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Abstract
Anemia is a blood disorder which is caused due to inadequate red blood cells and hemoglobin concentration. It occurs in all 
phases of life cycle but is more dominant in pregnant women and infants. According to the survey conducted by the World 
Health Organization (WHO) (McLean et al., Public Health Nutr 12(4):444–454, 2009), anemia affects 1.62 billion people 
constituting 24.8% of the population and is considered the world’s second leading cause of illness. The Peripheral Blood 
Smear (PBS) examination plays an important role in evaluating hematological disorders. Anemia is diagnosed using PBS. 
Being the most powerful analytical tool, manual analysis approach is still in use even though it is tedious, prone to errors, 
time-consuming and requires qualified laboratorians. It is evident that there is a need for an inexpensive, automatic and 
robust technique to detect RBC disorders from PBS. Automation of PBS analysis is very active field of research that moti-
vated many research groups to develop methods using image processing. In this paper, we present a review of the methods 
used to analyze the characteristics of RBC from PBS images using image processing techniques. We have categorized these 
methods into three groups based on approaches such as RBC segmentation, RBC classification and detection of anemia, and 
classification of anemia. The outcome of this review has been presented as a list of observations.
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1 Introduction

Anemia is a condition described by insufficient red blood cells 
or based on hemoglobin content in the blood below a specific 
range estimated for specific sex and age of a person. Anemia 
is diagnosed using PBS where microscopic examination of 
blood smear provides useful information about alteration of 
RBC shape and size or presence of any inclusion bodies. RBC 

morphology is a key tool for hematologists to recommend 
appropriate clinical and laboratory follow-up and to select the 
best tests for definitive diagnosis. Anemia analysis can be done 
based on RBC morphology and clinical parameters. Morpho-
logical analysis using blood smear is performed by spreading 
a drop of blood thinly onto a glass slide and stained with col-
oring agents such as Giemsa, Leishman, and Wright-Giemsa 
and examined under a microscope by a qualified lab technician 
[93]. The blood smear contains different types of cells, namely 
White Blood Cells (WBCs), RBCs and platelets. An image of 
PBS indicating different blood cells is shown in Fig. 1.

It can be observed that RBCs are more in number in com-
parison with WBCs and platelets. During this examination 
of the smear, the pathologists assess the size, shape, and 
color of the RBCs and WBCs. Also, they estimate the num-
ber of platelets present. The quality of RBC is character-
ized by red cell indices and any deviation in size, volume, 
or shape of red cells represents an abnormal red blood cell 
[78]. Anemia is classified based on the morphology of red 
cells, red cell indices and hemoglobin content as in Fig. 2.

Anemia is classified into hypochromic microcytic, nor-
mochromic normocytic and macrocytic anemia. Further, it 
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is categorized into Iron Deficiency Anemia (IDA), Sickle 
Cell Anemia (SCA), thalassemia, Hereditary Spherocytosis 
(HS), Hereditary Elliptocytosis (HE), aplastic anemia and 
Hemolytic Anemia (HA) based on the RBC morphology. 
Based on the morphology, types of normal and abnormal 
red blood cells are shown in Fig. 3.

Anemia classification can also be performed based on the 
clinical parameters such as RBC count, RBC indices, namely 
Mean Corpuscular or Cell Volume (MCV in femtoliter), 
Mean Cellular Hemoglobin Concentration (MCHC), 
Mean Cell Hemoglobin Content (MCH in picograms), 
hematocrit (HCT) or Packed Cell Volume (PCV) and Red 
Cell Distribution Width (RDW). These parameters play an 
important role in the detection and classification of anemia. 
Hematologists usually examine PBS if RBC indices are 
abnormal [58]. The morphological classification of anemia 
based on the clinical diagnosis is as shown in Table 1.

This paper presents a comprehensive review of automa-
tion of PBS images for detection of anemia. Many research 
groups have attempted this automation based on clinical or 
morphological analysis.

2  Approaches

This survey summarizes the various research works 
involved in the automation of analysis of the PBS images. 
The approaches are categorized as RBC segmentation and 

counting, RBC classification and detection of anemia, and 
anemia classification.

2.1  RBC segmentation and counting

In this section, we provide information about RBC seg-
mentation and counting using image processing methods 
based on color and size variations. The segmentation tech-
niques are categorized into different sub-sections based on 
the approaches.

Fig. 1  Microscopic view of blood smear image [95]

Fig. 2  Classification of anemia

Fig. 3  Normal and abnormal RBCs [95]
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2.1.1  Thresholding and transform‑based segmentation 
methods

Thresholding is the simplest way of segmenting an image 
into foreground and background based on the different 
intensities or colors. Transform methods are used to iden-
tify the features in the other domains. Prasad et al. [124] 
developed a decision support system to detect malaria 
parasites in thin PBS images using color image analysis. 
Morphological operations were used to detect RBCs and 
color image processing techniques to extract the region of 
interest. This method could detect around 96% of the para-
sites for 200 Giemsa stained images of 100X magnification 
under uniform stain and illumination conditions [58] [90, 
125]. Bhavnani et al. [40] proposed a method to segment 
and count RBCs and WBCs using Otsu thresholding and 
morphological operations. WBC counting was performed by 
counting number of connected components and obtained an 
average accuracy of 94.25%. RBC counting was performed 
using Watershed segmentation and Circular Hough Trans-
form (CHT) and accuracies of 92.67% and 91.07% were 
obtained respectively. The principal objective of water-
shed segmentation [87] is to find the watershed lines which 
forms continuous path giving rise to continuous bounda-
ries between the regions. It extracts nearly uniform objects 
from the background. CHT is an image transform [53] that 
extracts circular objects from an image. The transform can 
measure radius and the centroid of each circular object in 
an image by searching a 3D Hough space. Maji et al. [107] 
presented RBC counting method using Otsu thresholding 
and mathematical morphology and classified into circular, 
non-circular, overlapped cells or artifacts. The average accu-
racy obtained was 96.9% for circular and 97.1% for non-
circular cells from 146 images. Ruberto et al. [65] proposed 
a method for malarial parasite-infected blood cells using 
HSV component based on color similarity and Watershed 
algorithm for 12 Giemsa stained images acquired at differ-
ent magnifications with some variations in stain and lighting 
conditions. Ruberto et al. [66] proposed a method based on 
region proposal using edge boxes for detecting and quantify-
ing RBCs and obtained accuracy in the range of 96–98% for 
180 ALL-IDB images. The research groups [67] presented 
the same method for another malarial parasite MP-IDB data-
base with 100 images and achieved accuracy in the range of 
89–99%. Sharif et al. [144] presented a preliminary study 

on RBC segmentation method using masking and watershed 
algorithm for 20 images with 40X magnification. However, 
this method needs improvement in segmentation for large 
overlap. Biswas et al. [43] proposed blood cell segmenta-
tion method using Watershed Transform (WT) [118, 144] 
and Sobel filter in the spatial frequency domain [60, 126] 
and obtained 93% accuracy for 30 images measured using 
a structure similarity index matrix. Habibzadeh et al. [86] 
proposed a method for WBC and RBC segmentation using 
YIQ color space and WT and 90% accuracy was achieved for 
RBC segmentation using 10 images. However, they reported 
addressing large variations of blood cells and low quality 
images in their future work. Cruz et al. [57] proposed RBC 
counting method using blob analysis based on HSV com-
ponent and WT and obtained an average accuracy of 95.6% 
for 10 blood samples taken with 40X and 100X magnifica-
tions. Segmentation of RBCs from PBS images using Hough 
Transform (HT) was reported by many research groups [14, 
72, 83, 110, 113, 149, 155]. They reported the accuracy in 
the range of 94–96%. Mahamood et al. [104, 105] proposed 
color based blood cell segmentation in CIELAB color space 
and used CHT for cell extraction. The experiment was per-
formed on ALL-IDB dataset with 108 Wright stain images 
of magnification ranging from 300X to 500X and obtained 
the average accuracy of 81% for WBCs and 64% for RBCs. 
Sarrafzadeh et al. [139] presented a circlet transform-based 
method to count RBCs and obtained a low error rate for 
100 images with 100X magnification. However, the authors 
suggested to improve initial RBC mask for accurate seg-
mentation. Yeldhos et al. [161] implemented FPGA based 
embedded system for counting RBC using CHT. YCbCr 
color conversion and WT segmentation method were used. 
An accuracy of 90.98% was achieved for 108 blood smear 
images of ALL-IDB dataset. Frejlichowski [80] proposed 
a method to detect RBCs based on pixel relationship and 
obtained 83% accuracy for 700 RBCs from May-Grunwald-
Giemsa (MGG) stained images. Alomari et al. [28] proposed 
an iterative structured circle method to detect WBCs and 
RBCs and obtained average accuracy of 95.3% for RBCs and 
98.4% for WBCs from 100 images of different magnifica-
tions ranging from 300 to 500X.

2.1.2  Edge based segmentation methods

Das et al. [60] proposed a method to identify RBCs and 
different types of WBCs using edge detection algorithms, 
namely Canny, Laplacian of Gaussian (LOG), Sobel and 
obtained 85% accuracy for 20 images. Poomcokrak et al. 
[123] proposed Canny edge algorithm based RBC counting 
method. The method obtained 74% accuracy for 59 RBCs 
and 59 non-RBCs using Multilayer Perceptron (MLP). MLP 
is a simple feed forward neural network that uses back prop-
agation algorithm to train neurons [89, 92]. It consists of an 

Table 1  Classification of anemia based on the clinical parameters

Anemia Type MCV fL MCH pg MCHc%

Macrocytic anemia > 100 > 32 32–35
Normocytic anemia 80–100 27–32 32–35
Microcytic anemia < 80 < 27 < 32
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input layer, an arbitrary number of hidden layers and an out-
put layer. The hidden layer processes the input information 
and transmits to the output layer. MLPs are often applied to 
supervised learning problems. Backpropagation is used to 
adjust weights and biases to minimize the error. Hafiz et al. 
[19] proposed RBC segmentation algorithm using boundary-
based thresholding and Canny edge detection methods and 
obtained average accuracy of 87.9% for five images from 
the Broad Bioimage Benchmark Collection (BBBC) dataset.

2.1.3  Clustering based segmentation methods

Abbas et al. [11] presented a method to segment blood cells 
using the YCbCr color space and K-means clustering method 
[45] for 90 Giemsa stained blood smear images. Blood cells 
were easily identified by this method using a unique color 
of every component. Wei et al. [157] proposed a method 
to detect and count overlapped RBCs in microscopic blood 
smear images. The H and S components were used to dif-
ferentiate between WBCs and segmented RBCs. H and S 
components are closely related to the way humans feel color. 
H is the color sensed due to the wavelength. S indicates the 
purity of the color [126]. Watershed and K-means clustering 
algorithms were applied for segmentation. An accuracy of 
92.9% was obtained for 100 Wright-Giemsa stained images. 
However, the authors of this paper suggested to fine tune the 
segmentation method for robustness. Acharya et al. [15] pre-
sented a method to separate RBCs from other components 
of blood using K-medoids and obtained 98% accuracy for 
1000 Wright stained images. Savkare et al. [140] proposed 
a method to segment blood cells using K-means cluster-
ing algorithm and WT and obtained 95.5% accuracy for 78 
Giemsa stained microscopic images. However, they reported 
that if cells are not well-stained and have low contrast, this 
method does not work well. Ruberto et al. [68] presented 
a fuzzy set based optimal threshold selection approach for 
blood cell segmentation. The local threshold was set using 
a histogram and average accuracy of 98% was obtained with 
a computation time less than a second.

2.1.4  Contour and matching based segmentation methods

Bronkorsta et al. [46] proposed a parametric deformable 
template-based online detection method to detect RBC 
shapes of 900 cells in 100X magnification and obtained 
accuracy of 95.7% for 10 images. This technique is based 
on the prior knowledge about the shape and appearance of 
the object. A template prototype and according energy func-
tion is defined for template description. However, a good 
initial guess for the shape, size, and location of the object is 
needed to find global minimum in this method. Bergen et al. 
[39] proposed a method for WBC and RBC segmentation 
using template matching and level set algorithm [141]. A 

Dice coefficient score of 0.96 was obtained for WBC seg-
mentation from 155 images. Ritter et al. [133] proposed a 
blood cell segmentation method using a graph algorithm and 
obtained a success rate of 90% for 98 images. However, due 
to the diffuse area, this method failed to detect all platelets. 
Cai et al. [47] presented an RBC segmentation method based 
on an active appearance model incorporating shape and tex-
ture information of the cell.

2.1.5  Machine learning‑based segmentation methods

Sadafi et al. [135] presented a fully convolutional neural 
network-based RBC segmentation method and obtained 
90% accuracy for 5772 raw images of different stains. In 
this work, the authors suggested to use post-processing 
methods for touching cell split up to improve the accuracy. 
Kimbahune et al. [98] and Jun et al. [108] proposed blood 
cell image segmentation and counting method using Pulse-
Coupled Neural Network and found that the method is time 
efficient. A machine learning approach based on the YOLO 
algorithm was presented by Alam et al. [20] to identify and 
count blood cells and obtained an accuracy of 96.09% for 
RBCs and 86.89% for WBCs from 364 100x magnified 
annotated images of Blood Cell Count Dataset (BCCD). 
Adagale et al. [16] proposed an overlapped RBC count-
ing algorithm using Pulse Coupled Neural Network with 
a template matching technique and obtained 90% aver-
age accuracy for 40 images. Chari et al. [51] presented 
a pilot study on the analysis of MGG stained normal 
images using  ShonitTM artificial intelligence system. The 
extracted cells were classified using three different deep 
neural network models based on images annotated by three 
experts. The precision of 93.9% was achieved for all WBC 
classes from 6000 WBCs. RBCs and platelets were iden-
tified based on the estimation of indices for 100 images 
from every 100 samples and obtained estimation within 
10% reported value of Sysmex XN  3000TM hematology 
analyzer. Loddo et al. [101] proposed a blood cell count-
ing method using nearest neighbor and SVM techniques. 
This method used ALL-IDB dataset with 368 images and 
obtained an average accuracy of 99.2% for WBCs and 98% 
for RBCs. Tran et al. [150, 151] presented deep learning 
semantic segmentation method for RBC and WBC seg-
mentation and counting. It is pixel level segmentation of 
the image. An experiment was conducted on 42 ALL-IDB 
database images with 380 training images post augmenta-
tion. SegNet architecture was utilized to segment blood 
cells by labeling each pixel. It is a deep architecture for 
the segmentation of multi-class based on assigning each 
pixel of an image into a corresponding class [38]. The seg-
mentation accuracy for WBCs, RBCs and the background 
reached 94.93%, 91.11% and 87.32%, respectively. For cell 
counting, Euclidean distance transform and binary dilation 
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were used and accuracy of 93.3% for RBCs and 97.29% 
for WBCs was obtained. Shahzad et al. [143] designed 
semantic segmentation using a convolutional encoder-
decoder framework along with VGG16 network and the 
model was trained and tested on the ALL-IDB dataset with 
108 images. The proposed system achieved accuracies of 
97.45%, 93.34%, and 85.11% for RBCs, WBCs, and plate-
lets respectively. Amin et al. [33] presented a comparison 
of different classification algorithms using WEKA tool for 
hematological data. The experiment was conducted on two 
datasets from a total of 900 samples with CBC parameters. 
Three data mining classifiers were tried, namely J48 deci-
sion tree, MLP, and Naive Bayes, using which accuracies 
of 97.2%, 86.6% and 70% were achieved respectively.

2.1.6  Miscellaneous category

Gupta et  al. [84] identified RBCs using blob detection 
method and obtained 75% accuracy for 88 RBCs. However, 
a few RBCs were left undetected due to the lighting condi-
tions. Hidalgo et al. [81] proposed a novel method to count 
the number of circular and elongated RBCs using circum-
ference and ellipse adjustment algorithms for 66 Giemsa 
stained images from erythrocytesIDB database. They used 
k-curvature for separating clustered RBCs and obtained 98% 
accuracy without pre-processing steps. Hegde et al. [90] pre-
sented a review on WBC, RBC, platelet analysis techniques 
and highlighted the importance of illumination and color 
shade variation correction to develop a robust system for 
PBS analysis.

A lot of work has been carried out to segment blood cells 
from PBS images. The distribution of segmentation tech-
niques used in the literature is depicted in Fig. 4.

It is observed from the distribution that most of the litera-
ture used transform method, color thresholding and machine 
learning techniques for the segmentation. The summary of 
the literature described in Section 2.1 highlighting results of 
each method which is listed in Table 2.

2.2  RBC classification and detection of anemia

In this section, we provide the details of image processing 
techniques used to classify RBCs based on shape, size and 
texture variations in order to detect anemia.

Classification of RBCs into normal and abnormal was 
presented using image processing techniques [18, 23, 24, 54, 
69, 99, 112, 121, 127, 147, 148, 154]. Various methods such 
as Otsu thresholding, CHT, statistical and moment invari-
ants, and geometric texture features were used. The accura-
cies in the range of 83–94% were obtained using ANN, SVM 
and BPNN classifiers.

2.2.1  Shape feature and region based RBC classification 
methods

Wheeless et al. [158] presented a method to classify RBCs 
into normal, sickle or other abnormal cell using recursive 
partitioning and form factor. The recursive partitioning tech-
nique is based on the concept of finding the cutpoints for the 
features that best isolate different disease cases. The data are 
then divided according to these cutpoints [44]. Form factor 
provides a measure of circularity as given in equation. If 
more is the departure from the perfect circle value 1, lower 
is the form factor value.

An accuracy of 85% for normal RBCs, 83% for abnormal 
cells, and 81% for sickle cells from 3878 cell images was 
obtained. Safca et al. [136] proposed a method to classify 
RBCs into sickle cells, echinocytes and elliptocytes 
using morphological operations and shape features such 
as diameter, area and perimeter [13]. Morphological 
imaging operations done on a binary image to remove 
small objects, fill the cell holes and clearing the border to 
avoid edge touching cells [147]. An average accuracy of 
96% was achieved for 34 images. Deb et al. [64] proposed 
an algorithm to classify RBCs using aspect ratio and 

(1)FormFactor = (4�Area∕Perimeter)2

Fig. 4  Distribution of blood cell segmentation methods
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Fourier descriptors and obtained average accuracy of 92% 
for 33 images. The authors also presented a method to 
count NRBCs and WBCs based on the roundness factor. 
Rezatofighi et al. [132] proposed RBC detection method 
using polar transformation and run-length matrix and 
a true positive rate of 97.73% was obtained for 22 blood 
smears. However, objects with large size variations failed 
to be detected by this method. Soltanzadeh et al. [146] 
presented a method to classify three types of RBCs using 
morphological methods. The method obtained 98.63% for 
elliptocyte, 96.7% for discocyte and 95.36% accuracy for 
echinocyte recognition for 200 images based on Euclidean 
distance. Frejlichowski [79] proposed RBC classification 
method using template matching and Fourier transform. 

A recognition rate of 93% was obtained for 55 MGG 
stained images. Arnau et al. [82] presented a method for 
RBC classification using an active contour segmentation. 
This method classified RBCs into normal, sickle cells and 
other cell deformations and obtained 95% accuracy for 
45 images. Aruna et al. [34] proposed a method to detect 
sickle cells using Canny Edge, LOG, Prewitt, Robert and 
Sobel operators and found that the Canny edge detection 
method was preferable. Rakshit et al. [128] presented sickle 
cell detection method using Sobel edge detector and region 
properties and obtained an overall accuracy of 95.8%. 
Ahmadzadeh et al. [17] presented a method to group RBCs 
into three clusters (biconcave, stomatocyte, and sphero-
echinocyte) using K-medoids, and K-means clustering and 

Table 2  RBC segmentation and counting methods

Methods No. of images(Stain) Accuracy(%) Remarks Ref.

K-means clustering, WT 60 (Giemsa )100 (Wright–
Giemsa)

93–98.9 Robustness is not explained [11, 140, 157]

Iterative structured circle 
detection, circlet transform

100 95.3 Incorrect hole filling leads 
to errors To improve initial 
RBCs mask for accurate 
segmentation

[28, 143]

Graph algorithm 98 99 Considered only non-over-
lapped cells

[133]

Parametric template matching, 
PCNN

900 cells 90–95.7 Require prior knowledge 
about the appearance of the 
cell

[16, 46, 98]

YOLO algorithm 364 96.1 Satisfactory performance [20]
HSV conversion, morphologi-

cal operations
200 (Giemsa) 96 Used uniform staining and 

illumination
[125]

Pixel relationship 10 (MGG) 83 Occluded objects are rejected 
before the later stages

[80]

Canny, LOG, Sobel 20–30 85–93 Normal RBCs Less samples [43, 60]
K-curvature, circumference 

and ellipse adjustments
66 98 Images are not preprocessed 

to reduce execution time
[81]

Blob analysis, WT 10 blood samples 90–96 Need optimization to get 
accurate results

[57, 86]

CNN AlexNet 5772 90 Average execution time was 
227 ms

[135]

Canny edge, MLP 59 RBCs and 59 non RBCs 74–88 Increase training images [123] [19]
K-medoids, distance transform 1000 (Wright) 98 Processing of central pallor of 

RBCs consume more time
[15]

HT 500 subjects 91–94.9 Many tunable parameters [72, 110, 148, 155]
Deep neural network models 100 (MGG) Indices lie within the 10% 

of Sysmex reported 
value

Considered only normal blood 
smear images

[51]

CHT, NN, SVM 368 98 Achieved low false negative 
rate

[101]

LAB, YCbCr color space, 
CHT

108(Wright) 81–91 Computational time is more [105] [161]

Region proposal 180 (Wright) 96-98 Tested on ALL-IDB and MP-
IDB datasets

[65]

Semantic segmentation 108 (Wright) 91–97 More labeled images are 
required

[143, 150, 151]
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obtained 95% accuracy for Digital Holographic Microscopic 
(DHM) images. Chandrasiri et al. [48, 49] presented an 
algorithm to identify four common types of anemia, namely 
elliptocytes, microcytes, macrocytes and spherocytes, using 
HT and morphological operations. The researchers could 
obtain an accuracy in the range of 91–97% based on cell 
features for 40 images.

2.2.2  Machine learning‑based RBC classification methods

Bhowmick et al. [41] presented classification of RBCs in 
scanning electron microscopic images using a Marker-con-
trolled watershed segmentation method. It is combinational 
approach of edge-based segmentation and morphological 
operation methods that uses markers on some set of norms. 
A marker is a connected component that can easily segment 
boundaries from an image. With this approach, the regional 
minimal values occur only at marked locations [117]. The 
authors projected both structural and textural feature clas-
sification in this work and obtained an accuracy of 88.99% 
for 132 anemic blood samples using Bayesian classifier. 
Bayesian approach classifies the new instance by assigning 
the most possible target value, given the attribute values 
that represent the instance on the principle of Bayes’ Theo-
rem [122]. Das et al. [61] proposed a method for RBC char-
acterization in anemia using Marker-controlled watershed 
segmentation and morphological features. The algorithm 
classified five different types of RBCs such as elliptocyte, 
echinocyte, acanthocyte, sickle cell and teardrop cell in ane-
mia and obtained an accuracy of 86.87% for 715 abnormal 
and 290 normal RBCs using logistic regression classifier. 
A method to recognize abnormal RBC shapes such as tear-
drop, echinocyte and elliptocyte using Hu’s moments for 300 
anemia and 100 Leishman stained images of thalassemia 
cases was proposed by [62]. Elsalamony [74, 75] proposed 
a geometrical shape signature method to detect sickle and 
elliptocytosis using CHT and watershed segmentation and 
100% accuracy was achieved for 30 images. Elsalamony 
[76] proposed benign and distorted cell detection methods 
using HT and WT and obtained 96.9% accuracy using NN 
and 92.9% using Classification and Regression (C&R) tree 
for 180 cells from 45 images and reported that NN was 
preferred over C&R tree to detect sickle cells. In another 
paper, Elsalamony [77] used Self-Organising Map (SOM) 
along with the above mentioned methods and reported that 
SOM does not require any target variables but gets slower 
in training the neurons. A neural network-based algorithm 
was proposed by Kim et al. [97] to distinguish abnormali-
ties in RBCs and WBCs using Principal Component Analy-
sis (PCA) and obtained 91% average recognition rate for 
RBCs in classifying 12 classes from 680 RBCs. Lee et al. 
[100] proposed RBC classification method using a hybrid 
neural network and identified sickle, horn and elliptocyte 

cells. An accuracy of 91% was achieved by this method for 
a dataset consisting of 200 normal and 200 abnormal single 
cells. Rodrigues et al. [134] proposed a method to classify 
RBCs into normal, sickle cells, and erythrocytes with other 
deformations using morphological properties and obtained 
94.6% accuracy using SVM classifier for 626 images from 
the erythrocytesIDB dataset. They used ANOVA for fea-
ture selection and suggested to study unsupervised methods 
to identify the patterns in cells. Hirimutugoda et al. [91] 
presented a method to detect malarial parasites and thalas-
semia using 3-layered ANN for 200 Giemsa images of 
each case and obtained 86.54% correct recognition rate by 
defining ROIs. Aliyu et al. [26] presented RBC classifica-
tion method using SVM and obtained 100% accuracy for 
normal, acanthocyte, teardrop cells and 73% for elliptocyte 
and 90% for sickle cells using SVM and 33% using deep 
learning for 250 images. They reported that the SVM clas-
sifier outperformed DL due to limited datasets. A research 
group [24] also proposed a method to detect sickle cell 
using Otsu thresholding and shape features and obtained 
88% accuracy for 30 Giemsa stained images. Dalvi et al. 
[59] proposed a method to classify RBCs into four abnormal 
types, namely elliptocyte, echinocyte, teardrop and macro-
cyte, using thirteen geometric features and achieved better 
accuracy using ANN than the decision tree. The accuracy 
obtained was 96.04% for RBC counting and 90.54% for RBC 
classification. Razzak et al. [130] presented contour aware 
segmentation method based on CNN and extreme learn-
ing. The experiment was conducted on 64,000 blood cells 
from ALL-IDB database. RBCs and WBCs were segregated 
based on the color intensity features and were cropped to 
extract features using CNN and given for ELM for subtypes 
classification. The segmentation accuracy of 98.12% and 
98.16% and classification accuracy of 94.71% and 98.68% 
was achieved for RBCs and WBCs respectively. Mundhra 
et al. [116] proposed deep learning-based  ShonitTM system to 
localize and classify blood cells. U-net deep learning archi-
tecture was used to localize WBCs and platelets from 300 
MGG and Leishman stained training images. Otsu thresh-
olding in the green channel was used to identify RBCs and 
clumped cells were rejected. CNN architecture was used to 
classify WBCs and RBCs based on size and shape. The sen-
sitivity for WBC extraction was 99.5%. The sensitivity and 
specificity of identification for the common cell types were 
above 91% and 98% respectively. Alom et al. [27] presented 
deep learning-based inception recurrent residual convolu-
tional neural network for WBC and RBC classification. The 
recognition accuracies of 100% for 352 WBC images and 
99.94% for 3737 RBC images were achieved. It is mentioned 
that the model requires a large number of network param-
eters. Durant et al. [71] proposed a method for RBC clas-
sification based on morphology using CNN for 10 classes. 
Around 3737, 100X magnified labeled cells were used and 

2451Medical & Biological Engineering & Computing (2022) 60:2445–2462



1 3

correct classification frequency of 90.60% was achieved. The 
researchers reported that the distribution of labels for cell 
types was not homogeneous.

2.2.3  Clinical parameters based RBC classification methods

Zahir et al. [162] presented an ANN-based method to detect 
RBC disorders anemia and polycythemia using Hb value, 
MCH and RBC count and obtained significant results for more 
than 90% of the 1000 blood samples with training time less 
than 15 minutes. Bacus et al. [36, 37] presented RBC classi-
fication method by extracting the features and obtained cor-
relation coefficient of 0.965 for 100 cells from 4 specimens. 
Red cell indices along with the red cell differential counts 
were considered in this work. Maity et al. [106] presented a 
method to generate an anemia diagnosis report based on the 
CBC report and RBC morphology using red cell indices and 
shape features. A precision of 98.2% was achieved in clas-
sifying microcytic, macrocytic, sickle, teardrop, elliptocyte, 
and normal cells from 1500 Leishman blood smear images.

Figure 5 shows the distribution of RBC classification 
methods used in the related works to detect anemia. We 
observe from the distribution that, majority of the research-
ers used shape features and machine learning to classify 
RBCs. A brief overview of the RBC classification and ane-
mia detection methods are listed in Table 3.

2.3  Classification of anemia

This section provides details of image processing methods 
used to classify anemia based on the morphology and hema-
tological parameters of RBCs.

2.3.1  Morphology based anemia classification methods

Chen et al. [52] presented a method to classify hemolytic 
anemia based on differential value and variation of chain 
codes in eight directions and irregularity of erythrocytes. 
Accuracy in the range of 95–97% was achieved for 24 micro-
scopic images using Bayes classifier, logistic model trees and 

Table 3  RBC classification and anemia detection methods

Methods No. of images (Stain) Performance metric Remarks Ref.

CHT, Heywood circularity 
factor, ANN, moment invari-
ants, inclusion-tree structure, 
BPNN, PCA, SVM

150–1000 samples 80–99% accuracy for normal & 
abnormal RBCs

Lacks robustness [18, 69, 
147, 
149, 
154]

Morphological properties, 
Naive Bayes, K-NN, SVM, 
Sobel edge

626 94.6–96% accuracy for normal 
and sickle cells

Consider unsupervised classi-
fiers for more RBC patterns

[128, 134]

CHT, WT, NN, decision tree, 
SOM, SVM

30–45 (Giemsa) 97–100% accuracy for sickle 
and elliptocytosis

Geometrical shape signature is 
used for detection process

[74–76]

Recursive partitioning, form 
factor

3878 cells 85% for discocytes, 83% for 
abnormal cells and 81% for 
sickle cells

Form factor invariant to cell 
size and provides useful 
information on cell shape

[121, 158]

Hybrid neural network 200 normal and 200 abnormal 
cells

91% accuracy for sickle, horn 
and elliptocytes

Considered only convexity 
index feature

[100]

DL, SVM 105 normal and 250 abnormal Normal—100%, achanto-
cyte—100%, sickle cell—
90%, teardrop—100% and 
elliptocyte—73% accuracy 
using SVM

SVM classifier outperformed 
DL

[23, 26]

Rolling ball background, shape 
features, Naive Bayes, Bayes-
ian classifier

1500 (Leishman) 98.2% precision for microcytic, 
macrocytic, sickle, teardrop, 
elliptocyte

Decision from CBC test 
measures is semi-automatic 
operation

[106]

ANN 1000 blood samples Less computational time Used RBG values—from Hb, 
MCH and RBC count

[162]

CNN , ELM 64,000 blood cells 94.71% accuracy Images from multiple sources 
are used

[130]

U-Net 300 (MGG) and (Leishman) 91% sensitivity and 98% 
specificity

Results are shown for a variety 
of smear and stain

[116]

Inception recurrent residual 
CNN

352 WBCs and 3737 RBCs 100% for WBC and 99.94% 
accuracy for RBC

Model require larger number of 
network parameters

[27]

CNN 3737 labeled Cells 90.6% accuracy for 10 RBC 
classes

Label distribution was not 
homogeneous

[71]
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rule based classifiers. Nithyaa et al. [119] proposed a method 
to detect various blood disorders such as malaria, elephantia-
sis, trypanosomiasis, SCA and polycythemia using statisti-
cal features and Euclidean distance for 40 images. Azam 
et al. [35] presented a method to detect seven RBC types of 
anemic diseases using shape descriptors and obtained 92% 
accuracy for 100 instances using MLP and random forest 
classifier. Tyas et al. [153] presented a semi-automated 
algorithm to classify four types of abnormal RBCs such 
as teardrop, acanthocytes, sickle cell and target cell using 
GLCM features in the minor thalassemia cases. The ROI was 
selected manually in this method and accuracies of 93.22% 
and 92.55% were obtained using BPNN and CNN respec-
tively for 256 images. Various methods [109, 129] have been 
used to detect thalassemia using K-means clustering, active 
contour, neural network, decision tree and an average accu-
racy in the range 82–95% was reported. Sharma et al. [145] 
proposed a method to detect SCA and thalassemia using 
Marker-controlled watershed segmentation and geometric 
features and accuracy of 80.6% was obtained for 100 images 
with KNN classifier. Fadhel et al. [13] proposed an algo-
rithm to count normal and abnormal RBCs in the SCA slide 

using CHT and WT for 233 cells and proved that CHT is 
better than WT. Elsalamony [73] proposed a method to diag-
nose SCA using HT and obtained segmentation accuracy of 
99.98%. This method also achieved a classification accuracy 
of 96.9% and 92.9% using NN and C&R tree respectively. 
Lotfi et al. [102] presented a technique for the automatic 
detection of IDA by identifying three types of abnormal 
red cells using region and Fourier descriptors. This method 
obtained accuracies of 99%, 97% and 100% for dacrocytes, 
elliptocytes and schistocyte cells respectively for 100 cells 
of each case using NN, SVM and KNN classifier. Tyagi et al. 
[152] presented a method to detect poikilocyte cells in IDA 
using GLCM features and moment invariants and obtained 
accuracy in the range of 75–81% for 100 images using ANN. 
Several methods have been proposed to detect the sickle-
shaped RBC in SCD patients by [21, 22, 29, 55, 56, 88, 114, 
115, 120, 131, 159, 160] using methods such as random 
walk, Sobel edge, geometric features, Fuzzy C means clus-
tering, LOG, WT, HT and morphological filters. The average 
accuracy reported was in the range of 85–95%. Alzubaidi 
et al. [30] developed deep learning models for SCA diag-
nosis and achieved an accuracy of 99.54%. The research-
ers proposed three CNN models with different layers and 
filters and used data from erythrocytesIDB, ALL-IDB and 
other internet sources. The extracted features were used for 
training multi-class SVM and accuracy around 98–99% was 
obtained. Zhang et al. [163] proposed a method to segment 
subtypes of RBCs in sickle cell disease using deformable 
U-net on 266 raw microscopy images and obtained 99.12% 
accuracy. This method could segment blurred, clustered and 
heterogeneous shaped RBCs and performed better than base-
line U-net. Aliyu et al. [25] proposed the Alexnet deep learn-
ing model for the classification of RBCs in SCA. Around 
750 single RBCs from Giemsa stained blood smears were 
acquired for the experiment and classification accuracy of 
95.92% was obtained. They reported low specificity due to 
less normal cells. Haan et al. [85] presented a deep learning 
framework based screening of sickle cells using a smart-
phone microscope. U-net architecture for image normaliza-
tion and enhancement network and semantic segmentation 
for sickle cells were used and approximately 98% accuracy 
was achieved from 96 unique patient samples. Das et al. [63] 
presented an overview of enhancement, segmentation and 
classification techniques used for SCA detection. The review 
also highlights clinical uses, hardware implementation and 
future scope for the analysis of SCD.

2.3.2  Hematological parameters based anemia 
classification

Birndorf et al. [42] presented ANN-based hybrid system to 
evaluate microcytic anemia such as IDA, hemoglobinopathy 
and anemia of chronic disease using HCT, MCV, RDW and 

Fig. 5  Distribution of RBC classification methods
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obtained 96.5% accuracy for 473 cases of microcytic anemia 
and anemia of chronic disease. Dogan et al. [70] proposed 
IDA detection method based on hematology parameters, 
namely Serum iron and total iron-binding capacity, using 
decision trees for 96 patients and the results got perfectly 
matched with the physician’s decisions. Lund et al. [103] 
presented an algorithm to classify microcytic and macro-
cytic anemia using image analysis techniques based on MCV 
and RBC size and obtained 95% accuracy for 4000 cells. 
Sanap et al. [137] proposed an anemia classification method 
based on CBC reports using C4.5 decision tree algorithm 
and SVM using WEKA tool with 514 instances and obtained 
accuracy of 99.42% and 88.13% respectively. Abdullah et al. 
[12] presented anemia types prediction method based on 
CBC reports using data mining techniques using WEKA 
tool for 41 patients. The experiment showed that the J48 
decision tree performed better with 97% precision among 
Naive Bayes, MLP and SVM algorithms. Jaiswal et al. [94] 
presented anemia prediction method based on CBC reports 
using supervised machine learning algorithms. This method 
used eighteen attributes from 200 samples and obtained 
maximum accuracy of 96.09%. In this work, it was reported 
that Naive Bayes outperformed C4.5 and random forest. 
Khalaf et al. [96] presented machine learning approaches 
for the classification of SCD dosage levels using 13 attrib-
utes from 1168 sample points. They concluded that the 
random forest classifier performed overall better than RNN 
and feedforward neural networks. Amendolia et al. [31, 32] 
presented ANN-based method to detect α and β thalassemia 
using hemochromic parameters. A specialized ANN was 
used in the method and accuracy of 94% was achieved for 
304 cases. Setsirichok et al. [142] proposed a method for 
classifying thalassemia using Hb and MCV parameters and 
obtained an average accuracy in the range of 93–99% for 
8054 clinical trial samples using C4.5 decision tree, Naive 
Bayes classifier and MLP. However, they mentioned that Hb 
parameter is redundant for the study.

Table 4 summarizes the anemia classification methods 
used in literature.

It is evident from Fig. 6 that, most of the research groups 
used the traditional machine learning approach for ane-
mia classification. It can also be observed that, there is an 
increasing tendency towards the usage of deep learning clas-
sifier models.

Occurrence of anemia worldwide according to WHO [50, 
111] and papers on classification of subtypes of anemia are 
shown in Fig. 7.

Out of many anemia subtypes, the frequency of SCA 
and IDA detection was high by the majority of the 
researchers which is depicted in Fig. 7. It can be observed 
from figure that occurrence of IDA globally is much higher 
than SCA. However, number of studies seen in the litera-
ture is not in the same proportion. There is scope for more 

study in IDA detection. Also, there is a need for other ane-
mia subtypes detection and diagnosis in peripheral blood 
smear analysis.

3  Database

Many researchers have used proprietary datasets with 
blood smear images of different stains. A few publicly 
available databases are used for the performance analysis 
of the developed algorithm. An overview of these data-
bases are given in Table 5.

BCCD is a small-scale publicly available dataset [4] 
that has 364 annotated images for blood cell detection 
taken originally from cosmicad and akshaylamba open 
sources. The erythrocytesIDB [6] contains 196 full field 
and 629 individual Giemsa stained peripheral blood 
smear images taken from SCD patients. ASH image bank 
[2] is a web-based image library that has a collection of 
hematologic images consists of normal and abnormal 
blood cells. However, studies have not explored available 
images for anemia detection. The atlas of hematology 
[3] provides normal and abnormal Leishman stained 
blood smear images for the morphological study of 
cells. Medical Image and Signal Processing (MISP) 
Research Center and Department of Pathology at Isfahan 
University of Medical Sciences [9] contributed for the 
dataset consists of 148 microscopic blood smear images. 
Public Health Image Library (PHIL) [8] contains a few 
blood smear images created by the Centers for Disease 
Control and Prevention (CDC) for reference. The Broad 
Bioimage Benchmark Collection (BBBC) [5] consists of 
publicly available image sets such as annotated biological 
images for the analysis of algorithms. Telepathology 
2012 [10] consists of webmicroscope to acquire malarial 
parasite data along with annotation tool. Leukocyte 
Images for Segmentation and Classification (LISC) [7] 
for identification of different WBCs with ground truth 
for only 250 images. Acute Lymphoblastic Leukemia 
Image Database (ALL-IDB) [1] is a free, publicly 
available dataset for the evaluation of segmentation and 
classification methods. There are two datasets specifically 
for lymphoblasts detection. ALL-IDB1 consists of 108 
blood smear images with labeled lymphocytes taken 
with 300 to 500 microscope magnifications. ALL-IDB2 
is a collection of 260 cropped normal and blast cells that 
belongs to ALL-IDB1 dataset.

Even though a lot of work has been carried out on PBS 
images, annotations are not available for the publicly 
available datasets. A comparison of work would not be 
fair because ground truth depends on annotation done by 
individuals.
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4  Discussion and future scope

Diagnosis of anemia is challenging, particularly in inad-
equate resource settings. Various state-of-the-art methods 
used in the literature for PBS analysis are mentioned in Sec-
tion 2 and some of them are listed in Tables 2, 3 and 4. In 
this paper, we have provided a detailed report of the use 
of image processing methodologies to automate peripheral 
blood smear analysis for diagnosing morphology-based RBC 
disorders. Also, we can notice from Fig. 6 that detection and 
classification of anemia using deep learning is increasing 
over traditional machine learning approaches. From Table 5, 
it is evident that most of the research groups used a proprie-
tary dataset for the analysis of the algorithms. As researchers 
used a publicly available datasets with different images and 
annotations, a comparison of the algorithms is not possible 

to accept the results. It is also observed that the number of 
images in dataset is in the range from 100 to 1000. As deep 
learning is becoming popular and many of classification 
algorithms are supervised learning approaches, it is desir-
able to have large PBS datasets with annotations. It can be 
observed from Fig. 7 that the occurrence of IDA is much 
higher than SCA and studies related to IDA is lesser. Hence, 
there is a need for more study of IDA and other subtypes of 
anemia. Figure 8 depicts the ways of classification of ane-
mia. We can observe that around 88% of researchers used 
morphological parameters and only a few research groups 
used hematology parameters for the anemia diagnosis.

To detect anemia cases, mostly the shape and size of 
the abnormal RBCs are considered. The methods used by 
the research groups did not focus on other abnormalities of 
blood cells.

Table 4  Anemia classification methods

Methods No. of images Accuracy (%) Remarks Ref.

GLCM, CNN 256 BPNN—93.2, CNN—92.6 for 
minor thalassemia case

Sample size is less [153]

SVM, KNN, MLP 304 records MLP—92 , SVM—83 sensitivity 
for thalassemia

Using RBC, Hb, HCT, MCV 
parameters

[31, 32]

ANN 473 cases 96.5 for IDA, HA, ACD Using HCT, MCV, RDW [42]
Active contour, NN, DT 15 groups 82–93 for thalassaemia False-positive and false negative 

errors are less than 1% and 2%
[?, 109]

C4.5 DT, Naive Bayes classifier 
and MLP

8054 samples 99.4 for 18 classes of thalassaemia Using six Hb attributes and MCV [142]

Marker-controlled Watershed 
segmentation, KNN

100 80.6 for SCA and thalassaemia Developed combined method [145]

Fuzzy C means clustering, geo-
metrical and statistical features

80 KNN—73.3, SVM—83.3, 
ELM—87.7 for SCD

Fuzzy C means overcomes the 
disadvantages of threshold 
segmentation

[55, 56]

HSI color space, K-means cluster-
ing

60 94.6 for thalassemia Detected α, β thalassemia, 
β-thalassemia trait

[129]

ANN, GLCM features 100 75–81 for IDA Classified 4 types of poikilocytes [152]
CHT, marker-controlled WT, 

LOG, Fuzzy thresholding
8–20 91.1 for SCD CHT performed better, need 

improvement in de-noising 
method

[13] [21, 22, 
88, 114, 
115]

CLAHE, MLP and random forest 100 instances 92 for IDA and HA Persistent results for any luminos-
ity conditions

[35]

Deformable U-Net 266 raw 99.12 for SCD RBC Method could segment blurred, 
clustered, heterogeneous shaped 
RBCs

[163]

Chain codes, Bayes classifier, 
logistic model trees and rules 
classifier

24 96.6 for HA HA is classified based on differen-
tial value of chain codes

[52]

Naive Bayes, C4.5 and random 
forest classifier

200 samples 96.1 for anemia detection Used 18 attributes from CBC 
reports

[94]

DL, multi-class SVM 100–250 99.5 for SCD Proposed three CNN models with 
different layers and filters

[30]

DL-Alexnet 750 single RBCs 95.9 for SCA Specificity was low due to less 
normal cells

[25]

U-net architecture, semantic seg-
mentation

96 unique samples 98 for SCD Developed smartphone microscope [85]
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It can be noticed that multiple methods have been imple-
mented to detect a few anemia cases like SCA, IDA and 
thalassemia that mainly depend on the input image taken 
from different lab setups and conditions. The summary table 

refers to the papers which are categorized into three divi-
sions depending on the purpose and approaches mentioned 
in Section 2. All these research groups focused on develop-
ing computer-aided automated systems to reduce the task of 
hematologists in analyzing the peripheral blood smears. A 
major impediment of automated microscopic evaluation is 
that they are affected due to imaging and staining variations. 
An accurate identification of normal and abnormal cases is 
essential to assist pathologists for further diagnosis. Images 
are acquired from blood smear stained using a specific stain 
with different microscopic settings and lab arrangements. 
However, this poses many challenges for the automation of 
blood smear images. For example, as mentioned in Section 2 
and Table 2, the methods presented by various research-
ers for RBC segmentation and counting were implemented 
on specific stained blood smear images under a controlled 
environment. However, it is observed from the past studies 
described in the listed papers that results vary due to lack of 
robustness in the methods. Although an automated decision 
support system is developed to reduce the burden on hema-
tologists by eliminating manual inspection of blood smears, 
there is no integrated approach that has been developed to 
handle both standard and inconsistent microscopic blood 
smear images acquired from both the manual and automated 
workflow.

Fig. 6  Application of traditional machine learning and deep learning 
for anemia classification

Fig. 7  Occurrence and classifi-
cation of anemia subtypes

Table 5  Outline of the publicly available databases

Database No. of images Annotations Studies

BCCD [4] 364 smear images Available for RBCs, WBCs and platelets [20]
erythrocytesIDB [6] 196 smear images and 629 Giemsa stained 

single RBCs
Available for sickle cells of 80 smear images [29, 81, 134]

ASH image bank [3] 2100 hematologic Leishman stained images Not available -
Isfahan MISP [9] 148 Not available [139]
PHIL [8] 100 Not available [14]
BBBC [5] 18 biological image sets Available for RBC’s only [19]
Telepathology 2012 [10] Malarial parasite images Tool available [156]
LISC [7] 400 Wright-Giemsa stained images Available for WBC’s from 250 images only [138]
ALL-IDB [1] 108 smear images and 260 cropped normal 

and blast single cell images
Available for WBC’s only [29, 65, 101, 104, 105, 

130, 143, 150, 151, 
161]
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5  Conclusion

This review provides a summary of the current develop-
ments in computerized PBS analysis using microscopic 
blood smear images. The paper comprises of introduction 
to PBS analysis and anemia, an RBC disorder. Different 
sections have been summarized in this paper on existing 
automated image processing methods for identification, seg-
mentation, feature extraction and classification of RBCs for 
further diagnosis of anemia. The literature on approaches of 
the classification of anemia also has been included in this 
review. Although, manual microscopic evaluation is a gold 
standard for PBS analysis, for quick and accurate diagnosis, 
an automated decision system is essential to overcome the 
limitations of microscopic analysis. Hence, the observations 
made during the process of the review are listed below.

– To analyze RBC disorders rigorously, a large publicly 
available dataset with annotations of various types of 
blood cells is needed.

– A robust system that can handle staining and imaging 
variations is desirable in PBS analysis for anemia detec-
tion.

– A hybrid method which considers both morphological 
and clinical features would play an important role to 
improve the efficiency of classification of anemia sub-
types.

An automated system plays a very important role in the PBS 
analysis. However, it is observed from the review that, there 
is a need for a large PBS publicly available database with 
appropriate annotations and robust system to assist clinicians 
for further diagnosis of disease.

Funding Open access funding provided by Manipal Academy of 
Higher Education, Manipal

Declarations 

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. ALL-IDB dataset. https:// homes. di. unimi. it/ scotti/ all/
 2. ASH image bank. http:// image bank. hemat ology. org/
 3. Atlas of hematology. http:// hemat ology atlas. com/ princ ipalp 

age. htm
 4. Blood cell count and detection. https:// github. com/ Sheng gan/ 

BCCDD ataset
 5. Broad bioimage benchmark collection. http:// www. broad insti 

tute. org/ bbbc/
 6. ErythrocytesIDB dataset. http:// eryth rocyt esidb. uib. es/
 7. LISC database. http:// users. cecs. anu. edu. au/ hreza tofig hi/ Data/ 

Leuko cyte2 0Data. htm
 8. Public health image library (PHIL). http:// phil. cdc. gov/ phil/ 

home. asp
 9. Red blood cells. https:// hrabb ani. site1 23. me/ avail able- datas ets/ 

red- blood- cells
 10. Telepathology 2012-webmicroscope. http:// fimm. webmi crosc 

ope. net/ Resea rch/ Momic/ tp2012
 11. Abbas N, Mohamad D, et al. (2013) Microscopic RGB color 

images enhancement for blood cells segmentation in YCbCr 
color space for k-means clustering. J Theor Appl Inf Technol 
55(1):117–125

 12. Abdullah M, Al-Asmari S (2017) Anemia types prediction 
based on data mining classification algorithms, communica-
tion, management and information technology–Sampaio de 
Alencar (ed.)

 13. AbdulraheemFadhel M, Humaidi AJ, RazzaqOleiwi S (2017) 
Image processing-based diagnosis of sickle cell anemia in eryth-
rocytes. In: 2017 Annual conference on new trends in informa-
tion & communications technology applications (NTICT), pp 
203–207. IEEE

 14. Acharjee S, Chakrabartty S, Alam MI, Dey N, Santhi V, Ash-
our AS (2016) A semiautomated approach using GUI for the 
detection of red blood cells. In: 2016 International conference on 
electrical, electronics, and optimization techniques (ICEEOT), 
pp 525–529. IEEE

 15. Acharya V, Kumar P (2018) Identification and red blood cell 
automated counting from blood smear images using computer-
aided system. Med Biol Eng Comput 56(3):483–489

Fig. 8  Ways of anemia classification

2457Medical & Biological Engineering & Computing (2022) 60:2445–2462

http://creativecommons.org/licenses/by/4.0/
https://homes.di.unimi.it/scotti/all/
http://imagebank.hematology.org/
http://hematologyatlas.com/principalpage.htm
http://hematologyatlas.com/principalpage.htm
https://github.com/Shenggan/BCCDDataset
https://github.com/Shenggan/BCCDDataset
http://www.broadinstitute.org/bbbc/
http://www.broadinstitute.org/bbbc/
http://erythrocytesidb.uib.es/
http://users.cecs.anu.edu.au/hrezatofighi/Data/Leukocyte20Data.htm
http://users.cecs.anu.edu.au/hrezatofighi/Data/Leukocyte20Data.htm
http://phil.cdc.gov/phil/home.asp
http://phil.cdc.gov/phil/home.asp
https://hrabbani.site123.me/available-datasets/red-blood-cells
https://hrabbani.site123.me/available-datasets/red-blood-cells
http://fimm.webmicroscope.net/Research/Momic/tp2012
http://fimm.webmicroscope.net/Research/Momic/tp2012


1 3

 16. Adagale S, Pawar S (2013) Image segmentation using PCNN and 
template matching for blood cell counting. In: 2013 IEEE Inter-
national conference on computational intelligence and computing 
research, pp 1–5. IEEE

 17. Ahmadzadeh E, Jaferzadeh K, Lee J, Moon I (2017) Automated 
three-dimensional morphology-based clustering of human eryth-
rocytes with regular shapes: stomatocytes, discocytes, and echi-
nocytes. J Biomed Opt 22(7):076015

 18. Akrimi JA, Suliman A, George LE, Ahmad AR (2014) Classifica-
tion red blood cells using support vector machine. In: Proceed-
ings of the 6th international conference on information technol-
ogy and multimedia, pp 265–269. IEEE

 19. Al-Hafiz F, Al-Megren S, Kurdi H (2018) Red blood cell seg-
mentation by thresholding and Canny detector. Procedia Comput 
Sci 141:327–334

 20. Alam MM, Islam MT (2019) Machine learning approach of 
automatic identification and counting of blood cells. Healthcare 
Technol Lett 6(4):103–108

 21. Albayrak B, Darici MB, Kiraci F, Ougrenci AS, Ozmen A, Ertez 
K (2018) Sickle cell anemia detection. IEEE Institute of Electri-
cal and Electronics Engineers Inc

 22. Algailani H, Hamad MES (2018) Detection of sickle cell disease 
based on an improved Watershed segmentation. In: 2018 Interna-
tional conference on computer, control, electrical, and electronics 
engineering (ICCCEEE), pp 1–4. IEEE

 23. Aliyu HA, Razak MAA, Sudirman R (2019) Normal and abnor-
mal red blood cell recognition using image processing. Indone-
sian J Electr Eng Comput Sci 14(1):100–104

 24. Aliyu HA, Razak MAA, Sudirman R (2019) Segmentation and 
detection of sickle cell red blood image. In: AIP Conference pro-
ceedings, vol 2173, p 020004. AIP Publishing LLC

 25. Aliyu HA, Razak MAA, Sudirman R, Ramli N (2020) A deep 
learning AlexNet model for classification of red blood cells in 
sickle cell anemia. Int J Artif Intell 9(2):221–228

 26. Aliyu HA, Sudirman R, Razak MAA, Abd Wahab MA (2018) 
Red blood cell classification: deep learning architecture versus 
support vector machine. In: 2018 2nd International conference 
on biosignal analysis, processing and systems (ICBAPS), pp 
142–147. IEEE

 27. Alom MZ, Yakopcic C, Taha TM, Asari VK (2018) Microscopic 
blood cell classification using inception recurrent residual con-
volutional neural networks. In: NAECON 2018-IEEE national 
aerospace and electronics conference, pp 222–227. IEEE

 28. Alomari YM, Abdullah S, Huda SN, Zaharatul Azma R, Omar 
K (2014) Automatic detection and quantification of WBCs and 
RBCs using iterative structured circle detection algorithm. Com-
put Math Methods Med, 2014

 29. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J (2018) Robust 
and efficient approach to diagnose sickle cell anemia in blood. 
In: International conference on intelligent systems design and 
applications, pp 560–570. Springer

 30. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y (2020) 
Deep learning models for classification of red blood cells in 
microscopy images to aid in sickle cell anemia diagnosis. Elec-
tronics 9(3):427

 31. Amendolia SR, Brunetti A, Carta P, Cossu G, Ganadu M, Golo-
sio B, Mura GM, Pirastru MG (2002) A real-time classification 
system of thalassemic pathologies based on artificial neural net-
works. Med Decis Making 22(1):18–26

 32. Amendolia SR, Cossu G, Ganadu M, Golosio B, Masala GL, 
Mura GM (2003) A comparative study of k-nearest neighbour, 
support vector machine and multi-layer perceptron for thalas-
semia screening. Chemom Intell Lab Syst 69(1-2):13–20

 33. Amin MN, Habib MA (2015) Comparison of different classifica-
tion techniques using WEKA for hematological data. Amer J Eng 
Res 4(3):55–61

 34. Aruna N, Hariharan S (2014) Edge detection of sickle cells in red 
blood cells. Int J Comput Sci Inform Technol 5(3):4140–4144

 35. Azam B, Rahman S, Ullah S, Hanan F (2017) Detection of the 
top anemic diseases in blood smear images using image quantiza-
tion followed by ensemble of classifiers. In: Proceedings of the 
2017 4th international conference on biomedical and bioinfor-
matics engineering, pp 115–120

 36. Bacus J, Belanger M, Aggarwal R, Trobaugh Jr F (1976) Image 
processing for automated erythrocyte classification. J Histochem 
Cytochem 24(1):195–201

 37. Bacus J, Weens J (1977) An automated method of differential 
red blood cell classification with application to the diagnosis of 
anemia. J Histochem Cytochem 25(7):614–632

 38. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep 
convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

 39. Bergen T, Steckhan D, Wittenberg T, Zerfass T (2008) Segmenta-
tion of leukocytes and erythrocytes in blood smear images. In: 
2008 30th Annual international conference of the IEEE engineer-
ing in medicine and biology society, pp 3075–3078. IEEE

 40. Bhavnani LA, Jaliya UK, Joshi MJ (2016) Segmentation and 
counting of WBCs and RBCs from microscopic blood sample 
images. Int J Image Graph Signal Process 8(11):2016

 41. Bhowmick S, Das D, Maiti A, Chakraborty C (2013) Structural 
and textural classification of erythrocytes in anaemic cases: a 
scanning electron microscopic study. Micron 44:384–394

 42. Birndorf NI, Pentecost JO, Coakley JR, Spackman KA (1996) 
An expert system to diagnose anemia and report results directly 
on hematology forms. Comput Biomed Res 29(1):16–26

 43. Biswas S, Ghoshal D (2016) Blood cell detection using thresh-
olding estimation based watershed transformation with sobel 
filter in frequency domain. Proced Comput Sci 89:651–657

 44. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classifi-
cation and regression trees. Belmont, CA: Wadsworth. Int Group 
432:151–166

 45. Brewka G (1996) Artificial intelligence—a modern approach by 
Stuart Russell and Peter Norvig, Prentice Hall. Series in artificial 
intelligence, Englewood Cliffs, NJ. Knowl Eng Rev 11(1):78–79

 46. Bronkorsta P, Reinders MJ, Hendriks EA, Grimbergen J, 
Heethaar RM, Brakenhoff G (2000) On-line detection of red 
blood cell shape using deformable templates. Pattern Recogn 
Lett 21(5):413–424

 47. Cai R, Wu Q, Zhang R, Fan L, Ruan C (2012) Red blood cell 
segmentation using active appearance model. In: 2012 IEEE 
11th International conference on signal processing, vol 3, pp 
1641–1644. IEEE

 48. Chandrasiri S, Samarasinghe P (2014) Automatic anemia identi-
fication through morphological image processing. In: 7th Inter-
national conference on information and automation for sustain-
ability, pp 1–5. IEEE

 49. Chandrasiri S, Samarasinghe P (2014) Morphology based auto-
matic disease analysis through evaluation of red blood cells. In: 
2014 5th International conference on intelligent systems, model-
ling and simulation, pp 318–323. IEEE

 50. Chaparro CM, Suchdev PS (2019) Anemia epidemiology, patho-
physiology, and etiology in low-and middle-income countries. 
Ann N Y Acad Sci 1450(1):15

 51. Chari PS, Prasad S (2018) Pilot study on the performance of 
a new system for image based analysis of peripheral blood 
smears on normal samples. Indian J Hemat Blood Transfus 
34(1):125–131

 52. Chen HM, Tsao YT, Tsai SN (2014) Automatic image segmen-
tation and classification based on direction texton technique 
for hemolytic anemia in thin blood smears. Mach Vis Appl 
25(2):501–510

2458 Medical & Biological Engineering & Computing (2022) 60:2445–2462



1 3

 53. Chen X, Lu L, Gao Y (2012) A new concentric circle detection 
method based on Hough transform. In: 2012 7th International 
conference on computer science & education (ICCSE), pp 753–
758. IEEE

 54. Chintawar I, Aishvarya M, Kuhikar C (2016) Detection of sickle 
cells using image processing. Int J Sci Technol Eng 2(9):335–339

 55. Chy TS, Rahaman MA (2018) Automatic sickle cell anemia 
detection using image processing technique. In: 2018 Interna-
tional conference on advancement in electrical and electronic 
engineering (ICAEEE), pp 1–4. IEEE

 56. Chy TS, Rahaman MA (2019) A comparative analysis by KNN, 
SVM & ELM classification to detect sickle cell anemia. In: 2019 
International conference on robotics, electrical and signal pro-
cessing techniques (ICREST), pp 455–459. IEEE

 57. Cruz D, Jennifer C, Castor LC, Mendoza CMT, Jay BA, Jane 
LSC, Brian PTB et al (2017) Determination of blood components 
(WBCs, RBCs, and platelets) count in microscopic images using 
image processing and analysis. In: 2017 IEEE 9th International 
conference on humanoid, nanotechnology, information technol-
ogy, communication and control, environment and management 
(HNICEM), pp 1–7. IEEE

 58. Dacie JV (2006) Dacie and Lewis practical haematology. Elsevier 
Health Sciences

 59. Dalvi PT, Vernekar N (2016) Computer aided detection of abnor-
mal red blood cells. In: 2016 IEEE International conference on 
recent trends in electronics, information & communication tech-
nology (RTEICT), pp 1741–1746. IEEE

 60. Das BK, Jha KK, Dutta HS (2014) A new approach for segmenta-
tion and identification of disease affected blood cells. In: 2014 
International conference on intelligent computing applications, 
pp 208–212. IEEE

 61. Das D, Chakraborty C, Mitra B, Maiti A, Ray A (2013) Quantita-
tive microscopy approach for shape-based erythrocytes charac-
terization in anaemia. J Microsc 249(2):136–149

 62. Das D, Ghosh M, Chakraborty C, Pal M, Maity AK (2010) 
Invariant moment based feature analysis for abnormal erythro-
cyte recognition. In: 2010 International conference on systems 
in medicine and biology, pp 242–247. IEEE

 63. Das PK, Meher S, Panda R, Abraham A (2019) A review of 
automated methods for the detection of sickle cell disease. IEEE 
Rev Biomed Eng 13:309–324

 64. Deb N, Chakraborty S (2014) A noble technique for detecting 
anemia through classification of red blood cells in blood smear. 
In: International conference on recent advances and innovations 
in engineering (ICRAIE-2014), pp 1–9. IEEE

 65. Di Ruberto C, Dempster A, Khan S, Jarra B (2002) Analysis of 
infected blood cell images using morphological operators. Image 
Vis Comput 20(2):133–146

 66. Di Ruberto C, Loddo A, Putzu L (2019) A region proposal 
approach for cells detection and counting from microscopic 
blood images. In: International conference on image analysis 
and processing, pp 47–58. Springer

 67. Di Ruberto C, Loddo A, Putzu L (2020) Detection of red and 
white blood cells from microscopic blood images using a region 
proposal approach. Comput Biol Med 116:103530

 68. Di Ruberto C, Putzu L (2014) Accurate blood cells segmentation 
through intuitionistic fuzzy set threshold. In: 2014 Tenth interna-
tional conference on signal-image technology and internet-based 
systems, pp 57–64. IEEE

 69. Diaz G, Gonzalez FA, Romero E (2009) A semi-automatic 
method for quantification and classification of erythrocytes 
infected with malaria parasites in microscopic images. J Biomed 
Inform 42(2):296–307

 70. Dogan S, Turkoglu I (2008) Iron-deficiency anemia detection 
from hematology parameters by using decision trees. Int J Sci 
Technol 3(1):85–92

 71. Durant TJ, Olson EM, Schulz WL, Torres R (2017) Very deep 
convolutional neural networks for morphologic classification of 
erythrocytes. Clin Chem 63(12):1847–1855

 72. Ejaz Z, Hassan A, Aslam H (2018) Automatic red blood cell 
detection and counting system using Hough transform. Indo 
Amer J Pharmaceut Sci 5(7):7104–7110

 73. Elsalamony HA (2014) Sickle anemia and distorted blood cells 
detection using hough transform based on neural network and 
decision tree. In: Proceedings of the international conference 
on image processing, computer vision, and pattern recognition 
(IPCV). The Steering Committee of The World Congress in 
Computer Science, Computer ..., p 1

 74. Elsalamony HA (2015) Detecting distorted and benign blood 
cells using the Hough transform based on neural networks and 
decision trees. In: Emerging trends in image processing, com-
puter vision and pattern recognition, pp 457–473. Elsevier

 75. Elsalamony HA (2016) Healthy and unhealthy red blood cell 
detection in human blood smears using neural networks. Micron 
83:32–41

 76. Elsalamony HA (2017) Anaemia cells detection based on shape 
signature using neural networks. Measurement 104:50–59

 77. Elsalamony HA (2018) Detection of anaemia disease in human 
red blood cells using cell signature, neural networks and SVM. 
Multimed Tools Appl 77(12):15047–15074

 78. Ford J (2013) Red blood cell morphology. Int J Lab Hematol 
35(3):351–357

 79. Frejlichowski D (2010) Pre-processing, extraction and rec-
ognition of binary erythrocyte shapes for computer-assisted 
diagnosis based on MGG images. In: International conference 
on computer vision and graphics, pp 368–375. Springer

 80. Frejlichowski D (2012) Detection of erythrocyte cells 
in microscopy images. Przeglad Elektrotechniczny 
88(10b):264–267

 81. Gonzalez-Hidalgo M, Guerrero-Pena F, Herold-Garcia S, Jaume-
i Capó A., Marrero-Fernández PD (2014) Red blood cell cluster 
separation from digital images for use in sickle cell disease. IEEE 
J Biomed Health Inform 19(4):1514–1525

 82. Gual-Arnau X, Herold-Garcia S, Simo A (2015) Erythrocyte 
shape classification using integral-geometry-based methods. 
Med Biol Eng Comput 53(7):623–633

 83. Guan PP, Yan H (2011) Blood cell image segmentation based on 
the Hough transform and fuzzy curve tracing. In: 2011 Interna-
tional conference on machine learning and cybernetics, vol 4, pp 
1696–1701. IEEE

 84. Gupta M (2012) Cell identification by blob detection. UACEE 
Int J Adv Electon Eng 2:56–59

 85. de Haan K, Koydemir HC, Rivenson Y, Tseng D, Van Dyne E, 
Bakic L, Karinca D, Liang K, Ilango M, Gumustekin E et al 
(2020) Automated screening of sickle cells using a smartphone-
based microscope and deep learning. NPJ Digit Med 3(1):1–9

 86. Habibzadeh M, Krzyzak A, Fevens T (2011) Application of pat-
tern recognition techniques for the analysis of thin blood smear 
images. Journal of Medical Informatics and Technologies 18 
(2011)

 87. Hari J, Prasad AS, Rao SK (2014) Separation and counting of 
blood cells using geometrical features and distance transformed 
watershed. In: 2014 2nd International conference on devices, 
circuits and systems (ICDCS), pp 1–5. IEEE

 88. Hariharan S, Parvathy H, Aruna S (2016) An overview of sickle 
cell anemia–a special emphasis on image processing on SEM 
images. Int J Appl Eng Res 11(1):201–8

 89. Haykin S, Network N (2004) A comprehensive foundation. Neur 
Netw 2(2004):41

 90. Hegde RB, Prasad K, Hebbar H, Sandhya I (2018) Peripheral 
blood smear analysis using image processing approach for diag-
nostic purposes: a review. Biocybern Biomed Eng 38(3):467–480

2459Medical & Biological Engineering & Computing (2022) 60:2445–2462



1 3

 91. Hirimutugoda Y, Wijayarathna G (2010) Image analysis system 
for detection of red cell disorders using artificial neural networks. 
Sri Lanka J Bio-Med Inform 1(1):2010

 92. Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neur Netw 
2(5):359–366

 93. Houwen B (2002) Blood film preparation and staining proce-
dures. Clin Lab Med 22(1):1–14

 94. Jaiswal M, Srivastava A, Siddiqui TJ (2019) Machine learn-
ing algorithms for anemia disease prediction. In: Recent trends 
in communication, computing, and electronics, pp 463–469. 
Springer

 95. Jones KW (2009) Evaluation of cell morphology and introduc-
tion to platelet and white blood cell morphology. Clinical Hema-
tology and Fundamentals of Hemostasis, 93–116

 96. Khalaf M, Hussain AJ, Keight R, Al-Jumeily D, Fergus P, 
Keenan R, Tso P (2017) Machine learning approaches to the 
application of disease modifying therapy for sickle cell using 
classification models. Neurocomputing 228:154–164

 97. Kim K, Kim P, Song J, Park Y (2000) Analyzing blood cell 
image to distinguish its abnormalities. In: Proceedings of the 
eighth ACM international conference on multimedia, pp 395–397

 98. Kimbahune VV, Uke N (2011) Blood cell image segmentation 
and counting. Int J Eng Sci Technol (IJEST) 3(3):2448

 99. Kulasekaran S, Sheeba F, Mammen JJ, Saivigneshu B, Mohan-
kumar S (2015) Morphology based detection of abnormal red 
blood cells in peripheral blood smear images. In: 7th WACBE 
world congress on bioengineering 2015, pp 57–60. Springer

 100. Lee H, Chen YPP (2014) Cell morphology based classifica-
tion for red cells in blood smear images. Pattern Recogn Lett 
49:155–161

 101. Loddo A, Putzu L, Di Ruberto C, Fenu G (2016) A computer-
aided system for differential count from peripheral blood cell 
images. In: 2016 12th International conference on signal-image 
technology & internet-based systems (SITIS), pp 112–118. IEEE

 102. Lotfi M, Nazari B, Sadri S, Sichani NK (2015) The detection 
of dacrocyte, schistocyte and elliptocyte cells in iron deficiency 
anemia. In: 2015 2nd International conference on pattern recog-
nition and image analysis (IPRIA), pp 1–5. IEEE

 103. Lund P, Barnes R (1972) Automated classification of anaemia 
using image analysis. The Lancet 300(7775):463–464

 104. Mahmood NH, Lim PC, Mazalan SM, Razak MAA (2013) Blood 
cells extraction using color based segmentation technique. Int J 
Life Sci Biotechnol Pharma Res 2(2):2250–3137

 105. Mahmood NH, Mansor MA (2012) Red blood cells estimation 
using Hough transform technique. Signal Image Process 3(2):53

 106. Maity M, Sarkar P, Chakraborty C (2012) Computer-assisted 
approach to anemic erythrocyte classification using blood patho-
logical information. In: 2012 Third international conference on 
emerging applications of information technology, pp 116–121. 
IEEE

 107. Maji P, Mandal A, Ganguly M, Saha S (2015) An automated 
method for counting and characterizing red blood cells using 
mathematical morphology. In: 2015 Eighth international confer-
ence on advances in pattern recognition (ICAPR), pp 1–6. IEEE

 108. Mao-Jun S, Zhao-bin W, Hong-Juan Z, Yi-de M (2008) A new 
method for blood cell image segmentation and counting based 
on pcnn and autowave. In: 2008 3rd International symposium on 
communications, control and signal processing, pp 6–9. IEEE

 109. Marzuki NIBC, bin Mahmood NH, bin Abdul Razak MA (2017) 
Identification of thalassemia disorder using active contour. Indo-
nesian J Electr Eng Comput Sci 6(1):160–165

 110. Mazalan SM, Mahmood NH, Razak MAA (2013) Automated 
red blood cells counting in peripheral blood smear image using 
circular Hough transform. In: 2013 1st International conference 

on artificial intelligence, modelling and simulation, pp 320–324. 
IEEE

 111. McLean E, Cogswell M, Egli I, Wojdyla D, De Benoist B (2009) 
Worldwide prevalence of anaemia, WHO vitamin and mineral 
nutrition information system, 1993–2005. Public Health Nutr 
12(4):444–454

 112. Md Tomari MR, Wan Zakaria WN, et al. (2015) An empirical 
framework for automatic red blood cell morphology identifica-
tion and counting ARPN. Journal of Engineering and Applied 
Sciences 10(2015)

 113. Mogra M, Bansel A, Srivastava V (2014) Comparative analysis 
of extraction and detection of RBCs and WBCs using Hough 
transform and k-means clustering algorithm. Int J Eng Res Gen 
Sci 2(5):670–674

 114. Mohamad AS, Halim NSA, Nordin MN, Hamzah R, Sathar J 
(2018) Automated detection of human RBC in diagnosing sickle 
cell anemia with laplacian of gaussian filter. In: 2018 IEEE Con-
ference on systems, process and control (ICSPC), pp 214–217. 
IEEE

 115. Mohamad AS, Hamzah R, Mokhtar AS, Sathar J (2017) Sickle 
cell disease verification via Sobel edge algorithms for image 
processing. In: 2017 International conference on engineering 
technology and technopreneurship (ICE2T), pp 1–4. IEEE

 116. Mundhra D, Cheluvaraju B, Rampure J, Dastidar TR (2017) 
Analyzing microscopic images of peripheral blood smear using 
deep learning. In: Deep learning in medical image analysis and 
multimodal learning for clinical decision support, pp 178–185. 
Springer

 117. Navya K, Pradeep G (2018) Lung nodule segmentation using 
adaptive thresholding and watershed transform. In: 2018 3rd 
IEEE International conference on recent trends in electronics, 
information & communication technology (RTEICT), pp 630–
633. IEEE

 118. Nee LH, Mashor MY, Hassan R (2012) White blood cell seg-
mentation for acute leukemia bone marrow images. J Med Imag 
Health Inform 2(3):278–284

 119. Nithyaa A, Premkumar R, Kanchana D, Krishnan NA (2013) 
Automated detection and classification of blood diseases. In: 
Recent advancements in system modelling applications, pp 
393–404. Springer

 120. Parvathy H, Hariharan S, Aruna S (2016) A real time system 
for the analysis of sickle cell anemia blood smear images using 
image processing. Int J Innov Res Sci Eng Technol 5:6200–6207

 121. Patil DN, Khot UP (2015) Image processing based abnormal 
blood cells detection. Int J Tech Res Applic 31:37–43

 122. Poole DL, Mackworth AK (2010) Artificial intelligence: founda-
tions of computational agents. Cambridge University Press

 123. Poomcokrak J, Neatpisarnvanit C (2008) Red blood cells extrac-
tion and counting. In: The 3rd international symposium on bio-
medical engineering, pp 199–203

 124. Prasad K, Winter J, Bhat UM, Acharya RV, Prabhu GK (2012) 
Image analysis approach for development of a decision support 
system for detection of malaria parasites in thin blood smear 
images. J Digit Imaging 25(4):542–549

 125. Prasad MN, Prasad K, Navya K (2018) Color transfer method 
for efficient enhancement of color images and its application to 
peripheral blood smear analysis. In: International conference on 
recent trends in image processing and pattern recognition, pp 
134–142. Springer

 126. Rafael C (1992) Gonzalez, and Richard E. Woods. Digital Image 
Processing, 793

 127. Rahmat R, Wulandari F, Faza S, Muchtar M, Siregar I (2018) The 
morphological classification of normal and abnormal red blood 
cell using self organizing map. In: IOP Conf. Series: Mater. Sci. 
Eng, vol 308, p 012015

2460 Medical & Biological Engineering & Computing (2022) 60:2445–2462



1 3

 128. Rakshit P, Bhowmik K (2013) Detection of abnormal findings 
in human rbc in diagnosing sickle cell anaemia using image pro-
cessing. Proced Technol 10:28–36

 129. Rashid NZN, Mashor MY, Hassan R (2015) Unsupervised color 
image segmentation of red blood cell for thalassemia disease. In: 
2015 2nd International conference on biomedical engineering 
(ICoBE), pp 1–6. IEEE

 130. Razzak MI, Naz S (2017) Microscopic blood smear segmenta-
tion and classification using deep contour aware cnn and extreme 
machine learning. In: 2017 IEEE Conference on computer vision 
and pattern recognition workshops (CVPRW), pp 801–807. IEEE

 131. Revathi T, Jeevitha S (2016) Efficient Watershed based red blood 
cell segmentation from digital images in sickle cell disease. Int 
J Sci Eng Appl Sci 2:300–317

 132. Rezatofighi S, Roodaki A, Zoroofi R, Sharifian R, Soltanian-
Zadeh H (2008) Automatic detection of red blood cells in hema-
tological images using polar transformation and run-length 
matrix. In: 2008 9th International conference on signal process-
ing, pp 806–809. IEEE

 133. Ritter N, Cooper J (2007) Segmentation and border identification 
of cells in images of peripheral blood smear slides. In: Proceed-
ings of the thirtieth Australasian conference on computer science, 
vol 62, pp 161–169. Australian Computer Society, Inc

 134. Rodrigues LF, Naldi MC, Mari JF (2016) Morphological analy-
sis and classification of erythrocytes in microscopy images. In: 
Proceedings of the 2016 Workshop de Visao Computacional, 
Campo Grande, Brazil, pp 9–11

 135. Sadafi A, Radolko M, Serafeimidis I, Hadlak S (2018) Red blood 
cells segmentation: a fully convolutional network approach. 
In: 2018 IEEE Intl Conf on Parallel & Distributed Processing 
with Applications, Ubiquitous Computing & Communications, 
Big Data & Cloud Computing, Social Computing & Network-
ing, Sustainable Computing & Communications (ISPA/IUCC/
BDCloud/SocialCom/SustainCom), pp 911–914. IEEE

 136. Safca N, Popescu D, Ichim L, Elkhatib H, Chenaru O (2018) 
Image processing techniques to identify red blood cells. In: 
2018 22nd International conference on system theory, control 
and computing (ICSTCC), pp 93–98. IEEE

 137. Sanap SA, Nagori M, Kshirsagar V (2011) Classification of ane-
mia using data mining techniques. In: International conference 
on swarm, evolutionary, and memetic computing, pp 113–121. 
Springer

 138. Sapna S, Renuka A (2017) Techniques for segmentation and clas-
sification of leukocytes in blood smear images-a review. In: 2017 
IEEE International conference on computational intelligence and 
computing research (ICCIC), pp 1–5. IEEE

 139. Sarrafzadeh O, Dehnavi AM, Rabbani H, Ghane N, Talebi A 
(2015) Circlet based framework for red blood cells segmenta-
tion and counting. In: 2015 IEEE workshop on signal processing 
systems (SiPS), pp 1–6. IEEE

 140. Savkare S, Narote S (2015) Blood cell segmentation from micro-
scopic blood images. In: 2015 International conference on infor-
mation processing (ICIP), pp 502–505. IEEE

 141. Sethian JA (1996) A fast marching level set method for mono-
tonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

 142. Setsirichok D, Piroonratana T, Wongseree W, Usavanarong T, 
Paulkhaolarn N, Kanjanakorn C, Sirikong M, Limwongse C, 
Chaiyaratana N (2012) Classification of complete blood count 
and haemoglobin typing data by a C4.5 decision tree, a naive 
Bayes classifier and a multilayer perceptron for thalassaemia 
screening. Biomed Signal Process Control 7(2):202–212

 143. Shahzad M, Umar AI, Khan MA, Shirazi SH, Khan Z, Yousaf W 
(2020) Robust method for semantic segmentation of whole-slide 
blood cell microscopic images. Comput Math Methods Med, 
2020

 144. Sharif JM, Miswan M, Ngadi M, Salam MSH, bin Abdul Jamil 
MM (2012) Red blood cell segmentation using masking and 
Watershed algorithm: a preliminary study. In: 2012 International 
conference on biomedical engineering (ICoBE), pp 258–262. 
IEEE

 145. Sharma V, Rathore A, Vyas G (2016) Detection of sickle cell 
anaemia and thalassaemia causing abnormalities in thin smear 
of human blood sample using image processing. In: 2016 Inter-
national conference on inventive computation technologies 
(ICICT), vol 3, pp 1–5. IEEE

 146. Soltanzadeh R, Rabbani H (2010) Classification of three types 
of red blood cells in peripheral blood smear based on morphol-
ogy. In: IEEE 10th International conference on signal processing 
proceedings, pp 707–710. IEEE

 147. Taherisadr M, Nasirzonouzi M, Baradaran B, Mehdizade A, Shi-
raz I (2013) New approach to red blood cell classification using 
morphological image processing. Shiraz E-Med J 14(1):44–53

 148. Tomari M, Lias J, Musa R, Wan Zakaria WN, et al. (2015) 
Development of red blood cell analysis system using NI vision 
builder AI ARPN. Journal of Engineering and Applied Sciences 
10(2015)

 149. Tomari R, Zakaria WNW, Ngadengon R, Wahab MHA (2015) 
Red blood cell counting analysis by considering an overlapping 
constraint Ⓒ 2006-2015 Asian Research Publishing Network 
(ARPN) 10(3)

 150. Tran T, Binh Minh L, Lee SH, Kwon KR (2019) Blood cell count 
using deep learning semantic segmentation. https:// doi. org/ 10. 
20944/ prepr ints2 01909. 0075. v1

 151. Tran T, Kwon O, Kwon K, Lee S, Kang K (2018) Blood cell 
images segmentation using deep learning semantic segmenta-
tion. In: 2018 IEEE International conference on electronics and 
communication engineering (ICECE), pp 13–16. IEEE

 152. Tyagi M, Saini LM, Dahyia N (2016) Detection of poikilocyte 
cells in iron deficiency anaemia using artificial neural network. 
In: 2016 International conference on computation of power, 
energy information and commuincation (ICCPEIC), pp 108–112. 
IEEE

 153. Tyas DA, Ratnaningsih T, Harjoko A, Hartati S (2017) The clas-
sification of abnormal red blood cell on the minor thalassemia 
case using artificial neural network and convolutional neural net-
work. In: Proceedings of the international conference on video 
and image processing, pp 228–233

 154. Veluchamy M, Perumal K, Ponuchamy T (2012) Feature extrac-
tion and classification of blood cells using artificial neural net-
work. Am J Appl Sci 9(5):615

 155. Venkatalakshmi B, Thilagavathi K (2013) Automatic red blood 
cell counting using Hough transform. In: 2013 IEEE Conference 
on information & communication technologies, pp 267–271. 
IEEE

 156. Walliander M, Turkki R, Linder N, Lundin M, Konsti J, Ojansivu 
V, Meri T, Holmberg V, Lundin J (2013) Automated segmenta-
tion of blood cells in giemsa stained digitized thin blood films. 
In: Diagnostic pathology, vol 8, p. S37. Springer

 157. Wei X, Cao Y, Fu G, Wang Y (2015) A counting method for 
complex overlapping erythrocytes-based microscopic imaging. 
J Innov Opt Health Sci 8(06):1550033

 158. Wheeless LL, Robinson RD, Lapets OP, Cox C, Rubio A, Wein-
traub M, Benjamin LJ (1994) Classification of red blood cells as 
normal, sickle, or other abnormal, using a single image analysis 
feature. Cytometry: J Int Soc Anal Cytol 17(2):159–166

 159. Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis 
GE (2017) A deep convolutional neural network for classifica-
tion of red blood cells in sickle cell anemia. PLoS Comput Biol 
13(10):e1005746

 160. Xu M, Yang J, Zhao H (2017) A multivariate shape quantification 
approach for sickle red blood cell in patient-specific microscopy 

2461Medical & Biological Engineering & Computing (2022) 60:2445–2462

https://doi.org/10.20944/preprints201909.0075.v1
https://doi.org/10.20944/preprints201909.0075.v1


1 3

image data. In: Ninth international conference on digital image 
processing (ICDIP 2017), vol 10420, p 104203W. International 
Society for Optics and Photonics

 161. Yeldhos M (2018) Red blood cell counter using embedded image 
processing techniques. Research Reports 2(2018)

 162. Zahir S, Chowdhury R, Payne GW (2006) Automated assessment 
of erythrocyte disorders using artificial neural network. In: 2006 

IEEE International symposium on signal processing and informa-
tion technology, pp 776–780. IEEE

 163. Zhang M, Li X, Xu M, Li Q (2018) Rbc semantic segmentation 
for sickle cell disease based on deformable U-Net. In: Interna-
tional conference on medical image computing and computer-
assisted intervention, pp 695–702. Springer

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

2462 Medical & Biological Engineering & Computing (2022) 60:2445–2462


	Analysis of red blood cells from peripheral blood smear images for anemia detection: a methodological review
	Abstract
	1 Introduction
	2 Approaches
	2.1 RBC segmentation and counting
	2.1.1 Thresholding and transform-based segmentation methods
	2.1.2 Edge based segmentation methods
	2.1.3 Clustering based segmentation methods
	2.1.4 Contour and matching based segmentation methods
	2.1.5 Machine learning-based segmentation methods
	2.1.6 Miscellaneous category

	2.2 RBC classification and detection of anemia
	2.2.1 Shape feature and region based RBC classification methods
	2.2.2 Machine learning-based RBC classification methods
	2.2.3 Clinical parameters based RBC classification methods

	2.3 Classification of anemia
	2.3.1 Morphology based anemia classification methods
	2.3.2 Hematological parameters based anemia classification


	3 Database
	4 Discussion and future scope
	5 Conclusion
	References


