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ABSTRACT

Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in

terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the

regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different

types of regulatory RNA is poorly understood. In this study, a combinatorial strategy utilizing multiple

sequencing approaches was used to decipher the landscape of RNAome in tomato, an emerging AMS

model. The annotation of the tomato genome was improved by a multiple-platform sequencing strategy.

A total of 3,174 protein-coding genes were upregulated during AMS, 42% of which were alternatively

spliced. Comparative-transcriptome analysis revealed that genes from 24 orthogroups were consistently

induced by AMS in eight phylogenetically distant angiosperms. Seven additional orthogroups were specif-

ically induced by AMS in all surveyed dicot AMS host plants. However, these orthogroups were absent or

not induced in monocots and/or non-AMS hosts, suggesting a continuously evolving AMS-responsive

network in addition to a conserved core regulatory module. Additionally, we detected 587 lncRNAs, ten

miRNAs, and 146 circRNAs that responded to AMS, which were incorporated to establish a tomato AMS-

responsive, competing RNA-responsive endogenous RNA (ceRNA) network. Finally, a tomato symbiotic

transcriptome database (TSTD, https://efg.nju.edu.cn/TSTD) was constructed to serve as a resource for

deep deciphering of the AMS regulatory network. These results help elucidate the reconfiguration of the

tomato RNAome during AMS and suggest a sophisticated and evolving RNA layer responsive network dur-

ing AMS processes.
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INTRODUCTION

Arbuscular mycorrhizal symbiosis (AMS) is an ancient mutual-

istic relationship between plants and microbes. Coinciding

with plant colonization on land, AMS originated approximately

400–450 million years ago (Remy et al., 1994; Redecker et al.,

2000; Bidartondo et al., 2011; Rich et al., 2021) and is

widespread in over 80% of land plant species from all major

lineages (Wang and Qiu, 2006). Arbuscular mycorrhizal fungi

(AMF) provide mineral nutrients, such as nitrate and

phosphorus, to the host plant in exchange for fixed carbon,

including lipids and sugars produced by the host plant (Bago

et al., 1999; Vance, 2001; Smith and Read, 2008; Jiang
Plant Com
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et al., 2017; Luginbuehl et al., 2017). Furthermore, the

hyphae of symbiotic fungi can also enlarge the rhizosphere

and enhance plant resistance to biotic and abiotic stresses

(Miransari, 2010; Santander et al., 2017). The beneficial

effects of AMS for plants suggest that this relationship may

have helped early land plants adapt to water- and nutrient-

deficient terrestrial environments (Choi et al., 2018; Delaux

and Schornack, 2021).
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:chenjq@nju.edu.cn
mailto:zhuqingshao@nju.edu.cn
https://doi.org/10.1016/j.xplc.2022.100429
https://efg.nju.edu.cn/TSTD
http://creativecommons.org/licenses/by-nc-nd/4.0/


Plant Communications AMS-induced tomato transcriptional reprogramming
Plants have evolved to precisely regulate the dynamic AMS pro-

cess (Choi et al., 2018). Since the early studies onDMI2 (Does not

Make Infection 2, also known asNORK and SYMRK) (Endre et al.,

2002; Stracke et al., 2002), over 60 genes involved in AMS have

been identified by independent studies (MacLean et al., 2017).

The function of a core set of AMS-regulating proteins is highly

conserved in angiosperms and even bryophytes (Delaux et al.,

2014; Bravo et al., 2016; An et al., 2018; Radhakrishnan et al.,

2020; Rich et al., 2021), supporting the ancient origin of the

AMS signaling pathway. However, the AMS regulatory network

is far from being complete, and new AMS-regulating genes

are continuously being reported, including DLK2, ARK2, and

NPF4.5 (Wang et al., 2020; Ho-Plagaro et al., 2021; Montero

et al., 2021).

Recent studies have revealed that the post-transcriptional regu-

lation of mRNAs plays a significant role in AMS regulation. Alter-

native splicing (AS) and alternative polyadenylation (APA) are key

control mechanisms of precursor messenger RNAs (pre-

mRNAs), both contributing significantly to increased transcrip-

tome diversity at the post-transcriptional level in eukaryotes

(Kalsotra and Cooper, 2011; Elkon et al., 2013). More than 95%

and 60% of intron-containing genes in humans and plants,

respectively, are alternatively spliced (Pan et al., 2008; Reddy

et al., 2013). The distinct transcript isoforms can generate

proteins with different functions or that are only present under

specific conditions. Recent studies demonstrated that two

different isoforms of the gene Medicago SYNTAXIN 132 (SYP-

132) were generated through AS and APA. One isoform was

significantly induced and specifically involved in both nodule

symbiosis and AMS, whereas the other was not induced and

had no regulatory role in AMS (Huisman et al., 2016; Pan et al.,

2016). This example suggests that AS and APA can significantly

influence AMS regulation.

Post-transcriptional regulation of mRNAs can also occur

through the activity of diverse non-coding RNAs, including mi-

croRNA (miRNA), long non-coding RNA (lncRNA), and circular

RNA (circRNA) (Song et al., 2019; Yu et al., 2019; Li et al.,

2021; Middleton et al., 2021). Several plant miRNAs are key

regulators of AMS. MiR171h was the first AMS-regulating

miRNA to be identified. It negatively regulates the expression

of the symbiotic gene NSP2 in Medicago truncatula and limits

excessive AMF colonization (Lauressergues et al., 2012). A

subsequent study showed that the inactivation of

M. truncatula miR396, which targets multiple growth-

regulating factor (GRF) genes, enhanced AMF colonization

(Bazin et al., 2013). Overexpression of miR393 caused the

downregulation of auxin receptor genes and underdeveloped

arbuscules (Etemadi et al., 2014). Interestingly, miR171b,

which contains a mismatch with the target gene LOM1,

protects LOM1 from silencing by other miR171 family

members and enhanced AMS in M. truncatula (Couzigou

et al., 2017). These studies highlight that miRNAs are

important regulators of AMS. Although the roles of lncRNAs

and cirRNAs in AMS are largely unknown, their involvement

in many biological processes is gaining appreciation (Conn

et al., 2017; Yu et al., 2019). The competing endogenous

RNA (ceRNA) hypothesis posits that lncRNAs and circRNAs

with shared miRNA recognition sites can impair miRNA

activity through sequestration, thereby functioning as
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sponges or decoys. Subsequently, this results in the

upregulation of miRNA-targeted mRNA expression (Salmena

et al., 2011; Thomson and Dinger, 2016). Exploring the

transcriptional landscape for different types of non-coding

RNAs during AMS may provide new insights into the AMS reg-

ulatory network.

Tomato (Solanum lycopersicum) is an emergingmodel system for

AMS studies due to ease of transformation and efficiency in gene

editing (Buendia et al., 2016; Shikata and Ezura, 2016; Ho-

Plagaro et al., 2019; Liu et al., 2019). To evaluate the potential

involvement of different classes of RNAs during AMS, a

systematic study on AMS-induced transcriptional alteration in to-

mato was conducted using multiple transcriptome sequencing

approaches, including PacBio single-molecule real-time

sequencing (SMRT-seq), RiboMinus Illumina RNA-seq, small

RNA sequencing (sRNA-seq), and circRNA-seq. The transcrip-

tional landscape and responsive network of tomato during AMS

were comprehensively explored at the RNA level. Results sug-

gest a sophisticated and evolving, RNA layer response during

AMS processes and resources generated for this study provide

for further, in-depth research of the regulation mechanism of

AMS.
RESULTS

A multiple-platform sequencing strategy improves
tomato gene annotation for AMS-induced
transcriptional reconfiguration analysis

To investigate the root transcriptional landscape in tomato during

AMS, both AMF-inoculated (AIRs) and uninoculated (ANRs) root

samples were subjected to RNAome analysis (Figure 1).

Tomato roots were well colonized by Rhizophagus irregularis at

six weeks post-inoculation, and there was no significant

difference in the fresh weight of shoots between inoculated and

uninoculated plants (Supplemental Figure 1). A multiple-

platform sequencing strategy was adopted to obtain both

protein-coding mRNAs and several different types of non-

coding RNA profiles for the root samples. These data were inte-

grated to update annotations of the tomato genome (Figure 1).

The annotation for protein-coding genes was improved in

several respects by the integration of the SMRT and Illumina

RNA-seq data (Supplemental Figures 2 and 3). First, this study

annotated 673 novel protein-coding gene loci that had at least

one transcript with an ORF of 100 amino acids or longer, 390 of

which have annotated domains in the deduced protein se-

quences and/or were supported by peptide sequences frompub-

lic proteomic data (Supplemental Table 1). Second, by

comprehensive analysis of AS and APA, 14,857 tomato protein-

coding genes were found to have more than one transcript in

our dataset (Supplemental Data 1 and Supplemental Figure 3).

This is a significant enhancement to the reference annotation,

which provides only one transcript per gene. Third, the

annotation of tomato transcripts regarding the untranslated

regions (UTRs) was improved. Fewer than half of the transcripts

in the reference genome had UTRs, whereas 98.6% of the

transcripts annotated in this study possessed UTRs

(Supplemental Figure 2). Further, the annotated UTRs for

tomato transcripts identified in this study were significantly

longer than those of the reference transcripts (average 1,121
thor(s).
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Figure 1. RNAome sequencing strategies and bioinformatics workflow.
(A) Root samples used for different sequence strategies. AIR represents AMF inoculated root samples, and ANR represents AMF uninoculated root

samples.

(B) Flowchart of the multi-transcriptome sequencing and analysis strategies.

AMS-induced tomato transcriptional reprogramming Plant Communications
vs. 492 nt; Supplemental Figure 2). Finally, several types of non-

coding RNA were comprehensively annotated by RiboMinus Illu-

mina RNA-seq, sRNA-seq, and circRNA-seq. A total of 5,227

lncRNAs, 140 miRNAs, and 958 circRNAs were identified from

the sequencing datasets (Supplemental Data 2, 3, and 4).
Plant Com
Overall, the data from multiple sequencing platforms

considerably improved the identification and annotation of

tomato coding and non-coding gene loci, as well as gene struc-

ture, and collectively, these data serve as a reference for the sub-

sequent elucidation of AMS-induced transcriptional response.
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AMS-induced transcriptional alteration of thousands of
tomato protein-coding genes

The analysis of differentially expressed genes is an important

approach for identifying AMS-regulatory genes (Heck et al.,

2016; Muller et al., 2019; Ho-Plagaro et al., 2021; Wang et al.,

2021; Guo et al., 2022; Hui et al., 2022). To explore transcriptional

changes of protein-coding genes of tomato in response to

AMS, expression levels from AIR and ANR samples were esti-

mated using mapped Illumina short reads. As a result, 4,707

differentially expressed genes (DEGs) were identified between

AIR and ANR samples (Supplemental Table 2), with 3,174 and

1,533 upregulated and downregulated, respectively. Among the

upregulated genes (defined as AMS-induced genes hereafter),

28 were orthologous to those known to be involved in AMS,

including PT4, RAM1, RAD1, FatM, and STR, along with some

additional AMS-associated genes, demonstrating the AIRs

were well colonized by AMF (Supplemental Figure 2 and

Supplemental Table 2). Using data from three previously

reported tomato AMS-associated transcriptome studies

(Sugimura and Saito, 2017; Ho-Plagaro et al., 2019; Tominaga

et al., 2022), a comparative analysis with AMS-induced genes

was performed. The results showed that a set of 280 AMS-

induced genes was identified in all four data sets; 193 and 703

genes were shared by three and two studies, respectively

(Figure 2A). There were also 45–2053 genes recognized as

AMS-induced genes in only one study, which may be due to dif-

ferences in the number of AMF spores inoculated, the days after

inoculation, and/or plant growth status. In total, 1,176 genes were

induced by AMS in at least two independent studies, with this

study recovering the largest proportion of them (1,121 genes,

95.3%) as AMS-induced genes among the four independent

studies (Figure 2B). By contrast, the other three studies only

identified 959 (81.5%), 660 (56.2%), and 365 (31.1%) as AMS-

induced genes, suggesting that this report on tomato AMS-

induced genes is more comprehensive (Figure 2B). Gene

Ontology (GO) enrichment analysis performed on the AMS-

induced genes identified in this study revealed that they were

significantly enriched in 390 pathways (false discovery rate

[FDR] < 0.05; Supplemental Table 3). The representative

enriched pathways include transmembrane transport,

regulation of protein kinase activity, fatty acid biosynthesis,

fatty acid metabolic process, brassinosteroid homeostasis,

response to peptide hormone, and ammonium transmembrane

transport (Figure 2C). These pathways are highly consistent

with those reported by previous studies on AMS using tomato

and other angiosperms as host plants (Sugimura and Saito,

2017; Tominaga et al., 2021, 2022; Vasan et al., 2021).

Several recent studies reported that two alternatively spliced var-

iants of the symbiotic gene SYP-132 have distinct functions in the

regulation of AMS (Huisman et al., 2016; Pan et al., 2016).

However, a global investigation on the transcript diversity of

AMS-induced genes is still lacking. Because multiple transcripts

were found for 42% (1,334) of AMS-induced genes from this da-

taset, the expression level of each transcript in AIR and ANR sam-

ples was analyzed. Among them, 472 genes have only one AMS-

induced transcript, whereas 303 genes havemultiple upregulated

transcripts (Figure 2D and Supplemental Table 4). For example, a

gene encoding a cytochrome P450 (Solyc04g009930) had three

annotated isoforms generated by AS, but only one was

significantly induced by AMF colonization (Figure 2E). A similar
4 Plant Communications 4, 100429, January 9 2023 ª 2022 The Au
pattern was also observed for 18 tomato genes that were

orthologous to known genes involved in AMS (Supplemental

Table 5). However, there are 559 multi-transcript genes that

have no AMS-induced transcript, indicating the detected upregu-

lation of these genes is a result of an accumulative effect of mul-

tiple transcripts (Figure 2D). These results provide additional

clues for evaluating the functional mechanism of AMS-

responsive genes demonstrating AS.
A set of tomato AMS-induced genes is conserved
among angiosperms

It is assumed that AMS hosts share an ancestral symbiotic signal

pathway and regulatory network. To test this assumption, the

transcriptomic datasets weremined for conserved cross-species

AMS-induced genes from seven additional, phylogenetically

diverse angiosperms (Figure 3A). Based on the constructed

gene orthologous relationships of 16 angiosperms, including

five non-AMS hosts (Supplemental Table 6), 24 conserved

orthogroups were identified, each with at least one AMS-

induced gene in all AMS hosts analyzed (Figure 3A and

Supplemental Table 7). Among them, six orthogroups have

known functional AMS signaling or regulatory genes, including

RAD1 (Xue et al., 2015), RAM1 (Gobbato et al., 2012; Park

et al., 2015), RAM2 (Bravo et al., 2017; Jiang et al., 2017;

Luginbuehl et al., 2017), WRI5a (Jiang et al., 2018), SbtM1

(Takeda et al., 2009), and ARK1 (Roth et al., 2018). The other

seven orthogroups encode proteins containing the same

domain with known genes involved in AMS. For example,

proteins encoded by orthogroups OG0006391 and OG0001767

have the receptor-like kinase domain that is also present in

SYMRK (Ried et al., 2014). The cytochrome P450, LysM,

germin-like protein, and blue copper protein domains encoded

by the orthogroups OG0000230, OG0007943, OG0000063, and

OG0001551 are present in the proteins encoded by the symbiotic

genes MAX1, CERK1, GLP1, and Bcp1a/b (Paradi et al., 2010;

Takeda et al., 2011; Carotenuto et al., 2017; Zhang et al., 2018).

However, 11 remaining orthogroups did not encode similar

domains with known symbiotic genes. These 18 orthogroups

offer new candidates for mining for conserved AMS-responsive

genes across angiosperms. By conducting a presence/absence

analysis of the 24 orthogroups in the genomes of non-AMS hosts,

eight were absent from all of the surveyed non-AMS host plants

(Figure 3B). These included three orthogroups containing

RAM1, RAD1, and ARK1, and five orthogroups that had no

known AMS-regulating genes. These evolutionary patterns

provide additional evidence to support the involvement of the

genes of these orthogroups in AMS.

Additionally, 30, 36, and 49 gene orthogroups that contain AMS-

induced genes from six, seven, and five AMS host plants, respec-

tively, were also identified (Supplemental Table 8), suggesting

that some accessory AMS-induced genes in angiosperms may

have undergone lineage/species-specific gain/loss-of-function.

Taken together, 139 orthogroups that contain AMS-induced

genes from at least five of the eight AMS host plant species

were identified (Figure 3A and Supplemental Tables 7 and 8).

Based on the pattern of loss of symbiotic genes in non-AMS

hosts, several conserved genes that are potentially involved in

AMS have been identified through phylogenomics approaches

(Delaux et al., 2014; Bravo et al., 2016). After comparing the
thor(s).
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Figure 2. Identification of the upregulated tomato protein-coding genes between AIR and ANR samples.
(A) An UpSet diagram showing the number of genes upregulated in response to AMS among the present study and three previously published

studies.

(B) Distribution of AMS-upregulated genes supported by at least two studies among four independent studies.

(C) The representative Gene Ontology (GO) terms of AMS-upregulated genes.

(D) Distribution of AMS-regulated genes containing different numbers of AMS-upregulated transcripts.

(E) An example of a case where only one transcript of a multi-transcript gene (Solyc04g009930) was induced by AMS. The AIR1/ANR1 coverage rep-

resents the reads that were mapped to this gene in the AIR1/ANR1 library. T1, T2, and T3 represent three transcript models of this gene, and the heatmap

shows their expression pattern in the six libraries.
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Figure 3. Conserved AMS-induced orthogroups among angiosperms.
(A) An UpSet diagram showing the number of AMS-induced orthogroups among the eight AMS host plants. The set sizes represent the numbers of AMS-

induced orthogroups in 5–8 species. The columns regarding the numbers of orthogroups that are conserved in all angiosperms and all dicot species are

indicated by a red star and a green dot, respectively.

(B) Functional annotation of angiosperm- and dicot-scale conserved AMS-induced orthogroups and their distribution in non-AMS host plants. Anno-

tations of orthogroups containing functional AMS-associated genes or encode proteins containing the same domain with known AMS-associated genes

are in black font; annotations of orthogroups that did not encode similar domains with known AMS-associated genes are in gray font.
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139 orthogroups with previous identified AMS conserved genes,

it was found that approximately two-thirds of orthogroups con-

taining AMS conserved genes from the Bravo et al. study, and

14.5% of orthogroups containing AMS conserved genes from

the Delaux et al. study overlap with the dataset generated in

this study (Supplemental Figure 4). This further demonstrates

the conservation of these genes in angiosperm AMS. However,

89 additional orthogroups that have genes induced by AMS in

more than five angiosperms were identified in this study.

Among the 139 AMS-induced orthogroups, seven had genes

that were specifically induced by AMS in all six dicots, but were

absent (OG0014063, OG0016346, and OG0016180) or not

induced by AMS (OG0004817, OG0012700, OG0004664, and

OG0000222) in monocots (Figure 5B). Notably, genes in these

orthogroups were also differentially absent in the five non-AMS

host plants (Figure 5B). The results suggest that some AMS-

responsive modules may have been lost in the monocot

lineage or gained in the dicot lineage after the monocot/dicot

evolutionary split.
Hundreds of AMS-responsive lncRNAs were annotated
from the tomato RNAome

It has been reported that lncRNAs can regulate different biolog-

ical processes in plants; however, they have not been compre-

hensively identified and investigated for their potential roles in

AMS. In the present study, a total of 5,227 transcripts located

in 3,910 loci were identified as putative lncRNAs using four

computational tools (Figure 4A and Supplemental Data 2). Of

them, 3,718 (71.1%) were single exon transcripts (Figure 4B).

This pattern is similar to that observed in oilseed rape,

soybean, red clover, and maize (Wang et al., 2016; Chao et al.,

2018; Golicz et al., 2018; Yao et al., 2020), suggesting that

plant lncRNAs were more likely to be single-exon than protein-

coding transcripts. The identified lncRNAs were classified into

four types according to their location from the reference annota-

tion, which showed that 43.1% of lncRNAs were from intergenic

regions, 43.0% from the sense strand and overlapped with

protein-coding genes, 8.5% from the antisense strand of

protein-coding genes, and 5.4% from intronic regions

(Figure 4C). A BLASTN was used to search candidate lncRNA

homologs to known tomato lncRNAs from the CANTATAdb data-

base (Szczesniak et al., 2019). The results showed that 2,020

(38.65%) of the 5,227 identified putative lncRNAs have been

documented by the CANTATAdb in the tomato lncRNA catalog,

and the others were newly reported by this study (Figure 4D).

The mean length of lncRNAs from this study was 1,135 nt,

ranging from 200 to 15,073 nt, which is slightly longer than

documented tomato lncRNAs in the CANTATAdb (Figure 4E).

Expression analysis revealed that 587 tomato lncRNAs were

differentially expressed (DE) between AIR and ANR samples

(Figure 4F and Supplemental Table 9). Of these, 307 were

upregulated and 280 were downregulated. By surveying the

parental gene loci of these DE lncRNAs, 316 were found from

gene loci that have multiple transcripts (Supplemental Data 2),

suggesting that AS also occurs at non-coding gene loci. Through

various mechanisms, lncRNAs can activate or repress the

expression of neighboring genes (Sun and Kraus, 2015). To

explore the potential regulatory functions of tomato AMS-

responsive lncRNAs, their expression patterns were compared
Plant Com
with mRNAs that were transcribed from adjacent or overlapping

genes. Of these, 109 potential target mRNAs showed significant

expression alteration, and 36, 21, and 52 were targeted by

lncRNAs from intergenic regions, antisense strands, and sense

strands, respectively. Most of the lncRNA-mRNA pairs (i.e., 26 in-

tergenic lncRNA-mRNA, 19 antisense lncRNA-mRNA, and 49

sense lncRNA-mRNA) showed positive correlations in expression

(Figure 4G), suggesting that a large proportion of lncRNAs may

play positive roles in the expression of neighboring mRNAs.

Among these lncRNA targets, two mRNAs transcribed by

Solyc07g006610 and Solyc04g050940, were orthologous to

M. truncatula symbiotic genes KIN2 and KIN3, respectively

(Supplemental Table 5) (Yang et al., 2012; Bravo et al., 2016).
Analysis of AMS-responsive miRNA-target gene pairs

A total of 140 miRNAs were identified from the six datasets, 95 of

which belong to 30 known tomatomiRNA families in themiRbase.

The others represent putatively novel miRNAs (Supplemental

Data 3). Specifically, three miRNA families identified in this

study, miR165, miR1446, and miR8025, have not been

documented in the tomato miRNA catalog by miRBase. Among

the known miRNA families, the number of members in each

miRNA family ranged from one to 13 (Figure 5A). The length of

the miRNAs ranged from 20 to 24, with the majority (96

miRNAs, �68.6%) being 21 nt (Figure 5B).

Ten miRNAs, nine known and one novel (miRnovel22), showed

significant differential expression between AIR and ANR samples

(Figures 5C and Supplemental Table 5). Among these, three from

different families (miR319, miR390, and miR9470) were

upregulated upon AMF colonization. By contrast, seven

miRNAs from four families (miR166, miR399, miR482, and

miRnovel22) were downregulated. Results from qPCR analysis

confirmed these differences (Supplemental Figure 6). Prediction

targets of DE miRNAs against all tomato transcripts revealed

that 324 transcripts from 250 genes oppositely showed

significant differential expressionfrom the miRNAs targeting

them after AMF colonization (Figure 5C). However, only 72

transcripts from 72 genes in the reference genome were

predicted as targets of these miRNAs with the same criterion.

The larger number of predicted targets is a result of using the

improved annotation, which includes multiple isoforms from

the same gene loci and extended UTRs. Specifically, among

the 324 predicted target transcripts, 43 were targeted by

miRNAs at the UTR. However, only 23 could be predicted as

targets of DE miRNAs if the reference annotation was used. For

example, a DUF4228 domain-containing gene, the orthologs of

which were induced in all eight AMS hosts during AMF coloniza-

tion and was absent from all surveyed non-AMS host plants

(Supplemental Table 7), was predicted to be targeted by

miR482e-5p at the 30 UTR of the updated annotation. However,

it was not predicted as the target when using the reference anno-

tation (Figure 5D). Finally, the data showed that transcripts from

three tomato genes orthologous to RAD1 (Solyc03g110950),

HA1 (Solyc08g078200), and NOPE1 (Solyc03g080020) were

targeted by AMS-induced miR166a, miR166d, and miR482f,

respectively (Supplemental Table 5). The GO enrichment

analysis showed that the functions of predicted miRNA targets

were mainly enriched in the terpenoid biosynthetic process,

ATP hydrolysis activity, lipid biosynthetic/metabolic process,
munications 4, 100429, January 9 2023 ª 2022 The Author(s). 7
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and gibberellin metabolic process (Figure 5E), suggesting that

tomato miRNAs may have been involved in AMS regulation by

modulating nutrient metabolism and signal transduction.
Identification of tomato circRNAs and their involvement
in AMS competing endogenous RNA network

To explore the role of circRNAs in tomato AMS regulation, three

detection tools, Find_circ, CIRI2, and CIRCexplorer2, were

used to identify circRNAs from the two libraries, each of which

was pooled with three AIR or three ANR samples. Collectively,

a total of 9,043 unique circRNAs were predicted from the two li-

braries using the three tools (Supplemental Figure 7). Among
8 Plant Communications 4, 100429, January 9 2023 ª 2022 The Au
these, 958 were detected by all three tools (Supplemental

Data 4), suggesting that these are high-confidence

circRNAs. After cross-referencing these circRNA sequences

with PlantcircBase (Chu et al., 2017), 574 were found to be

homologous with tomato circRNA sequences already in the

database, with the remaining 384 being newly identified. The

length of the high-confidence circRNAs ranged from 197 to

27, 820 nt, with more than half being <2,000 nt (Figure 6A).

Most of the high-confidence circRNAs were lowly expressed in

both libraries with �60% having <5 junction reads (Figure 6B).

By contrast, <10% high-confidence circRNAs had >30 junction

reads (Figure 6B). Comparing the number of reads at the back-

spliced junction site revealed that 88 circRNAs were significantly
thor(s).
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induced upon AMF colonization, whereas 58 were significantly

down-regulated (Figure 6C). These DE circRNAs are candidate

regulators of AMS. A significant positive correlation between

the expression pattern of most circRNAs and their

parent genes has been reported (Ye et al., 2015). The linear

transcripts from the parental genes of 31 DE circRNAs showed

significant alteration in expression, 24 of which were positively

correlated with DE circRNAs, and seven were negatively

correlated (Figure 6D). Among these parental genes, three of

them are orthologs of known AMS conserved genes (i.e., CCD8

[Solyc08g066650], CYT733A1 [Solyc04g071150], and HA1

[Solyc08g078200]) (Supplemental Table 5).

A ceRNA network analysis was performed to predict the interac-

tive relationship among miRNAs, mRNAs, lncRNAs, and circR-

NAs during AMS (Figure 6E). The analysis included 10 miRNAs

(3 up/7 down), 587 lncRNA (307 up/280 down), 146 circRNA (88

up/58 down), and 4,248 mRNA (2,170 up/2,078 down). All DE

mRNAs, DE lncRNAs, and DE circRNAs that showed significant

differential expression in an opposite direction from the DE

miRNAs upon AMF colonization were subjected to miRNA

target prediction. The ceRNA network showed that the 10 DE

miRNAs could target 331 RNAs of different types, including 312

mRNAs, 12 lncRNAs, and seven circRNAs, forming 343

miRNA-mRNA,12 miRNA-lncRNA, and nine miRNA-circRNA

pairs (Figure 6E and Supplemental Tables 10 and 11). Among

the 10 DE miRNAs, eight had noncoding RNA targets in

addition to the mRNA targets, suggesting RNAs as potential

sponges or decoys to fine-tune the function of miRNAs. Notably,

one miRNAmay target multiple targets from the same or different

RNA types, whereas one mRNA, lncRNA, or circRNA can be tar-

geted by several miRNAs. Among the 10 DE miRNAs, miR482f

had the greatest number of predicted targets, including 65

mRNAs, four lncRNAs, and four circRNAs. One of the circRNAs

(SL3.0ch06:2 043 151|2 046 391) showed interaction with two

miRNAs (miR482e-5p and miRnovel22), suggesting a pleiotropic

role by binding multiple miRNAs to regulate the expression of a

large number of mRNAs. Taken together, these data demonstrate

that the ceRNA network of noncoding RNAs plays a significant

role in AMSby connecting symbiotic genes into a highly regulated

network.
Construction of a tomato symbiotic transcriptome
database

To make the RNAome data obtained in this study accessible to

researchers in the symbiotic field, a tomato symbiotic transcrip-

tome database (TSTD, https://efg.nju.edu.cn/TSTD/) was estab-

lished (Figure 7). The database not only collects the expression

data of protein-coding and non-coding genes from AMF colo-

nized and uncolonized tomato roots but also provides the ortho-

logs of tomato protein-coding genes in 15 other plants from basal

angiosperm, dicot, monocot, magnoliids, and ceratophyllum lin-

eages. Notably, the expression data of tomato orthologous genes

from seven other AMS hosts were also included in the database
(D) The representative GO terms of target genes of DE miRNAs.

(E)An example showing that the gene Solyc12g006190was predicted to be tar

could not be predicted as a target gene using the reference annotation. His

samples.
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to assist in online comparative analysis and find conserved,

cross-species AMS-induced genes.

The major functions of the database include: (1) browsing AMS-

induced tomato protein-coding genes and noncoding RNAs, (2)

searching the tomato protein-coding genes by the BLAST pro-

gram with a protein sequence to obtain the expression patterns

of homologous genes, (3) searching for orthologs across 16 an-

giosperms and their AMS-induced expression patterns using a

gene of interest, (4) retrieving cross-species shared AMS-

induced orthogroups by choosing species of interest, and (5)

batch downloading datasets of interest.
DISCUSSION

Recognizing core and accessory symbiotic genes by
expression and evolutionary features suggests the
continuous evolution of the angiosperm AMS-
responsive network

The colonization of the terrestrial environment by plants was facil-

itated by an ancient mutualism with AMF. In the present study, a

comparative transcriptomic analysis of tomato, along with seven

AMS host plants from the angiosperm monocot and dicot line-

ages, revealed 24 conserved AMS-induced gene orthogroups

(Figure 3A). This result supports the concept of an ancient and

highly conserved symbiotic pathway (Radhakrishnan et al.,

2020; Rich et al., 2021). Notably, these orthogroups not only

included several known AMS regulation genes, including SbtM1

(Takeda et al., 2009), RAD1 (Xue et al., 2015), RAM1 (Gobbato

et al., 2012; Park et al., 2015), RAM2 (Bravo et al., 2017; Jiang

et al., 2017; Luginbuehl et al., 2017), WRI5a (Jiang et al., 2018),

and ARK1 (Roth et al., 2018), but also revealed 18 novel

orthogroups that may be involved in AMS regulation. Among

them, genes from seven orthogroups encode proteins with the

same domain with known symbiotic genes MAX1, CERK1,

GLP1, and Bcp1a/b (Paradi et al., 2010; Takeda et al., 2011;

Carotenuto et al., 2017; Zhang et al., 2018), suggesting that

these AMS-responsive candidates may be involved in symbiotic

pathways similar to their paralogs with known functions. The re-

maining orthogroups did not encode similar domains with known

symbiotic genes. The functional annotation revealed that several

of them are transcription factors and enzymes that utilize different

substrates (Figure 3B). Functional characterization of genes in

these orthogroups may help to identify novel cross-species,

conserved AMS-responsive modules. Four of the newly identified

orthogroups, three encoding DUF538, DUF4228, and F-box/

kelch-repeat plant domains, and one annotated as a taurine

catabolism dioxygenase, are notable because of their absence

in all non-AMS host plants (Figure 3B). This evolutionary pattern

has been observed in RAD1 (Xue et al., 2015) and RAM1 (Park

et al., 2015), and has been used as a criterion to mine for new

AMS regulating genes (Bravo et al., 2016). This suggests that

these genes in the four orthogroups are strong candidates for

AMS regulation. Elucidating the role of genes from the above
geted bymiR482e-5p at the 30 UTRwhen using updated annotations, but it

togram showing the TPM of the Solyc12g006190 gene in AIR and ANR

thor(s).
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18 orthogroups in AMS regulation would extend the gene list of

the AMS core pathway that is shared by angiosperms.

Apart from the core symbiotic genes with conservative roles in

AMS regulation across different species, there are also genes

involved in AMS regulation in one species but are absent from

or have lost their function in other AMS-host species. For

example,MIG1 is induced by AMF fungi inoculation and can con-

trol root cortical cell expansion by intersecting withDELLA1 in the

dicot species M. truncatula (Heck et al., 2016; Seemann et al.,

2021). However, its ortholog is absent in the monocot, rice.

Moreover, Radhakrishnan et al. (2020) surveyed >30 genes with

symbiotic functions across land plant species and found that

more than half were absent from at least one AMS host

species. These results suggest that some of the symbiotic

genes may have accessory roles in AMS regulation, and

functional deficiency of these genes can be compensated for

by the evolution of an alternative pathway or through the

modulation of the preexisting pathway in the host plants. In this

study, 115 orthogroups that contain AMS-induced genes from

at least five of the eight AMS host species were identified

(Figure 3A), suggesting that a large number of accessory

symbiotic genes may exist in the AMS regulatory network, and

thus indicating that the AMS-responsive network is undergoing

continuous evolution in angiosperms.

Notably, among the accessory orthogroups, seven have genes

that were specifically induced by AMS in all six dicots but were

absent from or showed no induction in expression in

monocots (Figure 3B). All but one of these orthogroups are

present in the genome of the basal angiosperm, Amborella

trichopoda (Supplemental Table 6), suggesting that the AMS-

responsive network may have been reshaped in the monocot

lineage after its separation from the dicot lineage through

loss of some ancestral symbiotic genes. Monocot and dicot

species have dramatic differences in root structure (Smith

and De Smet, 2012). The divergence of the AMS-responsive

network between monocot and dicot species thus may be a

result of adaptive evolution of plants to fine-tune this symbiotic

relationship between the two partners. A recent transcriptomic

study of Poncirus trifoliata upon AMF inoculation revealed

fewer AMS-responsive genes when compared to other herba-

ceous plants (An et al., 2018), suggesting that root structure

variation may have a role in the evolution of AMS-responsive

networks. This study presents a significant number of

candidates to extend the core symbiotic gene list and

proposes that the continuous evolution of accessory

symbiotic genes in angiosperms has reshaped the AMS-

responsive network during speciation.
An integrated map of AMS-induced RNAome landscape
suggests sophisticated RNA layer AMS regulation

While the post-transcriptional regulation of gene expression has

been documented in many biological processes in plants

(Laloum et al., 2018; Szweykowska-Kulinska and Jarmolowski,
(D) Heatmap of the circRNAs and their parental gene expression.

(E) A competing endogenous RNA network of tomato during AMS. Different t

and downregulation between AIR and ANR samples are indicated by differen

cated by colored lines.
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2018), its role in AMS has been less well explored. The Micro

Tom tomato was used as a model to uncover the RNAome

reconfiguration induced by AMS to elucidate the RNA layer

regulation of AMS. Although a reference genome for tomato is

available (Tomato Genome, 2012), and several previous studies

have reported on tomato transcriptomics during AMS

(Sugimura and Saito, 2017; Ho-Plagaro et al., 2019; Tominaga

et al., 2022), a global model on the role of non-coding

RNA function during tomato AMS is still lacking. The results

from this in-depth, combinatorial RNA-seq study of AIR and

ANR samples presented here not only significantly improved

the annotation of the tomato genome, but also provided a more

comprehensive understanding of AMS-induced protein-coding

genes (Supplemental Figures 2 and 3). Finally, it provided an in-

depth analysis of non-coding RNA species affecting AMS gene

regulation including 140 miRNAs, 5227 lncRNAs, and 958 circR-

NAs. Of these, 45miRNAs, 3207 lncRNAs, and 384 cirRNAs were

newly identified in this study.

The improved annotation of the tomato genome enabled the

elucidation of the complexity of the tomato RNAome and pro-

vided a global landscape of AMS-induced RNAome reconfigura-

tion in tomato. The post-transcriptional processing of pre-

mRNAs contributes significantly to transcriptomic diversity

(Abdel-Ghany et al., 2016). While there are a couple of studies

that have demonstrated the involvement of AS in symbiotic

gene function (Huisman et al., 2016; Pan et al., 2016), the

results from this study are significantly more comprehensive. In

total, it was shown that 1,334 of the AMS-induced genes in to-

mato have multiple transcripts, including 472 genes with only

one AMS-induced transcript (Figure 2D). These results provide

additional in-depth insight into the functional mechanism of AS

of AMS-responsive genes and for the determination of the func-

tional transcripts involved in AMS regulation.

The function of several miRNAs in regulating the formation and

development of arbuscules has been demonstrated experimen-

tally in the legume M. truncatula (Lauressergues et al., 2012;

Bazin et al., 2013; Etemadi et al., 2014; Couzigou et al., 2017).

Recently, miRNAs that are responsive to AMS in non-legume

plants have been reported, including maize and Nicotiana at-

tenuata (Pandey et al., 2018; Xu et al., 2018). The results

presented here showed that 10 miRNAs exhibited significant

differential expression upon AMF inoculation in tomato.

Among them, miR319b was expressed in all three biological

replicates of the AIR samples, but was not detected in the

ANR samples (Figure 5C). Previous studies reported that

miR319 could target TCP genes in Arabidopsis, cotton, and

the common bean (Palatnik et al., 2003; Formey et al., 2015;

Cao et al., 2020). The overexpression of miR319 resulted in a

reduced root length:width ratio and increased rhizobial

inoculation in the rhizobia symbiosis of the common bean

(Martin-Rodriguez et al., 2018). The miR166 is another miRNA

family that has been shown to regulate rhizobia symbiosis by

targeting the class III homeodomain-leucine zipper (HD-ZIP III)

genes (Boualem et al., 2008). This study revealed that two
ypes of RNA are represented by different shapes, while their upregulation

t colors. Predicted interactions between different types of RNAs are indi-

thor(s).



TSTD is a tomato arbuscular mycorrhizal symbiotic
database. The database not only collects the
expression data of protein-coding genes and non-
coding genes from AMF colonized and not colonized
tomato roots, but also provides the orthologs of
tomato protein-coding genes in 15 other plants from
basal angiosperm, dicot, monocot, magnoliids and
Ceratophyllum lineages. The expression data of
tomato orthologous genes from seven other AMS
hosts were also included in the database to assistant
online comparative analysis and finding cross-species
conserved AMS-induced genes.
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Figure 7. Construction of a tomato symbiotic transcriptome database (TSTD).
Representative screenshots of the TSTD interface showing the major functions of TSTD: (A) homepage, (B) gene expression browser, (C) BLAST tomato

genes using protein sequences to obtain its expression, (D) search a gene to obtain its orthologs from 16 angiosperms and the expression fold change

upon AMF colonization, (E) browser AMS-induced orthologroups shared by different combinations of AMS hosts, and (F) batch download datasets of

interest.
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miR166 members, miR166a and miR166d, are downregulated

during AMS. Interestingly, two tomato orthologs of RAD1 and

HA1 were predicted to be the targets of miR166a and

miR166d, respectively. The AMS-induced differential expression

of miR319 and miR166 members suggested that these might be

candidate regulatory miRNAs of AMS in tomato. In addition,

miR399 showed significant downregulation in tomato AIR sam-

ples, as well as a similarly downregulated expression pattern in

maize and N. attenuata upon AMF inoculation (Pandey et al.,

2018; Xu et al., 2018). This suggests that miR399 may be a

conserved miRNA in AMS regulation across monocots and

dicots. Phosphate (Pi) is the most important mineral element

delivered by AMF to the host plant. Previous studies have

shown that miR399 responds to stress induced by low

phosphorus in monocot and dicot plants (Fujii et al., 2005;
Plant Com
Bari et al., 2006; Chiou et al., 2006; Du et al., 2018; Sega

et al., 2021). The results suggest that miR399 may be involved

in AMS regulation by balancing Pi uptake pathways. Three

lncRNAs with low sequence similarity in Arabidopsis and

maize, AtIPS1, AtAT4, and ZmPILNCR1, could inhibit miR399-

directed cleavage of its target gene PHO2 (Franco-Zorrilla

et al., 2007; Du et al., 2018). Interestingly, a lncRNA in tomato

was also predicted to be targeted by miR399 and was

negatively correlated with miR399 in expression upon AMF

inoculation. However, sequence similarity of the lncRNAs from

these species was not found in tomato, suggesting that a

similar regulation mechanism of miRNA399 involving lncRNA

may have independently evolved in the three species. These

examples also support the conserved and continuously

evolving AMS-responsive network from the RNA layer. The
munications 4, 100429, January 9 2023 ª 2022 The Author(s). 13
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results suggest possible important roles for these miRNAs in

AMS, although future experiments are needed to verify the inter-

actions with corresponding target genes.

miRNAs from six families have been shown to respond to AMS in

tomato after being incubated with AMF for 11 weeks (Wu et al.,

2016). Four of them also have members that show differential

expression in the 6-week symbiosis study conducted here, yet

they did not reach the criterion (as described in Materials and

Methods) as AMS responsive. This may be due to differences in

genetic background of the host plants, the number of AMF

spores inoculated, and/or the days after inoculation and plant

growth status used by independent studies. This result could

also be seen when comparing AMS-responsive miRNA reper-

toires among tomato, maize, and N. attenuata (Pandey et al.,

2018; Xu et al., 2018), which only recovered one common AMS-

responsive miRNA. Such a pattern could also be observed in

AMS-induced protein-coding genes, which showed that a

considerable number of tomato AMS-induced genes were only

detected by one of the four studies (Figure 2). Both cases

suggest high dynamic expression of coding and non-coding

RNAs during AMS.

To our knowledge, there are currently no studies that have

experimentally demonstrated the regulatory role of lncRNA

and circRNA in AMS, mainly due to the lack of knowledge of

their existence and expression patterns during AMS. A total

of 587 differentially expressed lncRNAs were found upon

AMF colonization, and the expression of 24 lncRNAs in the

AIR was >1,000-fold higher compared to ANR, suggesting

that these lncRNAs are highly likely to be involved in the regu-

lation of AMS (Supplemental Table 9). Using a circRNA-seq

strategy, >900 high-confidence cirRNAs were identified,

among which were 146 AMS-responsive. Notably, among 55

tomato genes that are orthologs to known genes involved in

AMS, six were predicted to be regulated by DE lncRNA or

DE circRNAs (Supplemental Table 5), suggesting lncRNAs

and circRNAs may be involved in the regulation of some key

genes in the symbiosis-related pathway. The ceRNA hypothe-

sis proposes that lncRNA and circRNA can target the expres-

sion of mRNAs with common miRNA recognition elements by

regulating miRNA activity (Thomson and Dinger, 2016).

Taking these datasets as input, an AMS ceRNA network

including 10 miRNAs, 587 lncRNAs, 146 circRNAs, and 4,247

mRNAs was constructed. These results provide new insights

into the function of non-coding RNAs and complex network

in AMS regulation and can serve as a resource for exploring

the regulation mechanism of AMS-associated protein-coding

genes.

In summary, the present study illustrates RNAome dynamics in

tomato during AMS and provides a global RNAome landscape

for future studies of AMS regulation, encompassing AS, APA,

miRNAs, lncRNAs, and circRNAs. A set of conserved angiosperm

gene orthogroups and numerous accessory orthogroups

induced by AMF in AMS host plants were identified. In addition,

a tomato symbiotic transcriptome database (TSTD) was con-

structed by integrating coding and non-coding AMS-responsive

RNAs. These results will serve as a basic resource for guiding

future functional studies on the AMS-responsive network at

both the protein and RNA levels.
14 Plant Communications 4, 100429, January 9 2023 ª 2022 The Au
MATERIALS AND METHODS

Plant growth and harvesting

Tomato (S. lycopersicum cv. ‘Micro Tom’) seeds were surface-sterilized

and germinated on half-strength Murashige and Skoog (MS) basal me-

dium with sucrose and phytagel at 24�C. After germination, seedlings

were transferred to plastic pots filled with a mixture of sterilized sand/

gravel (1:1 ratio). For mycorrhizal treatment, each plant was inoculated

with 100 spores of R. irregularis (strain DAOM197198) freshly extracted

from carrot hairy root co-cultures and grown in a climate-controlled

growth room with 16 h light at 24�C and 8 h dark at 22�C. Plants were wa-

tered weekly with half-strength Hoagland’s solution containing 20 mM

phosphates. Roots were harvested at six weeks post-inoculation. My-

corrhization rate was calculated as described previously (Mcgonigle

et al., 1990). Briefly, 40–50 root fragments (�1 cm) were placed on a

microscopic slider with 1-cm grids. Greater than 120 intersections of

the roots and grids per slide were observed using a TE2000-Umicroscope

(Nikon, Tokyo, Japan).

Library preparation and RNA-seq

Six root samples, including three AIRs with an AMF colonization rate of

60%–70% and three ANRs, were used for the analysis. Each sample

was composed of roots from two to three plants. Total RNAwas extracted

using TRIzol (Invitrogen, Carlsbad, CA, USA) for each sample. For SMRT-

seq, total RNA from six root samples was pooled together in equal

amounts. The first cDNA strand was synthesized using the SMARTer

PCR cDNA Synthesis Kit (Takara, https://www.takarabio.com/) from puri-

fied polyA(+) RNA. The product was sequenced using SMRT-seq on the

PacBio Sequel platform at Novogene (Beijing, China).

For Illumina sequencing, cDNA libraries were constructed using rRNA-

depleted RNA via a NEBNext Ultra Directional RNA Library Prep Kit for

Illumina (New England Biolabs, Ipswich, MA, USA). For sRNA-seq,

sRNA library preparation was performed using a Small RNA Sample

Prep Kit (Illumina, San Diego, CA, USA). For circRNA-seq, rRNA-depleted

circRNA libraries after RNase R treatment were constructed using

NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England

Biolabs). The libraries (Illumina-seq, 2 3 150 bp; sRNA-seq, 1 3 50 bp;

and circRNA-seq, 2 3 150 bp) were sequenced on the Illumina HiSeq X

platform at Novogene.

PacBio data analysis

PacBio subreads were processed using the SMRT-Link 6.0 software

(http://www.pacb.com/) to generate full-length, non-full-length, and

chimeric reads. Consensus isoforms were identified using the ICE algo-

rithm from full-length non-chimeric (FLNC) sequences and were further

polished with non-full-length reads and subreads to obtain high-quality

isoforms using Quiver. Full-length reads were further error-corrected us-

ing LoRDEC v0.9 (Salmela and Rivals, 2014) together with Illumina short

reads. The corrected consensus transcripts were then mapped to the

S. lycopersicum reference genome (https://phytozome.jgi.doe.gov/pz/

portal.html) using GMAP v2020-06-30 (Wu and Watanabe, 2005). The

transcripts located in certain gene loci were then collapsed into non-

redundant consensus isoforms using collapse_isoforms_by_sam.py

from the Cup_Cake v12.2.0 package (https://github.com/Magdoll/

cDNA_Cupcake).

Illumina data analysis

Clean reads from this study and public databases (Sugimura and Saito,

2017; Ho-Plagaro et al., 2019; Tominaga et al., 2022) were aligned to

the S. lycopersicum reference genome using Hisat2 v2.1.0 (Kim et al.,

2019). The obtained transcripts were assembled by using StringTie

v1.2.3 with the parameters ‘-p 8 -j 5 -a 20 -f 0.8’ (Pertea et al., 2015).

RSEM was used to calculate the isoform level expression in terms of

TPM (transcripts per million) with the parameters ‘–bowtie2 –paired-end

-no-bam-output’ (Li and Dewey, 2011). The read counts were
thor(s).

https://www.takarabio.com/
http://www.pacb.com/
https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://github.com/Magdoll/cDNA_Cupcake
https://github.com/Magdoll/cDNA_Cupcake
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processed with featureCounts v2.0.1 to quantify gene expression and

normalized using the trimmed mean of M-values (TMM) method

(Robinson and Oshlack, 2010; Liao et al., 2014). The different

expression levels of genes were assessed using the EdgeR package

based on FDR-adjusted P < 0.05 and |log2fc|>1 (Robinson et al., 2010).

The GO term enrichment was performed using ShinyGO v0.76 with default

parameters (Ge et al., 2020).

Identification of novel protein-coding genes

Gene loci from the PacBio and Illumina mapping results were compared

with the annotations from the tomato reference genome by using gffcom-

pare v0.12.1 (Pertea and Pertea, 2020). The loci that did not overlap with

an annotated gene in the reference genome and with at least one

transcript with an open reading frame (ORF) length >100 amino acids

were considered to be novel protein-coding genes. HMMscan v3.3.2

was used to predict the domains encoded by the transcripts of novel

protein-coding genes against the Pfam-A database (Finn et al., 2014).

Peptides of tomato proteomic data retrieved from PRIDE Archive data-

base (Proteomics identifications database, https://www.ebi.ac.uk/pride/

archive/) were mapped to protein sequences encoded by the novel genes

to validate their translation (Perez-Riverol et al., 2022).

Construction of gene orthologous relationships among
angiosperms

The gene orthogroups for 16 angiosperm species (Supplemental

Table 12), including eight species with available expression data during

arbuscular mycorrhiza symbiosis, were analyzed using OrthoFinder

v2.5.2 with the parameter ‘-M msa’ (Emms and Kelly, 2019), as

described by Rich et al. (2021).

Characterization of AS and APA events

The GTF annotation file assembled from the Illumina and PacBio data was

used for the identification of AS events using the AStalavista v3.2 tool with

the parameter ‘-t asta’ (Foissac and Sammeth, 2007). The TAPIS v1.2.1

pipeline was applied to detect APA sites (Abdel-Ghany et al., 2016).

MEME-chip v5.4.1 (https://meme-suite.org/meme/tools/meme-chip)

analysis based on upstream sequences of poly(A) siteswas used to detect

poly(A) sequence signals (Machanick and Bailey, 2011).

Identification of lncRNAs

CPC2 v0.1, CNCI v2, PLEK v1.2, and PFAM v32 were used for predicting

the protein-coding potential of transcripts generated from the Illumina and

SMRT data (Kong et al., 2007; Sun et al., 2013; Finn et al., 2014; Li et al.,

2014). The criteria for candidate lncRNAs were set as follows: (1) the

longest representative transcript had no ORF >100 amino acids, and (2)

its nucleotide sequence was at least 200 nt.

miRNA data analysis

miRNAs were identified using miRador (https://github.com/rkweku/

miRador) with the options ‘gap = 6, match = 3, mismatch = -4, threshold =

40, maxRepLen = 300, organism = Sly’ (Hammond et al., 2021). Candidate

miRNAs were annotated as known or novel miRNAs by referencing the

latest miRBase v22.1 (Kozomara et al., 2019). The miRNAs with |log2fc|

>1 and p < 0.05 were considered to be AMS-responsive miRNAs. The

psRNATarget v2 was used to predict miRNA targets with default

parameters. The ceRNA network was visualized using Cytoscape v3.8.2.

CircRNA data analysis

Clean reads weremapped to the S. lycopersicum reference genome using

BWA-MEM v0.7.12 software with the parameter ‘-T 19’ (Li and Durbin,

2009; Langmead and Salzberg, 2012). CIRI2 (v2.0.6), CIRIexplorer2

(v2.4.0), and Find_ciric (v1.2) were combined to detect potential back-

splice sites (Memczak et al., 2013; Zhang et al., 2016; Gao et al., 2018).

Reconstructions of full-length circRNAs were achieved using CIRI-full

(Zheng et al., 2019).
Plant Com
Quantitative real-time-PCR

The expression of miRNAs was measured by quantitative real-time PCR.

cDNA synthesis was performed using a stem-loop primer with the miRNA

1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). Quantitative

real-time–PCR was performed using a CFX96 real-time system (Bio-

Rad, Hercules, CA, USA) with the miRNA Universal SYBR qPCR Master

Mix (Vazyme). The tomato U6 gene was used as an internal control. All

of the primers used are listed in Supplemental Table S13.

Data and code availability

Raw sequences generated in this study are available in the NCBI SRA

database under the BioProject accession PRJNA773605, and the China

National Genomics Data Center (https://ngdc.cncb.ac.cn) under the

BioProject accession PRJCA011616. Other data supporting the findings

of this article are available in the supplemental information.
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Fort, S., Cottaz, S., Bécard, G., Niebel, A., Roux, C., and Combier,

J.P. (2012). The microRNA miR171h modulates arbuscular

mycorrhizal colonization of Medicago truncatula by targeting NSP2.

Plant J. 72:512–522. https://doi.org/10.1111/j.1365-313X.2012.

05099.x.
Plant Com
Li, A., Zhang, J., and Zhou, Z. (2014). PLEK: a tool for predicting long

non-coding RNAs and messenger RNAs based on an improved

k-mer scheme. BMC Bioinf. 15:311. https://doi.org/10.1186/1471-

2105-15-311.

Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification

from RNA-Seq data with or without a reference genome. BMC Bioinf.

12:323. https://doi.org/10.1186/1471-2105-12-323.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.

org/10.1093/bioinformatics/btp324.

Li, R., Jin, J., Xu, J., Wang, L., Li, J., Lou, Y., and Baldwin, I.T. (2021).

Long non-coding RNAs associate with jasmonate-mediated plant

defence against herbivores. Plant Cell Environ. 44:982–994. https://

doi.org/10.1111/pce.13952.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient

general purpose program for assigning sequence reads to genomic

features. Bioinformatics 30:923–930. https://doi.org/10.1093/

bioinformatics/btt656.

Liu, J., Liu, J., Liu, J., Cui, M., Huang, Y., Tian, Y., Chen, A., and Xu, G.

(2019). The potassium transporter SlHAK10 is involved in mycorrhizal

potassium uptake. Plant Physiol. 180:465–479. https://doi.org/10.

1104/pp.18.01533.

Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H.,

Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D., and

Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi

are synthesized by the host plant. Science 356:1175–1178. https://

doi.org/10.1126/science.aan0081.

Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of

large DNA datasets. Bioinformatics 27:1696–1697. https://doi.org/10.

1093/bioinformatics/btr189.

MacLean, A.M., Bravo, A., and Harrison, M.J. (2017). Plant signaling

and metabolic pathways enabling arbuscular mycorrhizal symbiosis.

Plant Cell 29:2319–2335. https://doi.org/10.1105/tpc.17.00555.
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