data. In analogy to clustering of gene expres-
sion data [11], one may distinguish between sample-
based clustering and metabolite-based clustering. In the
latter case, the assumption is that metabolites sharing the
same profile of accumulation or repression under a given
set of conditions are likely to result from the same biosyn-
thetic pathway or possibly are part of the same regulatory
system. In that way, metabolite-based clustering parallels
the gene-based clustering of expression data, where
groups of similar expression profiles may indicate co-reg-
ulated genes [11]. In metabolite-based clustering, the
intensities of a metabolite under certain experimental
conditions provide an intensity vector representation for
multivariate analysis. Metabolite-based clustering usually
yields a large number of vectors (metabolite candidates)
with comparably few dimensions (conditions). In con-
trast, sample-based clustering implies only few intensity
vectors according to the number of conditions and repeti-
tions. In turn, the dimensionality of these vectors is large,
according to the number of (putative) metabolites. Thus,
the two clustering approaches correspond to different

views on a given matrix of intensity measurements (see
figure 1): in one case the data vectors for multivariate
analysis are derived from rows (samples in figure 1), in
the other case vectors are derived from columns (metabo-
lite candidates in figure 1). While repetition of measure-
ments is essential for sample-based clustering, for
metabolite-based clustering it is desirable but not strictly
necessary, depending on the quality of data underlying
the analysis.

Regarding the scope of application, sample-based cluster-
ing for unbiased, comprehensive metabolite analysis is
often applied in order to identify different phenotypes
[12]. In other cases, phenotypes are known and super-
vised methods may be applied to identify discriminative
metabolic markers [1,13]. In contrast, the objective of
metabolite-based clustering is to identify biologically
meaningful groups of markers. The common approach is
to combine dimensionality reduction and clustering
methods: First, a sample-based principal component
analysis (PCA) is performed to compute a subset of prin-
cipal components. Then the metabolite-specific PCA load-
ings of these components are used for metabolite-based
clustering using K-means [6] or hierarchical methods
[14]. In these cases, the choice of experimental setup usu-
ally suggests a certain number of clusters which consider-
ably facilitates the analysis. However, for a complex setup
with several possibly overlapping conditions it is difficult
to make assumptions about the number of relevant clus-
ters. Therefore, metabolite-based clustering also requires
suitable tools for visual exploration as an intuitive way to
incorporate prior knowledge into the cluster identifica-
tion process.

Illustration of differences between sample-based clustering and metabolite-based clusteringFigure 1
Illustration of differences between sample-based clustering and metabolite-based clustering. A toy example 
matrix of intensity measurements as obtained from LC/MS experiments. The horizontal dimension corresponds to metabolite 
(or marker) candidates. The vertical dimension corresponds to conditions and repeated measurements within these condi-
tions. A row represents a sample for sample-based clustering, while a column corresponds to a (putative) metabolite for 
metabolite-based clustering. Colors represent different intensity values.
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Here we introduce an approach to metabolite-based clus-
tering and visualization of large sets of metabolic marker
candidates based on self-organizing maps (SOMs). Unlike
applications of the classical two-dimensional SOMs, we
are proposing one-dimensional linear array SOMs (1D-
SOMs). The 1D-SOM supports the search for relevant
metabolites in two aspects: First, according to the assign-
ment of data vectors to certain array positions, a "pre-clus-
tering" of the data facilitates the analysis of large and
noisy data sets. The resulting clusters provide building
blocks for biologically meaningful groups of markers. In
general, the determination of relevant groups requires
task-specific knowledge in order to aggregate related clus-
ters or to discard "spurious" clusters which cannot be
associated with any biological meaning. This second step
is supported by the dimensionality-reduced representa-
tion which results from the mapping to the linear array.
By means of this mapping, 1D-SOMs allow to visualize
the variation of intensity patterns along the array axis. This
visualization provides a quick overview on relevant pat-
terns in large data sets and facilitates the aggregation of
related neighboring clusters. In particular, this kind of vis-
ual partitioning provides a powerful means to cope with
the problem of an unknown number of "true" clusters
which in general cannot be solved without task-specific
constraints [15]. In the same way, spurious clusters, which
do not represent any relevant groups, can easily be identi-
fied by visual inspection.

Clustering and Visualization of Metabolite 
Candidates
The objective of our approach is to provide a convenient
visual overview on potential metabolite clusters across a
sample set of marker candidates. A marker candidate is
characterized by its intensity profile under certain condi-
tions. Thus, the marker can be represented by some d-
dimensional vector x which contains the condition-spe-
cific quantities as inferred from mass spectrometry inten-
sities. Besides the intensity profile vector xi, also a
particular retention time (rt) index and mass-to-charge
ratio (m/z) is associated with each marker candidate i in a
given sample. While the intensity profiles are used in the
clustering algorithm as shown below, the rt and m/z indi-
ces are only used for interpretation of the resulting groups
(see section "visualization").

Normalization
In general, mass spectrometry-based metabolite profiling
is performed for each condition with multiple samples.
For clustering, we use average intensity values of replicas
for each marker candidate and treatment condition. After
the averaging step, each marker candidate is represented
by a vector with d dimensions corresponding to d experi-
ment conditions. The averaging is important in order to
compensate for random variations between different

measurements and can be viewed as a noise reduction
step. In principle, repeated measurements for averaging
are not strictly necessary for application of our clustering
approach. In practice, however, the noise reduction will
help to achieve reproducible results. Furthermore,
repeated measurements allow to evaluate the robustness
of the clustering: single replica samples may be left out to
analyze the variation induced by this kind of "leave-one-
out" disturbance. In other words, it becomes possible to
measure clustering or prototype stability with respect to a
reduced quality of the training data. As compared with a
marker-based cross-validation which reduces the size of
the training set due to left out markers, the sample-based
cross-validation allows to detect the same groups of mark-
ers across all leave-one-out folds.

In order to improve the comparability between putative
metabolites of different abundance, the vector of intensity
values for each marker candidate is normalized to Eucli-
dean unit length. The normalization step ensures that
marker clustering only depends on relative intensities and
not on the usually large differences of absolute intensities.
Therefore, the normalization allows to detect related
metabolites irrespective of their abundancies. Without
normalization, the clustering would mainly reflect the
length variation within the set of marker candidate vec-
tors.

Topographic Clustering
In our 1D-SOM algorithm, a particular cluster arises from
a group of marker candidates assigned to one of K "proto-
type" vectors wk ∈ �d for k = 1,..., K. A prototype vector cor-
responds to an average intensity profile and can be viewed
as a noise-reduced representation of the associated marker
candidates in that group. The clustering algorithm
imposes a topological order on the prototypes according
to a one-dimensional linear array. In that way, the projec-
tion onto an ordered set of prototypes also provides a
dimensionality-reduced representation of the data in
terms of a one-dimensional array index. The objective of
the ordering is that prototypes adjacent in the array
should provide more similarity than prototypes with dis-
tant array positions. The algorithm for optimization of
prototypes is based on topographic clustering, which is a
well-known technique in bioinformatics, usually applied
by means of two-dimensional SOMs [16]. Unlike classical
SOM applications, our one-dimensional map can be used
to visualize the variation of intensity profiles along the
array of prototypes within a common 2D color or gray
level image (see next section).

For optimization of prototypes we utilize the principle of
topographic vector quantization [17], which corresponds
to the SOM learning scheme discussed in [18]. Our reali-
zation provides a stable and robust algorithm which only
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requires little configuration effort. The only parameters
which may require modification of default values are the
number of prototypes (array length) and the minimal
amount of prototype smoothing. While the number of
prototypes corresponds to the maximal number of clus-
ters, the smoothing parameter controls the similarity of
nearby prototypes. Smoothing is achieved by using confu-
sion probabilities hjk which model the similarity of two
prototypes wj, wk. The indices j, k ∈ {1,..., K} of the proto-
types correspond to positions in a linear array where
nearby positions (indices) imply high similarity. The con-
fusion probabilities are computed from normalized Gaus-
sian functions depending on the bandwidth parameter σ
as follows:

It is important to note that the final number of clusters
depends on both, the maximal number of prototypes K
and the smoothing parameter σ. This means that for a
large amount of smoothing (high σ value) the actual
number of clusters can be much smaller than the number
K of available prototypes. In particular for a sufficiently
high degree of smoothing, some prototypes may associate
with zero-size clusters, i.e. they do not represent actual
clusters. These prototypes are merely influenced by neigh-
boring prototypes, without assignment to marker data.

During optimization, the smoothing parameter s is
decreased from a large initial value with a small number
of resulting clusters towards a minimal final value with an
increased number of groups. With this kind of "anneal-
ing" process one tries to avoid bad local minima of the
objective function which may result in a disrupted order
of prototypes. For each annealing step with a particular
(fixed) σ the optimization is realized by minimization of
an objective function which measures the squared dis-
tances between prototypes and intensity data vectors. The
objective function depends on the matrix X of N intensity
column vectors xi, a matrix W of K prototype column vec-
tors wj and an N × K matrix A of binary assignment varia-
bles aij ∈ {0, 1}. If aij = 1, then data vector xi is exclusively
assigned to the j-th prototype. For a fixed σ the following
objective function is minimized in an iterative manner:

The minimization iterates two optimization steps until
convergence: first for given prototypes all assignment var-
iables are (re)computed according to:

Then the prototype vectors are (re)computed according
to:

The overall optimization scheme also involves a prior ini-
tialization step for the matrix W of prototypes and an
annealing schedule for the smoothing parameter s. For
initialization, all prototypes (columns of W) are placed
along the first principal component axis within a small
interval around the global mean vector. The annealing
schedule is chosen to realize an exponential decrease of σ
over 100 steps, starting with a maximum value σmax = 100
and ending with an adjustable minimum value which we
set to σmin = 0.1. In supplementary material (see Addi-
tional file 1) a video clip shows the annealing process for
the experimental data that is used in our case study (see
section "Case study for experimental evaluation"). In our
experiments, the (deterministic) annealing has shown to
provide an efficient strategy to find deep local minima of
the objective function. In particular, we found that it
ensures good reproducibility of results because it makes
the approach robust with respect to the initialization of
prototypes. In all cases we observed that, besides the
above principal component initialization, also different
random initializations resulted in exactly the same proto-
types up to a possibly reversed order. This behaviour can
be explained by the fact that for a sufficiently high
smoothing parameter the resulting 1D-SOM corresponds
to a "dipole" where the ends (first and last prototype) pro-
vide the only non-zero size clusters (see Additional file 1).
In this case, the line segment between these two proto-
types is approximately collinear to the first principal com-
ponent axis.

Visualization
The result of the marker clustering process is an ordered
array of prototypes in terms of a one-dimensional self-
organizing map (1D-SOM) as described in the previous
section. Each prototype represents a group of marker can-
didates and corresponds to an average intensity profile of
that group. Therefore, the prototype-specific intensity pro-
file can be viewed as a noise-reduced representation of all
marker candidates assigned to this prototype. The order of
prototypes in the array implies that similar intensity pro-
files are closer to each other than unrelated intensity pro-
files.
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1D-SOMs are well-suitable for visualization and interpre-
tation of multivariate data. Figure 2 shows a color-coded
1D-SOM of metabolomic data from LC/MS measure-
ments (see also section "Results and Discussion"). The
horizontal dimension of the matrix corresponds to the
dimension of the SOM, i.e. the linear array axis. Each col-
umn of the matrix represents the intensity profile of one
prototype. A prototype represents a group of markers
(cluster) assigned to the corresponding array position.
The vertical dimension corresponds to the experiment-
specific conditions. In our example eight conditions were
used, therefore the matrix consists of eight rows. The color
coding of a matrix element represents the intensity value
associated with a prototype and a particular experimental
condition. The color corresponds to intensity values
according to a so-called "jet map", i.e. blue and red ele-
ments represent low and high intensity values, respec-
tively.

The 1D-SOM matrix in figure 2 shows the resulting 33
prototypes that have been optimized during the clustering
process in our case study (see section "Case study for
experimental evaluation"). The figure reveals a certain
block structure of the prototype matrix which can be per-
ceived as a visual partitioning along the linear array axis.
Within the corresponding blocks, the prototypes are very
similar or they show gradual changes ("trends") of a cer-
tain intensity pattern. For example, prototypes 18 and 19
show a unique pattern which indicates, that metabolite
candidates in the corresponding two clusters provide a
significantly higher intensity under the fifth condition
than under the remaining seven conditions. If conditions
correspond to time points, as in the example, the "high-
lighting" of a specific condition usually indicates the pres-
ence of so-called "transient" markers. On the other hand,
blocks of putative markers may result from more complex
intensity patterns, e.g. when related prototypes show high
intensity values for several "overlapping" conditions

simultaneously. In particular, a smooth variation of a pat-
tern along a block may indicate a time course or trend, for
instance metabolite concentration under temporal devel-
opment. In figure 2, overlapping conditions can especially
be observed among the first twelve prototypes which
show a continuous time-dependent evolution of the
intensity pattern. However, prototypes 11 and 12 show an
intensity maximum for the (first) control condition and
therefore should be assigned to a separate block (see sec-
tion "Application of 1D-SOMs"). In general, prior knowl-
edge about reasonable condition overlaps within the
experimental setup is necessary to identify meaningful
blocks of prototypes.

Figure 3 shows a bar plot that displays the number of
marker candidates associated with each prototype. This
kind of histogram measures the density of candidates
along the linear array axis and may provide additional evi-
dence for a particular block partitioning. In this case a
block usually shows a local density maximum (mode)
bordered with distinct minima. Figure 4 shows a variant
of the 1D-SOM matrix visualization which combines the
prototype intensity profile and cluster size information.
Here, the width of each column is proportional to the
cluster size. This representation facilitates the identifica-
tion of large clusters, while spurious clusters are usually
suppressed in the corresponding visualization.

Figures 5 and 6 visualize particular clusters by means of a
scatter plot in the retention time vs. mass-to-charge ratio
plane (rt-m/z plot). Big red dots correspond to marker can-
didates associated with the particular prototype and small
black dots correspond to the remaining marker candidates
of the same data set. The rt-m/z plot complements the 1D-
SOM visualization of intensity profiles and shows an
overview of those prototype-specific marker properties
that are not used for the intensity-based clustering. In this
plot, the distribution of marker candidates of a particular

Visualization of one-dimensional self-organizing map after clusteringFigure 2
Visualization of one-dimensional self-organizing map after clustering. 1D-SOM matrix after metabolite-based clus-
tering with 33 prototypes. The horizontal and vertical dimensions correspond to prototypes and experimental conditions, 
respectively. The color of matrix elements represent (average) intensity values according to the color map on the right hand 
side.
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group within the rt-m/z plane can be analyzed. For exam-
ple, vertical stacks of marker candidates may indicate
adducts of particular compounds since the corresponding
markers do not differ in retention time.

Case study for experimental evaluation
The objective of our experimental evaluation is not to pro-
vide "hard" performance indices, e.g. in terms of detection
rates, but rather to show how our 1D-SOM approach can
support scientists in the interpretation of large metabolic
data sets, especially for the identification of interesting
groups of markers. On one hand there is no "benchmark"
data set with known markers available which provides a
complex experimental setup with a sufficiently large
number of conditions. On the other hand our 1D-SOM
approach is designed for visual exploration of multivari-
ate marker data which is difficult to evaluate in terms of a
simple performance criterion. Therefore, we here provide
a case study in order to illustrate the practical utility of our
method. For that purpose we chose a well-established
experimental setup for analyzing the wound response of
plants.

Since plants are sessile organisms, they are directly
exposed to environmental conditions. Therefore plants
have developed special mechanisms to respond to injuries
caused by herbivores, mechanical wounding and patho-
gen attack. Mechanical damage activates diverse mecha-
nisms directed to healing and defense [19]. These
processes include the generation of specific molecular sig-
nals that activate the expression of wound-inducible genes
[20,21]. Until now the analysis of the wound response has
primarily focused on the transcriptional response [22]
and on a special set of metabolites involved in early signal
transduction events. Here fatty acid derived signals, like
jasmonic acid (JA) and its derivatives (referred to as jas-
monates), as well as other oxygenated fatty acid metabo-
lites (referred to as oxylipins) play a crucial regulatory role
in mediating the wound response [19,23]. To show the
potential of our 1D-SOM, we analyzed the metabolite
profile of the thale cress Arabidopsis thaliana during a
wounding time course. The genome of this model plant
has been sequenced and its wound response is well char-
acterized [20,24]. To describe the wound response of A.
thaliana in a broad functional context we compared a

Bar plot of cluster sizesFigure 3
Bar plot of cluster sizes. Bar plot of size for all clusters associated with the 33 prototypes. The horizontal and vertical 
dimensions correspond to prototype number and cluster size, respectively. The height of a prototype-specific bar is propor-
tional to the number of marker candidates assigned to this prototype.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0

20

40

60

Visualization of one-dimensional self-organizing map according to cluster sizeFigure 4
Visualization of one-dimensional self-organizing map according to cluster size. Alternative view of 1D-SOM matrix 
after metabolite-based clustering with 33 prototypes. The horizontal and vertical dimensions correspond to prototypes and 
experimental conditions, respectively. The color of matrix elements represents (average) intensity values according to the 
color map on the right hand side. The width of the matrix column for each prototype is proportional to the number of marker 
candidates assigned to this prototype.
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wounding time course of wild type (wt) plants with that
of dde 2–2 mutant plants. The dde 2–2 plants are deficient
in JA biosynthesis due to the mutation of the allene oxide
synthase (AOS) gene (see figure 7). In wt plants, the
encoded enzyme catalyzes the first committed step in JA
biosynthesis [25].

Because the wound response shows a complex network of
integrated biochemical signals we used an unbiased
metabolomic analysis to extend our knowledge on global
metabolic changes at early time points after wounding. In
contrast to targeted procedures, this type of analysis is able
to cope with complex metabolic situations in a more real-
istic and global way by including many metabolites that
are unknown so far but are regulated in a certain context.
For the interpretation of data sets of such high complexity,
advanced data mining tools are essential.

Plant growth and wounding
Two plant lines were used: wt plants of A. thaliana (L.)
ecotype Columbia-0 (Col-0) and the JA-deficient mutant
plants dde 2–2 [26]. Plants were grown on soil under short
day conditions. Rosette leaves of eight-week-old plants
were mechanically wounded using forceps [27]. Whole

rosettes of unwounded plants (control, 0 h) and wounded
plants (0.5, 2 and 5 hours post wounding (hpw)) were
harvested and immediately frozen in liquid nitrogen. To
minimize biological variation, rosettes of five to ten
plants were pooled for each time point.

Experimental setup
The data set resulting from the wounding experiment con-
sists of eight conditions (see Table 1). The first four condi-
tions reflect the metabolic situation within a wounding
time course of wt plants starting with the control plants
followed by the plants harvested 0.5, 2 and 5 hpw. The
conditions 5 to 8 represent the same time course for the JA
deficient mutant plant dde 2–2.

Metabolite extraction and measurement
Plant material was homogenized under liquid nitrogen
and subsequently extracted using methanol/chloroform/
water (1:1:0.5, v:v:v) as described in [28], but without
adding internal standards. Four independent extractions
were performed for each condition.

The chloroform phase containing lipophilic metabolites
was analyzed by Ultra Performance Liquid Chromatogra-

rt-m/z plot of cluster 5Figure 5
rt-m/z plot of cluster 5. Scatter plot in the rt-m/z plane for identification of adducts and unknown marker candidates. 
Marker candidates associated with prototype 5 are prepresented as big red dots in the retention time vs. mass-to-charge ratio 
(rt-m/z) plane. The wound markers represented by the big blue dots are JA (m/z 209, rt 0.72 min) and OPC-4 (formate adduct, 
m/z 283, rt 0.98 min). The marker candidates that are in a vertical line with the blue dot at rt 0.72 min exhibit a noticeable ver-
tical stack. The remaining marker candidates of the experiment are represented by small black dots. The average intensity pro-
file associated with prototype 5 is shown on the right hand side.
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phy (ACQUITY UPLC™ System, Waters Corporation, Mil-
ford) coupled with an orthogonal time-of-flight mass
spectrometer (TOF-MS, LCT Premier™, Waters Corpora-
tion, Milford) working with negative electrospray ioniza-
tion (ESI) in an m/z range of 50 to 1200. For
chromatographic separation an ACQUITY UPLC™ BEH
SHIELD RP18 column (1 × 100 mm, 1.7 μm, Waters Cor-
poration, Milford) was used with a methanol/acetonitrile/
water gradient, containing 0.1% (v/v) formic acid. The
LC/MS analysis was performed at least twice for each
extract resulting in nine replicas for each condition. The
identification of metabolites was verified by exact mass
measurement and coelution with authentic standards.

Data processing
The raw mass spectrometry data of all samples were proc-
essed (deconvolution, alignment, deisotoping and data
reduction) using the MarkerLynx™ Application Manager
for MassLynx™ software (Waters Corporation, Milford)
with parameter settings as shown in the supplementary
table "MarkerLynx parameters" (see Additional file 2).
MarkerLynx™ automatically performs a noise reduction
which results in zero values for certain low intensity
peaks. The processing resulted in 6048 marker candidates.

Unsupervised methods for metabolite-based clustering
strongly rely on marker quality. The quality mainly

rt-m/z plot of cluster 19Figure 6
rt-m/z plot of cluster 19. Marker candidates associated with prototype 19 as big red dots in the retention time vs. mass-to-
charge ratio (rt-m/z) plane. The markers represented by the big blue dots are COOH-22:0, OH-22:0, OH-24:0 and OH-26:0 
(see also table 2) and the formate adducts of the latter three hydroxy fatty acids These formate adducts are characterized by 
identical rt values and a mass shift of m/z 46. The remaining marker candidates of the experiment are represented by small 
black dots. On the right hand side the average intensity profile associated with prototype 19 is shown.
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Table 1: Experimental conditions for wounding of A. thaliana wild type (wt) and dde 2–2 mutant (dde 2–2) plants.

A. thaliana Col-O hour post wounding (hpw) condition sample name

wt 0 1 wt, 0 h
0.5 2 wt, 0.5 hpw
2 3 wt, 2 hpw
5 4 wt, 5 hpw

dde 2–2 0 5 dde 2–2, 0 h
0.5 6 dde 2–2, 0.5 hpw
2 7 dde 2–2, 2 hpw
5 8 dde 2–2, 5 hpw
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depends on reproducibility and biological interpretabil-
ity. Without prior selection, large amounts of non-inform-
ative markers with little intensity variation across different
conditions would dominate the clustering results and
complicate further analysis. In general, number and qual-

ity of selected markers should depend on the specific
requirements of a particular study. Therefore, a task-
dependent trade-off between number and quality of
marker candidates has to be found. In our case we per-
formed a Kruskal-Wallis test [29] on the intensities of each

Oxylipin biosynthesisFigure 7
Oxylipin biosynthesis. Oxylipin biosynthesis starts with the release of α-linolenic acid (α-LeA) from chloroplast membranes 
[21]. This fatty acid can be metabolized by the action of 13-lipoxygenase (13-LOX) that leads to (13S)-hydroperoxyoctadeca-
trienoic acid (13-HPOT). The first step in jasmonic acid (JA) biosynthesis is carried out by an allene oxide synthase (AOS) lead-
ing to an unstable allene oxide. This intermediate is converted by an allene oxide cyclase (AOC) into (9S,13S)-12-oxo 
phytodienoic acid (OPDA). The subsequent step, reduction of the cyclopentenone ring, is catalysed by an OPDA reductase 
(OPR). Three rounds of β-oxidative side-chain shortening starting with 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-octanoic acid 
(OPC-8) via 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-hexanoic acid (OPC-6) and 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-buta-
noic acid (OPC-4) lead to the synthesis of JA. Beside the JA biosynthesis pathway, the LOX-product 13-HPOT can be either 
reduced to (13S)-hydroxyoctadecatrienoic acid (13-HOT) or under certain conditions, such as low oxygen pressure to 13-
ketooctadecatrienoic acid (13-KOT) by the action of 13-LOX. The mutation of the AOS gene of the dde 2–2 mutant leads to a 
deficiency in the JA biosynthesis [26].
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marker candidate and used the corresponding p-value as
a measure of quality. Considering the rank order of
marker candidate intensities, this non-parametric test can
be used to detect significant variation of the condition-
specific mean ranks. In that way we selected a subset of
high-quality markers using a conservative confidence
threshold of 10-6. The selection contained 837 marker
candidates with a p-value below the specified threshold
(see Additional file 3 for CSV file of data set).

Results and Discussion
In the following we first present the results of our case
study using the proposed 1D-SOM algorithm. Then we
apply hierarchical clustering analysis (HCA) in combina-
tion with the K-means algorithm [15] and finally princi-
pal component analysis (PCA) for comparison. For
implementation of the 1D-SOM training and visualiza-
tion we used the MATLAB® programming language
together with the Statistics Toolbox® for HCA and K-
means clustering.

Application of 1D-SOMs
Because the true number of biologically meaningful
groups is unknown, we had to choose a sufficiently high
number of prototypes for clustering. In accordance with a
prior robustness study (see section "Accessing Robust-
ness") we chose K = 33 prototypes for the analysis in our
case study. For higher numbers of prototypes we observed
an increasing number of singleton clusters as well as the
occurrence of "empty" clusters without any assigned
marker candidates.

First, the resulting 1D-SOM allows an overview of the
complex metabolic situation within the sample set of

examination (see figures 2 and 4). Simultaneously, a
more specific analysis of distinct clusters can be per-
formed by means of rt-m/z scatter plots (see figures 5 and
6). In figure 2, the 1D-SOM of the time course of the
wound experiment including wt and dde 2–2 mutant
plants is shown. To our knowledge, this is the first visual-
ization that shows a convenient overview of the intensity
patterns of several hundred marker candidates of the
lipophilic fractions. The intensity profiles of these 837
lipophilic marker candidates are represented by 33 proto-
types. The visualization clearly reveals the existence of dif-
ferent blocks of intensity patterns.

A first dominant block (block A, see figure 2 and table 2)
consists of the prototypes 1 to 10. The block contains 250
marker candidates, which accumulate in wt plants after
wounding (condition 2–4) but are either missing or show
very low intensities in the dde 2–2 mutant plants (condi-
tion 6–8). Within block A a remarkable shift of late
enriched marker candidates (prototype 1) over time stable
candidates (prototypes 5–7) towards very early enhanced
and transient marker candidates (prototype 9) can be
observed. Thus, block A represents candidates that are
characteristic for the wound response of wt plants and
which clearly show a trend along the first 10 prototypes of
the 1D-SOM.

Prototypes 20–24 can be grouped in a block E (see figure
2 and table 2). This rather small block contains 58 marker
candidates typical for the wound response in the JA defi-
cient dde 2–2 mutant plants and, thus, acts as a counter-
part of block A. In wt plants block E marker candidates are
either missing or show very low intensities. Within block
E a shift from very early transient marker patterns (proto-

Table 2: Formation of blocks based on the interpretation of prototype profiles and identification of corresponding markers.

Block Prototypes # markers Marker characteristics Identified wound markers Prototype

A 01 – 10 250 Accumulation in wild type plants after wounding JA-Ile (m/z 322) 9
dn-OPDA (m/z 263) 8
OPC-4 (formate adduct, m/z 283) 5
JA (m/z 209) 5
OPDA (m/z 291) 2
OH-JA-Ile (m/z 338) 1
OH-JA (m/z 225) 1
COOH-JA-Ile (m/z 352) 1

B 11 – 12 29 Accumulation in wt control plants -- --
C 13 – 17 112 Mainly indifferent -- --
D 18 – 19 26 Accumulation in mutant control plants COOH-22:0 (m/z 369) 19

OH-22:0 (m/z 355) 19
OH-24:0 (m/z 383) 19
OH-26:0 (m/z 411) 19

E 20 – 24 58 Accumulation in mutant plants after wounding HHT (m/z 265) 21
HOT (m/z 293) 22
KOT (m/z 291) 22

F 25 – 33 362 Delayed accumulation in mutant plants after wounding -- --
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type 20) over very early time-stable patterns (prototype 21
and 22) towards late marker patterns of the wound
response (prototype 24) is obvious.

A very small but remarkable block consists of prototypes
18 and 19 (block D, see figure 2 and table 2). Here 26
marker candidates accumulate in non-treated plants of
the dde 2–2 mutant but not in non-treated wt plants.
Within 0.5 hpw the level of these candidates decreased in
dde 2–2 mutant plants. Therefore, block D represents
marker candidates down regulated during the wound
response in dde 2–2 mutant plants. Surprisingly, there is a
dominating block summarizing 362 marker candidates
with increasing intensities both in wt and in mutant
plants after wounding (block F, prototypes 25 to 33, see
figure 2 and table 2). The visualization revealed that the
accumulation of these putative metabolites started earlier
in wt plants (2 hpw) when compared to the mutant plants
(5 hpw). The wound marker candidates of block F seem to
be regulated independently from the JA pathway.

Block A and D are interrupted by a block B summarizing
marker candidates that accumulate in wt control plants
(prototype 11 and 12) and block C showing mainly indif-
ferent intensity patterns (prototype 13–17). After the ini-
tial assignment of prototypes, blocks were analyzed in
more detail at the level of individual metabolites. For this
purpose we searched the data set for well known meta-
bolic constituents of the wound response, such as JA, its
immediate precursors 12-oxo-phytodienoic acid (OPDA),
3-oxo-2-(pent-2'-enyl)-cyclopentane-1-octanoic acid
(OPC-8), 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-hexa-
noic acid (OPC-6) and 3-oxo-2-(pent-2'-enyl)-cyclopen-
tane-1-butanoic acid (OPC-4), as well as JA derivatives
and the roughanic acid-derived homolog of OPDA, dn-
OPDA (see also figure 7) [23,30]. By this approach, eight
known wounding markers could be identified in block A
(see figure 2 and table 2). Markers related to the wound
response in the dde 2–2 mutant plants are located in block
D and E (see figure 2 and table 2). The JA-independent
marker candidates of block F will be subject of further
investigations.

Prototypes of block A represent wound markers of wt plants
As expected from the current literature on targeted and
untargeted metabolic analysis [23,31,32], a significant
number of wounding markers was identified exclusively
in wt plants.

The wound markers JA (m/z 209) and OPC-4 (formate
adduct, m/z 283) were detected in cluster 5 (see table 2).
As visible in the rt-m/z plane in figure 5, the blue-colored
JA dot at rt 0.72 min shows the lowest m/z value within a
noticeable vertical stack. Dots of this stack may partially
represent ESI-specific adducts of JA, such as the formate

adduct (m/z 255, rt 0.72 min). Due to the high similarity
of intensity profiles between a metabolite and its adducts,
metabolites and their adducts are likely to be assigned to
the same prototype. Thus, adducts are easy to detect
within the same cluster by means of stack formation
which results from identical retention times.

Interestingly, prototype 5 associates the intensity profile
of JA and its precursor OPC-4 (blue dot at rt 0.98 min in
the rt-m/z plane in figure 5) with the profile of a group of
marker candidates of high molecular weight (m/z range
from 800 to 1200) not identified up to now. However, the
arrangement of these metabolites in the JA-containing
cluster suggests them to play a role in wound response of
wt plants. The wound markers dn-OPDA (m/z 263) and
jasmonoyl-isoleucine (JA-Ile, m/z 322) were detected in
cluster 8 and 9, respectively (see figure 2 and table 2).
These prototypes are associated with marker candidates
characterized by a very early and transient intensity maxi-
mum at 0.5 hpw.

Similar to prototype 5, prototype 9 also associates the
intensity profile of a small, rather polar wound signal sub-
stance (JA-Ile) with the profile of a group of markers of
high molecular weight (m/z range from 850 to 1020) and
stronger lipophilic properties (rt range from 2.5 to 4 min)
not identified with certainty up to now. Interestingly, the
time-dependent order of prototypes in the 1D-SOM
allows the prediction that JA-Ile and the associated group
of marker candidates of high molecular weight in cluster
9 are more transiently regulated than the main wound
marker JA located in cluster 5. Therefore, the group of
compounds associated with JA-Ile appears to represent
valuable candidates for further investigations into the net-
work of wound signaling in A. thaliana.

Hydroxy-JA (OH-JA, m/z 225) and the JA-Ile derivatives
hydroxy-jasmonoyl-isoleucine (OH-JA-Ile, m/z 338) and
carboxy-jasmonoyl-isoleucine (COOH-JA-Ile, m/z 352)
are assigned to prototype 1. All three substances show an
intensity profile typical for late-occurring wound respon-
sive metabolites. OH-JA is a product of JA modification
with the capability to counteract the JA signaling pathway
[31]. The JA-OH intensity pattern coincides with the pos-
tulated counterregulatory function of OH-JA. Like OH-JA,
the polar JA-Ile derivatives OH-JA-Ile and COOH-JA-Ile
show a delayed wound response in comparison to JA-Ile
and JA, an observation also described in [23]. The wound
marker OPDA (m/z 291, see figure 2 and table 2) was
detected in cluster 2 and therefore OPDA also represents a
late wound marker.
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Prototypes of block E represent wound markers of dde 2–2 mutant 
plants
In dde 2–2 mutant plants the wound response is disturbed
by the deletion of the AOS enzyme activity. Therefore,
products of the wound signaling pathway upstream of the
AOS reaction should be enriched and have therefore been
expected in block E. Candidates for the accumulation of
precursors are hydroperoxides and hydroxides of fatty
acids as well as keto fatty acids [33]. We have identified
hydroxy hexadecatrienoic acid (HHT, m/z 265) in cluster
21 and hydroxy octadecatrienoic acid (HOT, m/z 293) as
well as keto octadecatrienoic acid (KOT, m/z 291) in clus-
ter 22, respectively (see table 2). These observations con-
firm our hypothesis that the intensity levels of all three
metabolites (HHT, KOT and HOT) are regulated by the
AOS enzyme activity.

Prototypes of block D represent markers accumulating in dde 2–2 
mutant control plants
Block D with prototypes 18 and 19 combines 26 marker
candidates with intensity profiles indicating accumula-
tion in the control plants of the dde 2–2 mutant and a
decrease after wounding of these plants. However, these
candidates exhibit only low intensities and are not altered
in intensity by wounding in wt plants (see figure 2).

The seven blue-colored markers of cluster 19 shown in fig-
ure 6 could be identified as very long chain dicarboxylic
and hydroxy fatty acids so far not described in the context
of plant wound responses (see table 2): docosanedioic
acid (COOH-22:0, m/z 369, rt 4.54 min), hydroxy-
docosanoic acid (OH-22:0, m/z 355, rt 4.72 min),
hydroxy-tetracosanoic acid (OH-24:0, m/z 383, rt 5.31
min), hydroxy-hexacosanoic acid (OH-26:0, m/z 411, rt
5.85 min) and the formate adducts of the latter three
hydroxy fatty acids. These formate adducts are character-
ized by identical retention times and a mass shift of m/z 46
regarding the molecular ion. The formation of strong for-
mate adducts for the hydroxy fatty acids but not for the
dicarboxylic fatty acid could be confirmed by LC/MS anal-
ysis of the corresponding standards. The analysis shows
the potential of adduct formation occurring in ESI-MS
analysis for the further identification of markers. Here the
visualization by means of rt-m/z scatter plots makes it pos-
sible to recover specific adduct formation (see figure 6).
Finally, the occurrence of these four very long chain dicar-
boxylic and hydroxy fatty acids in one cluster suggests that
these metabolites are part of the same regulatory context.

Application of HCA/K-means
For comparison of our 1D-SOM method with a more clas-
sical approach to clustering and visualization we per-
formed hierarchical cluster analysis (HCA) in
combination with K-means. The HCA/K-means scheme
combines hierarchical clustering for prototype initializa-

tion with a K-means algorithm for iterative improvement
of prototypes. For this purpose the resulting HCA dendro-
gram is cut at a particular distance to obtain a predefined
number of ordered clusters. In the next step K-means is
applied using the HCA partition means as initial proto-
types.

For direct comparison with the previous 1D-SOM results
we performed an average linkage HCA/K-means cluster-
ing with 33 prototypes using Euclidean distances. Figure 8
shows the pruned HCA dendrogram, the resulting K-
means prototype vectors, a histogram of the correspond-
ing cluster sizes, and the scaled prototypes with width
according to cluster size. The dendrogram by itself cannot
be interpreted in terms of intensity profiles. In contrast to
the 1D-SOM, the prototypes are only weakly ordered,
which complicates the aggregation to meaningful blocks
and the identification of interesting clusters (see figure 8,
second row). The wound-induced marker candidates of
dde 2–2 mutant plants, for example, are mainly associated
with prototypes 10, 12, 16 and 31, while the marker can-
didates which show accumulation in mutant control
plants are distributed among cluster 18 and 32. Further-
more, eight clusters only contain a single marker candi-
date. These singleton clusters do not provide information
about groups of related candidates sharing the same dis-
tinct intensity profile. Due to the weak prototype ordering
it usually makes no sense to merge these singletons with
neighboring clusters.

Accessing Robustness
To investigate the robustness of the cluster-based visuali-
zation approaches we applied the leave-one-sample-out
strategy as motivated in section "Normalization". In that
way we measured the robustness with respect to a reduced
number of replicas: we removed one sample for each con-
dition from the data and compared the resulting proto-
types with the original array of prototypes obtained with
the full data set with all nine samples per condition. In
particular, we measured the Pearson correlation between
the ordered prototype intensities of both arrays. We chose
the reversed order of the original array if it yielded a
higher correlation. As a measure of reproducibility, we
took the mean correlation over the nine folds of the leave-
one-out procedure. The mean leave-one-out correlation
was computed for a varying number of prototypes,
according to K = 2, 3,..., 50. The resulting curve plots in
figure 9 clearly show that the 1D-SOM visualization
approach is robust with respect to the simulated data
quality loss. The 1D-SOM shows high stability of the pro-
totype array under the induced disturbances: in most cases
the correlation is above 0.9 with a mean of 0.947. In con-
trast, the correlations of the HCA/K-means approach are
rather low with a mean of 0.299 for the average linkage
variant. Using complete linkage instead of average link-
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age, the results (see figure 9) become even worse, as indi-
cated by a mean correlation of only 0.184. These findings
indicate that the "weak" prototype ordering of HCA/K-
means, which results from the dendrogram structure, is
not robust with respect to changing data quality. In partic-
ular, the lacking robustness can be observed for higher
numbers of prototypes. Note that maximization of the
correlation cannot be used to select an optimal number of
clusters because this selection would result in the smallest
possible number of clusters with highest correlation
obtained for the trivial single prototype solution. How-
ever, the resulting correlation curves (see figure 9) can be
used to select a sufficiently large K from the set of local
maxima. Considering these curves we chose K = 33 proto-
types for the more detailed analysis described in the two
previous sections.

Application of PCA
For comparison with the classical multivariate analysis
approach, a PCA was performed on the samples of the
dataset. PCA provides a linear dimensionality reduction
with minimal loss of data variance. For this purpose the
first eigenvectors of the estimated data covariance matrix
(sorted by eigenvalues in descending order) serve as pro-
jection weights for the original data vectors. The reduced
data coordinates (principal component scores) can be
plotted in order to identify outliers or groups of correlated
data samples. The corresponding eigenvector coordinates
(loadings) can be used to identify clusters of correlated
variables (marker candidates). The eigenvalues represent
the amount of variance captured by the corresponding
principal components. As a common preprocessing step,
the marker-specific intensities (sample dimensions) were
normalized to unit standard deviation before applying
PCA. The eigenvalue spectrum (see figure 10) indicates

Visualization of HCA/K-means resultsFigure 8
Visualization of HCA/K-means results. Visualization of results from hierarchical clustering combined with K-means with K 
= 33 prototypes. Top: pruned average linkage HCA dendrogram (vertical axis represents Euclidean distance). Second row: 
resulting K-means prototype vectors (vertical axis: conditions). Third row: bar plot of the corresponding cluster sizes (vertical 
axis: cluster size). Fourth row: scaled prototypes with width according to cluster size.
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Leave-one-out correlation of 1D-SOM vs. HCA/K-meansFigure 9
Leave-one-out correlation of 1D-SOM vs. HCA/K-means. Measuring robustness in terms of the leave-one-out (Loo) 
correlation of 1D-SOM in comparison with average linkage HCA/K-means (HcaAL/Kmeans) and complete linkage (HcaCL/
Kmeans) for different numbers of prototypes.
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Eigenvalue spectrum of sample-based PCAFigure 10
Eigenvalue spectrum of sample-based PCA. Eigenvalue spectrum of sample-based PCA showing variance of the first 20 
principal components.
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that the first two principal components account for a large
proportion of the total variance. The resulting plot of the
first two principal component (PC) scores shows a clear
phenotype separation of the eight conditions (see figure
11). The corresponding PCA loadings plot (see figure 12)
contains two obvious clusters which mainly correspond
to the marker candidates of cluster 14 and 15 in the 1D-
SOM (green dots) and the marker candidates of cluster 27
to 33 (blue dots), respectively. The identified markers
were tagged with the corresponding metabolite labels
according to table 2. The plot shows a concentration of
wound induced markers of wt plants in the "south east"
quadrant and wound induced markers of dde 2–2 mutant
plants in the "north west" quadrant, respectively. How-
ever, there is no evidence for a more detailed cluster struc-

ture which could be inferred from the plot. The
dicarboxylic and hydroxy fatty acid markers COOH-22:0,
OH-22:0, OH-24:0 and OH-26:0 for example, share the
same distinct intensity profile (see figure 2, prototype 19),
but they do not seem to belong to a common cluster in the
loadings plot. The lack of a simultaneous visualization of
the corresponding intensity profiles complicates the inter-
pretation of the plot substantially.

Conclusion
We have introduced an approach to metabolite-based
clustering for the identification of biologically relevant
groups of metabolic markers in mass spectrometry data.
Our algorithm is based on a special realization of one-
dimensional self-organizing maps (1D-SOMs). In a case

Sample-based PCA scatter plotFigure 11
Sample-based PCA scatter plot. Visualization of experimental conditions according to the first two principal components 
of a sample-based PCA applied to the experimental data. Short identifiers for all experimental conditions are given on the right 
hand side. The abbreviations used in the legend are explained in table 1.
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study about the wound response in A. thaliana we could
show that our 1D-SOMs provide a visualization of multi-
variate marker data suitable for investigation of potential
clusters. By means of a linear array of ordered prototypes
the 1D-SOM representation gives a convenient overview
on relevant patterns in complex multivariate data. Mean-
ingful expected as well as unexpected clusters can be iden-
tified by visual inspection of the corresponding intensity
profiles. In particular our approach supports the discovery
of so far unknown markers on the basis of their location
in the 1D-SOM array with respect to previously identified
markers.
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Scatter plot of sample-based PCA loadingsFigure 12
Scatter plot of sample-based PCA loadings. Visualization of PCA loadings for all marker candidates of the experiment. 
Loadings were calculated according to the first two principal components of sample-based PCA. Black, green and blue dots 
represent unidentified marker candidates. Green and blue dots correspond to candidates of clusters 14–15 and 27–33, respec-
tively. Red asterisks represent identified markers. Marker abbreviations are explained in section "Application of 1D-SOM" and 
in table 2.
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Additional file 1
Movie of the annealing process during clustering. The file 
cluster_process_33nodes.mpg contains a movie that shows the annealing 
process during clustering of the experimental data used in our case study. 
The annealing schedule realizes an exponential decrease of the smoothing 
parameter σ over 100 steps. The initial value is σmax = 100 and the final 
value is σmin = 0.1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-3-9-S1.mpg]

Additional file 2
List of MarkerLynx™ parameters. The data file MarkerLynxParameters.xls 
contains an Microsoft® Excel table with parameters that were used for data 
preprocessing with MarkerLynx™.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-3-9-S2.xls]

Additional file 3
Table of marker candidates used in the case study. The data file 
dataset837.csv contains the marker candidates used for clustering and vis-
ualization. Rows correspond to particular marker candidates. The first col-
umn corresponds to marker candidate ID, the second and third column 
represent cluster ID and block ID according to table 2, respectively. The 
block IDs A, B, C, D, E and F are encoded by integers 1,..., 6. Columns 
4 and 5 correspond to experimental nominal mass (m/z) and retention 
time (minutes), respectively. Columns 6 to 77 contain intensity values 
from mass spectrometry measurements. Here, nine successive values cor-
respond to replicas of a particular experimental condition (see section 
"Case study for experimental evaluation"). The intensity values are 
ordered according to successive replicas for each condition (order of con-
ditions according to table 1).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-3-9-S3.csv]
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