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Abstract
Background: Prostate cancer remains the second deadliest cancer for Ameri-
can men despite clinical advancements.Currently,magnetic resonance imaging
(MRI) is considered the most sensitive non-invasive imaging modality that
enables visualization, detection, and localization of prostate cancer, and is
increasingly used to guide targeted biopsies for prostate cancer diagnosis.How-
ever, its utility remains limited due to high rates of false positives and false
negatives as well as low inter-reader agreements.
Purpose: Machine learning methods to detect and localize cancer on prostate
MRI can help standardize radiologist interpretations. However, existing machine
learning methods vary not only in model architecture, but also in the ground
truth labeling strategies used for model training. We compare different labeling
strategies and the effects they have on the performance of different machine
learning models for prostate cancer detection on MRI.
Methods: Four different deep learning models (SPCNet, U-Net, branched U-
Net, and DeepLabv3+) were trained to detect prostate cancer on MRI using
75 patients with radical prostatectomy, and evaluated using 40 patients with
radical prostatectomy and 275 patients with targeted biopsy. Each deep learn-
ing model was trained with four different label types: pathology-confirmed
radiologist labels, pathologist labels on whole-mount histopathology images,
and lesion-level and pixel-level digital pathologist labels (previously validated
deep learning algorithm on histopathology images to predict pixel-level Glea-
son patterns) on whole-mount histopathology images. The pathologist and
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digital pathologist labels (collectively referred to as pathology labels) were
mapped onto pre-operative MRI using an automated MRI-histopathology
registration platform.
Results: Radiologist labels missed cancers (ROC-AUC: 0.75-0.84), had lower
lesion volumes (˜68% of pathology lesions), and lower Dice overlaps (0.24-
0.28) when compared with pathology labels. Consequently, machine learning
models trained with radiologist labels also showed inferior performance com-
pared to models trained with pathology labels.Digital pathologist labels showed
high concordance with pathologist labels of cancer (lesion ROC-AUC: 0.97-1,
lesion Dice: 0.75-0.93). Machine learning models trained with digital patholo-
gist labels had the highest lesion detection rates in the radical prostatectomy
cohort (aggressive lesion ROC-AUC: 0.91-0.94), and had generalizable and
comparable performance to pathologist label-trained-models in the targeted
biopsy cohort (aggressive lesion ROC-AUC:0.87-0.88), irrespective of the deep
learning architecture.Moreover,machine learning models trained with pixel-level
digital pathologist labels were able to selectively identify aggressive and indo-
lent cancer components in mixed lesions on MRI, which is not possible with any
human-annotated label type.
Conclusions: Machine learning models for prostate MRI interpretation that are
trained with digital pathologist labels showed higher or comparable performance
with pathologist label-trained models in both radical prostatectomy and targeted
biopsy cohort. Digital pathologist labels can reduce challenges associated with
human annotations, including labor, time, inter- and intra-reader variability, and
can help bridge the gap between prostate radiology and pathology by enabling
the training of reliable machine learning models to detect and localize prostate
cancer on MRI.
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1 INTRODUCTION

One in eight American men will be diagnosed in their
lifetime with prostate cancer as per estimates from the
American Cancer Society.1 In spite of clinical advances,
prostate cancer remains the second deadliest cancer
among men in the United States.1 Recent studies indi-
cate that magnetic resonance imaging (MRI) greatly
improves prostate cancer detection.2,3 MRI–ultrasound
fusion biopsies, used to target lesions outlined on MRI
by radiologists, improve detection of clinically signifi-
cant prostate cancer over ultrasound-guided systematic
biopsies alone2,4–7 As such, MRI is increasingly used
to detect and localize prostate cancer, to guide targeted
biopsies and in treatment planning.8

Despite the potential of MRI in detecting prostate can-
cer, subtle differences between benign and cancerous
tissue on MRI lead to false negatives,2,4 false positives2

and high inter-reader variability9–11 among radiologists.
Radiologist-assigned Prostate Imaging-Reporting and
Data System (PI-RADS) scores also suffer from wide
variability, leading to missing or over-calling aggressive
cancers.12 Urologists and radiologists often recommend
biopsy despite relatively low suspicion for cancer due
to concerns for missed aggressive cancers. Moreover,

MRI-guided targeted biopsies are often supplemented
with systematic biopsies, increasing morbidity (infection,
bleeding, pain), as well as resulting in over-treatment
of indolent cancers. Accurate detection, localization,
and aggressiveness characterization of all lesions on
MRI can potentially assist clinicians in prostate can-
cer care by (1) guiding targeted biopsies to aggressive
cancer, while reducing unnecessary biopsies for indo-
lent cancers or benign regions of the prostate, and (2)
deciding treatment planning based on location, extent,
and aggressiveness of all lesions present (e.g., radical
prostatectomy vs. focal therapy vs. active surveillance).

In order to standardize radiologist interpretations of
prostate MRI, several machine learning-based lesion
detection methods have been developed to detect
cancer, localize cancer, and characterize cancer aggres-
siveness using prostate MR images.As the goal of these
automated lesion detection methods is to enable auto-
matic evaluation of an entire MRI exam to provide a
physician with outlines of all areas that are suspicious
for cancer, these methods need to be trained with accu-
rate labels with precise cancer location and extent.Prior
machine learning methods for prostate cancer detec-
tion include traditional machine learning13–16 as well as
deep learning models using MRI.17–22 The prior studies
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TABLE 1 Summary of prior machine learning methods for prostate cancer detection and localization on MRI

Prior study Method Label type
Pathology
confirmation Pathology type

Mapping from pathology to MRI, if
applicable

Saha et al.22 DL (U-Net variant +
residual classifier)

Radiologist No N/A N/A

Yu et al.23 DL (ResNet + Panoptic
FPN + Mask R-CNN
+ Attention module)

Radiologist No N/A N/A

Hosseinzadeh
et al.24

DL (U-Net variant) Radiologist No N/A N/A

McGarry et al.16 TML (Radiomics, Otsu
thresholding)

Pathologist Yes RP Semi-automated
MRI-histopathology registration

De Vente et al.41 DL (U-Net variant) Semi-automated
region growing
from targeted
biopsy centroid

Yes Targeted biopsy Biopsy-core coordinates

Sanyal et al.19 DL (U-Net) Radiologist Yes Targeted biopsy Pathology reports

Sumathipala et al.17 DL (SPCNet variant) Radiologist Yes RP and targeted
biopsy

Cognitive registration or manually
matching

Cao et al.18 DL (DeepLabV3+) Radiologist Yes RP Cognitive registration or manually
matching

Bhattacharya et al.20 DL (SPCNet variant) Pathologist Yes RP Automated MRI-histopathology
registration

Seetharaman
et al.21

DL (SPCNet) Digital pathologist Yes RP Automated MRI-histopathology
registration

Bhattacharya et al.26 DL (SPCNet variant) Digital pathologist Yes RP Automated MRI-histopathology
registration

Abbreviations:DL,deep learning;FPN, feature pyramid network;MRI,magnetic resonance imaging;PCa,prostate cancer;RP, radical prostatectomy;SPCNet,Stanford
prostate cancer network; TML, traditional machine learning; N/A, not applicable.

for automated prostate cancer detection and localization
on MRI not only differ in the models used,but also in the
ground truth labels used to train their models (Table 1).

The variety of labels used to train existing machine
learning methods of prostate cancer detection using
MRI include:

1. Radiologist outlines of PI-RADS 3 or above lesions,
without pathology confirmation22–24;

2. Radiologist outlines with pathology confirmation from
targeted biopsy19;

3. Radiologist outlines with pathology confirmation from
post-operative whole-mount histopathology images
of radical prostatectomy patients through cognitive
registration or manual matching17,18;

4. Pathologist outlines on whole-mount histopathology
images mapped onto pre-operative MRI through
semi-automatic or manual registration16;

5. Pathologist outlines on whole-mount histopathol-
ogy images mapped onto pre-operative MRI using
automated MRI-histopathology registration20;

6. Gleason pattern labels on whole-mount histopathol-
ogy images derived from a previously validated
deep learning algorithm25 mapped onto MRI through
automated MRI-histopathology registration21,26;

Although different label types have been used in prior
studies, no prior study investigated the comparative per-

formance of the different label types to ascertain which
labels provide the optimum training to machine learning
methods applied to prostate MR images. All the label
types used in prior studies have advantages as well as
disadvantages. First, radiologist outlines without pathol-
ogy confirmation are easier to obtain in large numbers
from routine clinical care, but they include many false
positives and may also miss cancers. Prior studies have
shown that the false positive rate of radiologist out-
lines with PI-RADS scores ≥3 can vary from 32% to
50%,12 depending on the experience of the radiologist.
Moreover, radiologists can miss up to 12% of aggres-
sive cancers during screening and 34% of aggressive
cancers in men undergoing radical prostatectomy.2,4

Second, radiologist outlines with pathology confirmation
(through targeted biopsy) may still miss MRI-invisible or
hardly visible lesions and underestimate tumor extent.27

Third, cognitive registration or manual matching with
post-operative whole-mount histopathology images of
radical prostatectomy patients provides more accu-
rate pixel-level cancer mapping from histopathology
images to pre-operative MRI, but the cancer extent
is still underestimated,27 and it is still challenging to
outline the ˜20% of tumors that are hardly visible or
invisible on MRI.10 Fourth, pathologist labels mapped
through registration onto MRI are the most accurate,
but manual and semi-automatic registration are labor
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intensive, time consuming, and require highly skilled
experts in both radiology and pathology.28–30 Fifth,
pathologist labels mapped onto MRI using automated
MRI-histopathology31–34 registration can alleviate the
challenges associated with manual or semi-automatic
registration approaches, but it is still challenging for
human pathologists to annotate large datasets of whole-
mount histopathology images with pixel-level annota-
tions of cancer and Gleason patterns to train machine
learning models on prostate MRI. Also, there can be
variability in inter- and intra-pathologist assignment of
Gleason grade groups.

In this pilot study, we compare the different labeling
strategies and analyze their effects in training machine
learning methods for prostate cancer detection on MRI.
Since a variety of machine learning model architectures
have been used in existing studies, for simplicity of dis-
cussion, in this study, we use the general term “digital
radiologists” to refer to all deep learning models that are
applied to prostate MR images to detect and localize
cancer. Similarly, for simplicity, we use the term “dig-
ital pathologists” to refer to all deep learning models
applied to prostate histopathology images for detect-
ing cancer and assigning Gleason patterns. We use the
term “pathology labels” to collectively refer to labels on
whole-mount prostate histopathology images, derived
either through human or digital pathologist annotations.
To better understand the optimum approach for training
reliable machine learning methods for prostate cancer, in
this study, we seek answers to the following questions:
(1) What effect does each label type have on the dig-
ital radiologist model they train? (2) What is the best
way to train digital radiologist models? (3) Can digital
pathologists be used to train reliable digital radiologists?

We hypothesize that digital pathologist annotations
with pixel-level histologic grade labels on whole-mount
histopathology images,when mapped onto MRI through
automated MRI-histopathology registration can (a) alle-
viate challenges associated with radiologist and pathol-
ogist labels, and (b) provide the most reliable digital
radiologists for selective identification of aggressive and
indolent prostate cancers. Recent studies have shown
that digital pathologists have very high accuracy in Glea-
son grading on prostate histopathology images,and can
significantly improve Gleason grading of pathologists by
reducing variability in inter- and intra-pathologist Glea-
son grade group assignment.25,35,36 Our prior SPCNet21

and CorrSigNIA26 studies are the only studies that used
digital pathologist labels for training digital radiologists.

In order to study the effects of different labeling strate-
gies on digital radiologists,we trained four different deep
learning networks (SPCNet,21 U-Net,19,37 branched U-
Net,26 and DeepLabv3+18) commonly used for prostate
cancer detection and localization in prior studies. For
each network architecture, we trained four different dig-
ital radiologist models using 75 radical prostatectomy
patients with four different types of labels: pathology-

confirmed radiologist labels (Rad), pathologist labels
mapped to MRI through automated registration (Path),
and two variants of digital pathologist labels mapped
to MRI using automated registration, lesion-level dig-
ital pathologist labels (DPath

Lesion) and pixel-level digital
pathologist labels (DPath

Pixel ). Each label type selectively
identified aggressive and indolent cancer on either a
lesion level (Rad,Path,DPath

Lesion) or a pixel level (DPath
Pixel ).

Selective identification on a lesion level enables identi-
fying entire lesions as aggressive or indolent, whereas
selective identification on a pixel level enables iden-
tifying and localizing aggressive and indolent cancer
components in mixed lesions. We evaluated our trained
digital radiologists in two different patient cohorts (N =

315), including 40 men with radical prostatectomy and
275 men with targeted biopsies.Evaluation on two differ-
ent cohorts enabled (1) comparing the effect of different
labeling strategies on digital radiologist performance,
and (2) testing the generalizability of the different mod-
els. Moreover, to ascertain if the effect of the labels is
independent of the model type used, we used four dif-
ferent deep learning algorithms to train and evaluate
our digital radiologists (SPCNet,21 U-Net,19,37 branched
U-Net, and DeepLabv3+18).

To summarize, the novel contributions of our study
are:

1. We analyzed different labeling strategies to identify
the best way to train digital radiologists for selec-
tive identification of aggressive and indolent prostate
cancer using MRI.

2. We assessed the performance of digital patholo-
gist labels and of the digital radiologists trained with
these labels in comparison with human radiologist
and pathologist labels.

3. We study whether the effect of different labeling
strategies is independent of the model architecture.

4. We study whether the effect of different label-
ing strategies is consistent across different patient
populations with different distributions of cancer.

2 MATERIALS AND METHODS

2.1 Data description

All data for this IRB-approved retrospective chart review
study was collected at Stanford University Medical Cen-
ter. Two independent cohorts of subjects were used for
this study.Cohort C1 comprised 115 patients who under-
went radical prostatectomy, while cohort C2 included
275 men with or without prostate cancer who under-
went MRI-guided targeted biopsies for PI-RADS scores
≥3 lesions.

Subjects in cohort C1 had a pre-operative MRI prior
to radical prostatectomy, and post-operative whole-
mount histopathology images of the entire prostate.The
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median and inter-quartile range for the number of days
between the pre-operative MRI and radical prostatec-
tomy in cohort C1 were 90.25 and 68.8, respectively,
while the mean and standard deviation were 103.3 and
82.2 days, respectively. The general slow growth of
prostate cancer38–40 justifies using registration between
MRI and histopathology images, even when the MRI is
performed several months before surgery.

Subjects in cohort C2 had an MRI prior to biopsy
which was used to guide the MRI-transrectal TRUS
fusion biopsy procedure.

2.1.1 Magnetic resonance imaging

For subjects in both cohorts,multi-parametric MRI scans
were acquired using 3.0T GE MRI scanners with surface
coils and without an endorectal coil. Axial T2-weighted
(T2w) MRI scans and apparent diffusion coefficient
(ADC) maps derived from diffusion weighted images
were used in this study (MRI acquisition characteristics
are detailed in Table S1).

2.1.2 Histopathology images

For patients in cohort C1, the prostates removed
via radical prostatectomy were sectioned into slices
using patient-specific 3D-printed molds generated from
the pre-operative MRI. The patient-specific 3D-printed
molds enabled sectioning of the prostate into slices
that were in the same plane as the T2w scans and
had the same distance between slices. Each prostate
histopathology image had a 4 μm thickness. After sec-
tioning, the whole-mount prostate slices were stained
with hematoxylin and eosin (H&E), and scanned into a
digital format with 20× magnification,26,31 resulting in
an in plane X–Y pixel size of 0.5 μm. For patients in
cohort C2, biopsy samples were stained with H&E and
subjected to pathological evaluation.

Train–test splits: The machine learning models were
trained using 75 patients from cohort C1 in a five-fold
cross-validation setting. The remaining 40 patients from
cohort C1 and the entire cohort C2 (275 men) were used
for independent testing of the models.

2.2 Labels

2.2.1 Cancer and histologic grade labels

Cohort C1:Patients in cohort C1 had four different types
of cancer labels. Each label type annotated each pixel
of the prostate into one of the three classes: (1) normal
tissue, (2) indolent cancer, and (3) aggressive cancer.

A previously validated deep learning model on
histopathology images (henceforth called the “digital

pathologist”)25 was used to predict Gleason patterns
for each pixel of the prostate. Gleason pattern 3
predicted by the digital pathologist was considered
indolent cancer, while Gleason patterns 4 and above
were considered aggressive cancer. Regions of over-
lapping Gleason patterns 3 and 4 were considered
aggressive cancer.

Figure 1 shows the flowchart for obtaining the differ-
ent label types, described below:

1. Rad : Experienced radiologists outlined suspicious
lesions on MR images prior to biopsy, and assigned
PI-RADS scores to each lesion as part of routine
clinical care.These radiologist-annotated lesions with
PI-RADS scores ≥3, after pathology confirmation
were considered as Rad labels (Figure 2c). The
site of the lesion suspicious for cancer was outlined
on each MRI by one experienced radiologist from
the team of eleven board-certified radiologists in our
institution,experience ranging between one and forty
years of post-residency, median years).
Whole-mount histopathology specimens and
histologic grade labels predicted by the digital
pathologist25 on these specimens were used to
confirm whether lesions outlined by radiologists
corresponded to aggressive cancer (see “pathology
confirmation of radiologist labels” below). The pixel-
level Gleason patterns or histologic grade labels
on histopathology images25 predicted by the digital
pathologist were mapped onto pre-operative MRI
using an MRI-histopathology registration31 platform
(see Section 2.3). The digital pathologist predictions
inside each radiologist annotation were used to
derive pathology confirmations for that lesion. If
a radiologist outline contained at least 1% digital
pathologist-predicted aggressive pixels, the annota-
tion was considered as an aggressive lesion. If the
radiologist outline had less than 1% aggressive pix-
els, but had at least 1% digital pathologist-predicted
indolent pixels, it was considered as an indolent
lesion. If a radiologist outline had less than 1%
aggressive or indolent pixels, it was considered as
benign tissue.
The 1% of lesion volume threshold for labeling
lesions as aggressive or indolent was decided
based on the resampled and registered MRI and
histopathology volumes (i.e., X–Y size of 224 ×

224, with pixel sizes of 0.29 × 0.29 mm2). This
1% threshold was selected to ensure that aggres-
sive cancer was not missed. Our prior study21 had
experimented with the threshold value for defining
aggressive lesions for cohort C1, and 1% being the
more stringent threshold for aggressive cancers was
chosen in this study.

2. Path:An expert pathologist (C.A.K.with >10 years of
experience) outlined the extent of cancer on whole-
mount histopathology images. These pathologist
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F IGURE 1 Radiologists, pathologists, or digital pathologists are used to create labels on MRI and serve to train deep learning models to
detect cancer and aggressive cancer on MRI. The pathology labels (Path,DPath

Lesion, and 
DPath
Pixel ) are derived through annotations on whole-mount

histopathology images and are mapped onto MRI through MRI-histopathology registration. The pixel-level digital pathologist label (DPath
Pixel )

enables identifying aggressive and indolent cancer components in mixed lesions, unlike the other label types

annotations were converted to 3D lesions using
morphological processing (see Section 2.3). The
digital pathologist-derived Gleason patterns25 were
used to label each pathologist-annotated lesion into
aggressive or indolent, in a way similar to the
radiologist labels (at least 1% aggressive pixels
within the pathologist outline to be considered as
an aggressive lesion). The pathologist labels were
mapped onto pre-operative MRI using the MRI-
histopathology registration platform31 (Figure 2d).

3. 
DPath
Lesion: The pixel-level histologic grade labels from

the digital pathologist were converted into lesion-level
annotations through morphological processing (see
Section 2.3) and by considering the percentage of
aggressive cancer pixels within a lesion outline, in a
way similar to Rad and Path. These lesion-level dig-
ital pathologist labels were then mapped onto MRI
using the MRI-histopathology registration platform31

(Figure 2e).

4. 
DPath
Pixel : The pixel-level histologic grade labels from

the digital pathologist was used to derive pixel-
level aggressive and indolent labels for the entire
prostate (Figure 2f). Unlike any other label type,
pixel-level digital pathologist labels 

DPath
Pixel selec-

tively labeled aggressive and indolent components of
mixed lesions, instead of labeling the entire lesion as
aggressive or indolent.

Pathology confirmation of radiologist labels:
Our study relied on the digital pathologist25 aggres-

sive and indolent labels on whole-mount histopathology
images to provide pathology confirmation and type
for the radiologist lesions in cohort C1. Other prior
studies41 have used histopathology information from
targeted biopsy, yet we preferred the more accurate
approach of using whole-mount images for pathology
confirmation. Moreover, some of our patients lacked
targeted biopsy information (i.e., they had systematic
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F IGURE 2 Differences in labeling strategies in a typical patient in cohort C1 test (aggressive cancer—yellow, indolent cancer—green)
showed on (a) T2w images and (b) ADC images. The (c) radiologist labels (Rad) and (d) pathologist labels (Path) are present on some slices
while the (e) lesion-level digital pathologist labels (DPath

Lesion), and (f) pixel-level digital pathologist labels (DPath
Pixel ) exist on all slices. Digital

pathologist labels strongly agree with pathologists while annotating aggressive and indolent cancer components in mixed lesions

biopsy without lesion targeting or biopsies at out-
side institutions), further motivating the use of whole-
mount histopathology images for pathology confir-
mation. Although pathologist-assigned cancer outlines
were available on whole-mount histopathology images
for all patients in cohort C1, pathologist-assigned
Gleason grade labels were unavailable. It is tedious
and impractically time consuming for pathologists to
assign Gleason grade groups to each lesion on the

whole-mount histopathology images. As such, digital
pathologist annotations of Gleason grades provided a
reliable, time- and labor-efficient approach for pathology
confirmation of radiologist labels.

The digital pathologist used in this study was trained
and validated using 1133 prostate needle biopsies on
a patient population from a different institution follow-
ing different scanning protocols than our institution.25

When validated on 700 patients and compared with
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reference standards from three certified pathologists,
the digital pathologist showed high diagnostic concor-
dance (𝜅 = 0.907) between predicted grade group and
the reference standard, and a high correlation coef-
ficient of 0.97 between tumor length measurements
predicted by the digital pathologist and the reference
standard.25 An independent study from our team42 per-
formed external validation of the digital pathologist
model25 on 500 (1 mm2) tiles from 150 whole-mount
prostatectomy specimens from our institution. Consen-
sus from two experienced uropathologists were used
to establish the reference standard, with a third expert
to evaluate discordant cases. Despite being trained on
prostate needle biopsies from a different institution, the
digital pathologist demonstrated high agreement with
expert uropathologists from our institution in distinguish-
ing between benign versus cancerous tissue (𝜅 = 0.927)
and between low risk (benign, Gleason grade group 1,
Gleason grade group 2) versus high risk disease (𝜅 =
0.858) on whole-mount histopathology images. When
these digital pathologist labels are used for labeling MRI
lesions as aggressive or indolent, the errors are much
reduced due to the lower resolution of MRI with respect
to the original high-resolution histopathology images
(0.29 mm × 0.29 mm vs. 0.0005 mm × 0.0005 mm).

In order to study the concordance between pathol-
ogy confirmation from targeted biopsy and the digital
pathologist on whole-mount histopathology images, we
analyzed 69 patients in C1-train that had both targeted
biopsy and digital pathologist confirmations.There were
a total of 89 radiologist-annotated lesions in these
69 patients, and after pathology confirmation these
correspond to 67 of the Rad labels in cohort C1
train (Table 2). We found that the digital pathologist
labels agreed with the targeted biopsy confirmations
in 77.5% (69/89) of the lesions. The digital pathologist
upgraded 11.2% (10/89) of the lesions (benign on tar-
geted biopsy upgraded to indolent/aggressive cancer by
digital pathologist, or indolent cancer on targeted biopsy
upgraded to aggressive cancer by digital pathologist),
and downgraded 11.2% (10/89) of the lesions (indolent
or aggressive on targeted biopsy downgraded to benign
by digital pathologist, or aggressive on targeted biopsy
downgraded to indolent or benign by digital pathologist).
These upgrades could be due to sampling errors on
targeted biopsy. Seven of the ten downgraded lesions
had small proportions of cancer (<5% cancerous tis-
sue) or aggressive cancer (≤15% of Gleason pattern 4
or above in the cancerous tissue) in the targeted biopsy
specimens, and small lesions (<250 mm3 lesion vol-
umes) outlined by pathologist and digital pathologists
on whole-mount histopathology images. The remaining
three downgrades were due to MRI-histopathology reg-
istration errors or missing histopathology tissue from
the whole-mount specimens. Nonetheless, the digital
pathologist labels provide a standardized approach for

pathology confirmation of radiologist annotations in the
absence of targeted biopsy information. The use of
digital pathologist labels for pathology confirmation of
radiologist annotations is also consistent with its use to
label pathologist lesions into aggressive or indolent in
this study.

Cohort C2: Patients in cohort C2 only had pathology-
confirmed radiologist labels Rad. Since all patients
in cohort C2 had targeted biopsy at our institution,
pathology confirmation for the radiologist annotations
in cohort C2 were derived from pathology of targeted
biopsies. Radiologist lesions with targeted biopsy Glea-
son grade group ≥2 were considered as aggressive
lesions, whereas lesions with targeted biopsy Gleason
grade group of 1 were considered indolent lesions.
Radiologist-annotated lesions whose targeted biopsies
were benign, were considered as normal tissue. Table 2
details the number of aggressive, indolent, and cancer-
ous lesions with their mean volumes annotated by each
label type in both cohorts.

2.2.2 Prostate segmentations

Prostate gland segmentations were available on all T2w
MRI slices for all patients in both cohorts. In addition,
prostate gland segmentations were also available on
all histopathology images of cohort C1. Prostate seg-
mentations on all T2w slices were initially performed by
medical students and trainees (with 6+ months expe-
rience in this task) and were carefully reviewed by our
experts (C.A.K.—a pathologist with 14 years experi-
ence, G.A.S.—a urologic oncologist with 13 years of
experience, P.G.—a body MR imaging radiologist with
14 years of experience, and M.R.—an image analytics
expert with 10 years of experience working on prostate
cancer).

2.3 Data preprocessing

2.3.1 MRI and histopathology images

The data preprocessing was similar to our prior
studies,21,26 including (1) registration of the pre-
operative MRI and post-operative histopathology
images using the RAPSODI registration platform31

for cohort C1 (see Section II.A. in the Supporting
Information), (2) manual affine registrations between
T2w and ADC images for cohort C1, (3) cropping and
resampling to have the same pixel size (0.29 mm ×

0.29 mm) and the same X–Y dimensions (224 × 224)
for both cohorts (see Section II.B. in the Supporting
Information), (4) MRI intensity standardization43,44 and
normalization for both cohorts (see Section II.C. in the
Supporting Information).
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TABLE 2 Descriptive statistics of annotations from the different label types. Statistics for number of patients with labels are irrespective of
lesion volume. Lesions with volume ≥250 mm3 were considered in this study, whereas lesions with volume <250 mm3 were discarded from this
study. The large number of discarded lesions for pathology labels (Rad ,DPath

Lesion, and 
DPath
Pixel ) arise due to difference in resolution between

prostate whole-mount histopathology and MR images, and mapping of gland-level labels from whole-mount histopathology onto MRI

Cohort C1 train C1 test C2
labels 

Rad


Path


DPath
Lesion


DPath
Pixel


Rad


Path


DPath
Lesion


DPath
Pixel


Rad

# of patients 75 75 75 75 40 40 40 40 275

# of patients with cancer 75 75 75 75 40 40 40 40 160

# of patients with labels 71 75 75 75 31 40 40 40 160

Lesions with volume ≥ 250 mm3 considered in analysis

# of lesions 76 86 85 82 30 44 43 43 193

# of aggressive lesions 63 80 83 49 25 40 42 31 132

# of indolent lesions 13 5 3 33 5 4 1 12 61

Lesion volume (mm3)

Mean 2073 2599 2334 2170 1683 2463 2516 2203 1632

Std 3353 4603 3865 3778 1406 2816 2674 2589 2079

Median 1071 1191 1105 916 1118 1334 1522 1262

Lesions with volume < 250 mm3 discarded from the analysis

# of lesions 4 1117 4720 4720 3 493 2489 2489 0

Lesion volume (mm3)

Mean 171 9 3 3 117 11 3 3 N/A

Std 44 26 13 13 56 30 16 16 N/A

Median 174 1.4 0.4 0.4 87.9 1.3 0.4 0.4 N/A

2.3.2 Labels

The label preprocessing steps included forming lesions
continuous in the MRI volume from pixel-level anno-
tations using morphological closing and connected
component analysis. The morphological closing
operation was performed using a 3D structuring ele-
ment formed by stacking 3 disks of sizes 0.5, 1.5, and
0.5 mm. This structuring element was chosen to ensure
that the generated lesions from pixel-level annotations
faithfully represented the original annotations.

2.3.3 Discarded Lesions

Lesion volume (LV) was computed on pre-processed
MRI volume using the following formula:

LV = PSx × PSy × Dz × NL

where, PSx and PSy denotes the MR image pixel sizes
in the X–Y dimensions (0.29 mm each), Dz denotes the
distance between two consecutive slices (3–4.2 mm),
and NL denotes the number of pixels in the 3D lesion
after morphological closing and connected component
analysis. Lesions with a volume less than 250 mm3

were discarded from this study as these smaller lesions
(≈6 mm × 6 mm × 6 mm) are unlikely to be seen on

MRI, and have been considered as clinically insignifi-
cant in prior studies.21,26,45 Moreover, according to the
PI-RADS v2 guidelines,46 a prostate lesion is consid-
ered to be clinically significant cancer only if it has a
lesion volume ≥500 mm3. We were more conserva-
tive than the PI-RADS v2 guidelines and used half of
the 500 mm3 threshold to discard lesions from training
and evaluation of machine learning models. Analyz-
ing the discarded lesions and the distribution of their
lesion volumes in cohort C1 (Table 2 and Figure 3),
we note that the pathology labels (Path,DPath

Lesion,DPath
Pixel )

have a large number of discarded lesions with median
lesion volumes ranging from 0.4 mm3 (≈0.67 mm ×

0.67 mm × 0.67 mm) to 1.4 mm3 (≈1.1 mm × 1.1 mm
× 1.1 mm). Such tiny lesions when mapped onto MRI
occupy only a few pixels on a single MRI slice, and
are invisible or hardly visible to radiologists attempting
to interpret the MR image. Thereby lesions with only
a few pixels on MRI are not considered clinically rele-
vant (Figure 4) and are not the aim of our study. Such a
large number of tiny lesions for pathology labels occur
due to the difference in resolution between the whole-
mount histopathology images and the MR images, and
the gland-level detailed annotation of the pathology
labels on histopathology images. In order to have clean,
meaningful labels, it is essential to filter out these
tiny lesions, both during training and evaluation of the
digital radiologists.
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F IGURE 3 Distribution of lesion volumes of discarded lesions for (a) radiologist (Rad), (b) pathologist (Path), (c) lesion-level digital
pathologist (DPath

Lesion), and pixel-level digital pathologist (DPath
Pixel ) labels for cohort C1 test. The red vertical line indicates the threshold lesion

volume of 250 mm3. Only three radiologist lesions in C1 test were discarded, whereas, a large number of pathology lesions with predominantly
tiny lesion volumes (median discarded lesion volume 0.4–1.3 mm3) were discarded. The y-axis shows the frequency of distribution in log scale,
while the x-axis shows the lesion volume in mm3

F IGURE 4 The difference in resolution between the whole-mount histopathology and the MR images, and the detailed gland-level
annotations of pathology labels, often result in tiny lesions which are (a) only a few pixels on MRI and clinically insignificant (shown by yellow
arrows). Discarding small lesions with volumes <250 mm3 result in (b) cleaner and clinically meaningful lesions for training and evaluation of
digital radiologist models. Zooming into these tiny lesions (red box in (a)) on (c) high resolution histopathology and (d) the registered MRI further
reveals these are not clinically meaningful to be detected on MRI. While tiny, the lesion shown by the white arrow is not discarded as it gets
connected to the lesion visible in the subsequent MRI slices

2.4 Model architectures

Four different deep learning model architectures
(SPCNet,21 U-Net,19,22,37,47 branched U-Net, and
DeepLabv3+18) were trained using each of the four
label types. These four deep learning models were
selected based on their previous performance in detect-

ing and localizing prostate cancer (details of these
architectures in Section III of the Supporting Informa-
tion). All model architectures were evaluated to assess
whether the effects of different labeling strategies were
independent of the model architecture used. Each
model takes in T2w and ADC images of the prostate as
inputs, and using one of the four label types as ground
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F IGURE 5 All the digital radiologist models (SPCNet, U-Net, branched U-Net, and DeepLabv3+) are trained with T2w and ADC images of
the prostate as inputs. Each model is trained with one of the four label types as ground truth at a time. The DeepLabv3+ model is trained in a
2D fashion, with a single slice of T2w and ADC image as input (as shown in this figure), while the other models are trained in a 2.5D fashion
with three consecutive MRI slices as inputs. Pre-processing of the T2w and ADC images includes registration, cropping, and resampling around
the prostate, and MRI intensity standardization and normalization

truth, trains a digital radiologist model to detect, localize,
and selectively identify aggressive and indolent cancer
(Figure 5). Three consecutive slices of T2w-MRI and
ADC images were used as inputs to all models, except
for DeepLabv3+ which takes in a single slice of T2w
and ADC images as input.All models were trained using
a class-balanced cross-entropy loss function to enable
multi-class prediction of each prostate pixel into one of
the three classes: normal tissue, indolent cancer, and
aggressive cancer. A softmax activation function was
used in the last layer of each model, and each prostate
pixel was assigned the class with the maximum pre-
dicted probability. All models were trained in a five-fold
cross-validation setting. No post-processing was done
on the predicted labels.

2.5 Experimental design

The experimental design was setup to study the
following:

2.5.1 Comparison between labeling
strategies

The different labels (Rad, Path, DPath
Lesion, and 

DPath
Pixel )

in cohort C1 test were analyzed with respect to each
other in detecting and localizing cancer and aggressive

cancer. This analysis was done to study the concor-
dance between the labels themselves,without any digital
radiologist training.

2.5.2 Establishing the best digital
radiologist architecture

Four different deep learning model architectures (SPC-
Net, U-Net, branched U-Net, and DeepLabv3+) were
trained on C1-train, each with the four different label
types (Rad, Path, DPath

Lesion, and 
DPath
Pixel ), resulting in 16

different digital radiologists. Each model was trained
in exactly the same way, with the same pre-processed
data, class-balanced cross-entropy loss, batch size of
22, Adam optimizer, and 30 training epochs. A learning
rate of 10−4 was used for SPCNet and branched U-
Net, 10−5 was used for U-Net, and 10−3 was used for
DeepLabv3+ architectures. These learning rates were
chosen based on optimum performance in the validation
set over a range of learning rates (1 × 10−5, 3 × 10−5,
1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2, and 3 ×
10−2). The 16 different digital radiologist models were
evaluated for the tasks of detecting cancer and aggres-
sive cancer in cohorts C1 test, and in detecting cancer,
aggressive cancer, and indolent cancer in cohort C2.
The best digital radiologist model architecture was then
chosen from the four different architectures (SPCNet,U-
Net, branched U-Net, and DeepLabv3+) based on their
comparative evaluation.
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2.5.3 Studying the effect of different
labeling strategies on digital radiologist
performance

The effect of the different label types on the perfor-
mance of the digital radiologist they train was then
studied by analyzing the performance of the different
digital radiologist model architectures. It was also stud-
ied whether the effect of the label types on digital
radiologist performance was broadly applicable to any
digital radiologist model architecture.

2.6 Evaluation methods

The trained digital radiologist models were evaluated
in cohort C1-test with respect to all four label types
(Rad, Path, DPath

Lesion, and 
DPath
Pixel ). Evaluation in cohort

C1 test generated 4 × 4 matrices for each evaluation
metric,showing how a digital radiologist trained with one
label type performed when evaluated with all the other
label types. The trained digital radiologist models were
also evaluated in cohort C2, which only had pathology-
confirmed radiologist labels (Rad). Evaluation in cohort
C2 enabled studying generalizability of digital radiolo-
gists trained with different label types in an independent
test set with different distribution of prostate cancer than
cohort C1.

The digital radiologists were evaluated for their ability
to detect and localize cancer (combined aggressive and
indolent subtypes),aggressive cancer,and indolent can-
cer on prostate MRI on a lesion level.For the lesion-level
evaluation, a sextant-based approach was used21,26

(detailed in Section IV of the Supporting information).
True positives and false negatives were assessed using
the ground truth and predicted labels,whereas true neg-
atives and false positives were assessed by splitting the
prostate into sextants,by first dividing it into left and right
halves, and then dividing each half into three roughly
equal regions (base, mid, and apex) along the Z-axis
(Figure S1). This sextant-based lesion-level evaluation
is based upon how prostate biopsies are done in clini-
cal practice,with two systematic biopsy cores from each
sextant and additional targeted biopsies directed at the
lesions. All evaluation was performed on a per-patient
basis, and mean and standard deviation numbers for
the entire test sets were reported. Lesion-level ROC-
AUC, sensitivity, specificity, and Dice coefficients were
used as evaluation metrics (details of evaluation metrics
reported in Section V of the Supporting Information).

3 RESULTS

Our comparison of different MR image-labeling
approaches consisted of three parts.First,we compared

the different labeling schemes to evaluate the accuracy
of the radiologist and digital pathologist labels relative to
the pathologist labels, irrespective of digital radiologist
training. Second, we compared multiple deep learning
architectures (i.e., different digital radiologist models)
to identify the one that performed best on the task of
detecting prostate cancer and aggressive prostate can-
cer on MRI. Third, we carried out a thorough analysis of
the performance of all the deep learning architectures
(digital radiologist models) in the context of the different
labeling strategies.

3.1 Comparison between labeling
strategies

Annotating cancer extent on radiology or pathology
images is tedious and rarely required for routine clini-
cal care.Thus, for all practical purposes, for each patient,
clinicians often outline cancerous lesions in some slices,
for example, slice with the larger extent, and skip the
same lesion when it continues in other slices. Moreover,
while radiologists and pathologists may outline the same
lesions, they annotate the extent of the cancer differ-
ently. For example, the radiologist-annotated cancer on
two slices (slices 1, 2 in Figure 2c), while the patholo-
gist outlined cancer on slices 1 and 4 (Figure 2d) and
skipped slices 2 and 3 due to time constraints and not
because there are cancer free.Unlike the radiologist and
pathologist labels, the digital pathologist labels exist for
all slices (Figure 2e,f ), and the pixel-level digital pathol-
ogist label (DPath

Pixel ) selectively identifies the aggressive
(yellow) and indolent (green) cancer components in the
mixed lesion. While differences exist between pathol-
ogist and digital pathologist labels, there is a strong
agreement in cancer location and extent (Figures 2
and 7).

We quantitatively compared the label types for sub-
jects in cohort C1 test using Dice similarity coefficient
and lesion-level ROC-AUC (Figure 6). The radiologist
labels (Rad) measured low Dice overlaps (0.24-0.28)
and had lesion-level ROC-AUCs ranging from 0.75 to
0.84 in cancer and aggressive cancer detection relative
to pathology labels (Path, DPath

Lesion, and 
DPath
Pixel ). These

lower metrics of radiologist labels can be attributed to
radiologists (1) not annotating cancer on all MRI slices,
(2) underestimating cancer extents, and (3) missing
MRI-invisible or hardly visible lesions. Radiologist labels
have lower lesion volumes than any kind of pathol-
ogy labels, corresponding to ˜68% of the mean Path

lesion volumes,and ˜67% of the mean 
DPath
Lesion lesion vol-

umes (C1-test in Table 2).Moreover,11% of patients did
not have any radiologist-outlined lesions but ended up
having clinically significant cancer (Table 2). The radi-
ologist labels were from the initial diagnostic read in
the clinical care of the patients, essentially in vacuum,
without any pathology information.Although this reflects



5172 LINKING PROSTATE RADIOLOGY & PATHOLOGY

F IGURE 6 Quantitative comparison between cancer outlines of the different label types. (a) Dice overlap for cancer, (b) lesion-level
ROC-AUC for cancer, (c) Dice overlap for aggressive cancer, (d) lesion-level ROC-AUC for aggressive cancer

F IGURE 7 The digital pathologist-predicted25 automated aggressive (Gleason pattern 4, green) and indolent (Gleason pattern 3, blue)
cancers visually match the manual cancer annotations by the expert pathologist (black, yellow, orange, and red). (a) Whole-mount
histopathology image with (b–d) close-up into the two cancer lesions. (C) Cancer labels manually outlined by the expert pathologist (black
outline) shows high agreement with overall cancer (combined blue and green) predicted by the digital pathologist model. (b, d) It is impractically
time consuming for a human pathologist to manually assign pixel-level Gleason patterns (yellow, orange, and red) to each gland in detail as
done by the digital pathologist (blue and green)

the real-world scenario of routine clinical care, this also
puts radiologists at an unfair disadvantage when com-
paring their initial diagnostic reads with post-operative
surgical specimens.

The lesion-level digital pathologist labels (DPath
Lesion)

achieved high (0.79–0.82) Dice overlap and very high
agreement in lesion-level ROC-AUCs (cancer ROC-
AUCs: 0.94-1.00; aggressive cancer ROC-AUCs: 0.86-
0.97) with pathologist labels (Path).The deviations from
a perfect Dice overlap can be attributed to the differ-
ence in resolution between the two kinds of pathologist
labels, that is, digital pathologists labeling each gland
in detail, while it is tedious and impractical to annotate
each gland on the whole-mount prostate histopathol-
ogy images in detail by a human pathologist (Figure 7).

Despite the difference in the level of detail, the concor-
dance between pathologist and digital pathologist labels
in distinguishing between benign versus cancer tissues,
as well as indolent versus aggressive cancer is evident
from Figure 7. Moreover, the pathologist may have not
provided labels on all slices.

The pixel-level digital pathologist labels (DPath
Pixel )

achieved high Dice overlaps with Path and 
DPath
Lesion for

cancer, and achieved lower Dice overlaps (0.58 ± 0.37,
0.66 ± 0.37,) with Path and 

DPath
Lesion for aggressive

cancer. This low aggressive cancer Dice coefficient for


DPath
Pixel is due to its selective labeling of aggressive

and indolent cancer components in mixed cancerous
lesions,unlike the other label types which label the entire
lesion as aggressive or indolent.
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TABLE 3 The SPCNet architecture achieved the best performance in detecting cancer and aggressive cancer in both cohorts irrespective
of the label type used for training

Cancer versus all
Cohort C1 test (N = 40, number of lesions = 48). Evaluated against Path

AUC-ROC Dice
Trained with
label type SPCNet U-Net Branched U-Net DeepLabv3+ SPCNet U-Net Branched U-Net DeepLabv3+

Rad 0.87 ± 0.22 0.84 ± 0.27 0.77 ± 0.33 0.88 ± 0.21 0.37 ± 0.22 0.37 ± 0.22 0.31 ± 0.22 0.34 ± 0.22

Path 0.90 ± 0.22 0.87 ± 0.25 0.82 ± 0.32 0.86 ± 0.21 0.39 ± 0.19 0.38 ± 0.22 0.29 ± 0.20 0.32 ± 0.23


DPath
Lesion 0.92 ± 0.18 0.86 ± 0.24 0.89 ± 0.24 0.89 ± 0.19 0.34 ± 0.2 0.38 ± 0.23 0.28 ± 0.20 0.32 ± 0.21


DPath
Pixel 0.91 ± 0.19 0.83 ± 0.30 0.83 ± 0.27 0.91 ± 0.17 0.30 ± 0.21 0.26 ± 0.21 0.25 ± 0.20 0.30 ± 0.24

Cohort C2 (N = 160, number of lesions = 193). Evaluated against Rad

AUC-ROC Dice

Trained with
label type

SPCNet U-Net Branched U-Net DeepLabv3+ SPCNet U-Net Branched U-Net DeepLabv3+

Rad 0.84 ± 0.29 0.82 ± 0.31 0.82 ± 0.33 0.81 ± 0.34 0.39 ± 0.28 0.39 ± 0.26 0.38 ± 0.26 0.39 ± 0.27

Path 0.81 ± 0.33 0.80 ± 0.32 0.78 ± 0.34 0.81 ± 0.32 0.37 ± 0.27 0.37 ± 0.25 0.36 ± 0.25 0.35 ± 0.25


DPath
Lesion 0.81 ± 0.32 0.78 ± 0.35 0.77 ± 0.35 0.79 ± 0.33 0.37 ± 0.27 0.36 ± 0.25 0.35 ± 0.26 0.34 ± 0.25


DPath
Pixel 0.81 ± 0.31 0.82 ± 0.32 0.75 ± 0.36 0.80 ± 0.33 0.35 ± 0.29 0.31 ± 0.26 0.33 ± 0.25 0.31 ± 0.26

Aggressive cancer versus all

Cohort C1 test (N = 40, number of lesions = 44). Evaluated against Path

AUC-ROC Dice

Trained with
label type

SPCNet U-Net Branched U-Net DeepLabv3+ SPCNet U-Net Branched U-Net DeepLabv3+

Rad 0.88 ± 0.24 0.87 ± 0.26 0.78 ± 0.32 0.91 ± 0.20 0.36 ± 0.39 0.36 ± 0.22 0.31 ± 0.22 0.34 ± 0.22

Path 0.91 ± 0.21 0.90 ± 0.24 0.83 ± 0.30 0.90 ± 0.19 0.39 ± 0.19 0.38 ± 0.22 0.29 ± 0.20 0.33 ± 0.23


DPath
Lesion 0.92 ± 0.19 0.89 ± 0.22 0.90 ± 0.23 0.92 ± 0.17 0.34 ± 0.20 0.38 ± 0.23 0.28 ± 0.21 0.33 ± 0.21


DPath
Pixel 0.91 ± 0.19 0.87 ± 0.28 0.86 ± 0.26 0.92 ± 0.16 0.31 ± 0.21 0.27 ± 0.21 0.25 ± 0.20 0.31 ± 0.24

Cohort C2 (N = 160, number of lesions = 132). Evaluated against Rad

AUC-ROC Dice

Trained with
Label type

SPCNet U-Net Branched U-Net DeepLabv3+ SPCNet U-Net Branched U-Net DeepLabv3+

Rad 0.89 ± 0.24 0.72 ± 0.34 0.86 ± 0.30 0.86 ± 0.30 0.43 ± 0.26 0.25 ± 0.19 0.42 ± 0.24 0.44 ± 0.24

Path 0.87 ± 0.27 0.67 ± 0.39 0.85 ± 0.30 0.86 ± 0.27 0.41 ± 0.25 0.25 ± 0.24 0.40 ± 0.23 0.39 ± 0.24


DPath
Lesion 0.87 ± 0.26 0.70 ± 0.39 0.83 ± 0.23 0.86 ± 0.28 0.42 ± 0.25 0.21 ± 0.20 0.39 ± 0.24 0.39 ± 0.25


DPath
Pixel 0.88 ± 0.27 0.79 ± 0.34 0.80 ± 0.33 0.85 ± 0.31 0.40 ± 0.28 0.23 ± 0.21 0.36 ± 0.24 0.37 ± 0.26

3.2 Establishing the best digital
radiologist architecture

We compared the four architectures (SPCNet, U-Net,
branched U-Net, and DeepLabv3+) trained with differ-
ent label types in detecting and localizing cancer and
aggressive cancer on a lesion level (Table 3). In cohort
C1 test, models trained were evaluated with respect
to pathologist labels (Path), while in cohort C2, they
were evaluated with respect to biopsy-confirmed
radiologist labels (Rad). SPCNet outperformed
other models in most metrics and most evaluation
types.

3.3 Studying the effect of different
labeling strategies on digital radiologist
performance

3.3.1 Qualitative comparison

Digital radiologists trained with radiologist labels (Rad)
could detect cancer in both cohorts (Figures 8c,
9c, and 10c), but in comparison with other digital
radiologists they missed some cancers (Figure 9c, row
4, C1-Pat2:Preds, and Figure 10c, row 2, C2-Pat2),
and underestimated cancer extent in some patients
(Figure 9c, row2, C1-Pat1:Preds and Figure 10c, row 2,
C2-Pat1).
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F IGURE 8 Predictions from SPCNet trained with different label types of a typical patient from cohort C1 test (same as Figure 2) show that
only 

DPath
Pixel -trained SPCNet (f) selectively identified the aggressive and indolent cancer components in the lesion, while all other models detected

the lesion as aggressive (SPCNet predictions: aggressive cancer [red], indolent cancer [blue[). (a) T2w images, (b) ADC images, (c) Rad-trained
SPCNet predictions, (d) Path-trained SPCNet predictions, (e) DPath

Lesion-trained SPCNet predictions, (f) DPath
Pixel -trained SPCNet predictions

Digital radiologists trained with lesion-level pathol-
ogy labels (Path and 

DPath
Lesion) had the best (and very

similar) performances in detecting and localizing can-
cer, and also in capturing the true extent of the cancer
(Figures 8–10, columns d and e). Digital radiologists
trained with pixel-level digital pathologist labels (DPath

Pixel )
are the only ones to selectively identify aggressive and
indolent cancer in mixed lesions (Figures 8f and 9f , row
6, C1-Pat3: Preds), albeit sometimes having less cancer
extent than the Path and 

DPath
Lesion-trained digital radiol-

ogists (Figure 9f , row 4, C1-Pat2: Preds). Predictions
from the 

DPath
Pixel -trained digital radiologist for the row 2

patient (C2-Pat2) is slightly off from the actual ground
truth lesion annotation.

3.3.2 Quantitative comparison

Cohort C1 test: Quantitatively comparing the lesion-
level performance of the digital radiologists trained with
the different label types in cohort C1 test showed that
the type of label used for training has an effect on digital
radiologist performance (Figure 11 and Figures S2–
S4). All models trained with each label type were
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F IGURE 9 Labels and SPCNet predictions for three different patients from cohort C1 test (labels: aggressive cancer [yellow], indolent
cancer [green]); SPCNet predictions: aggressive cancer [red], indolent cancer [blue]) on (a) T2w and (b) ADC images. The (c) Rad labels and
Rad-trained SPCNet predictions may miss cancers or underestimate cancer extent. The (d) Path labels and Path-trained SPCNet predictions,
and the (e) DPath

Lesion and 
DPath
Lesion-trained SPCNet predictions show strong agreement in cancer localization and extent. The (f) DPath

Pixel and


DPath
Pixel -trained SPCNet predictions can selectively identify and localize the aggressive and indolent cancer components in the mixed lesions

unlike any other label or prediction type. The outline for columns with SPCNet predictions correspond to pathologist annotations. Radiologists
and pathologists are not required to annotate cancer extent on all slices of a patient for routine clinical care, but knowing the complete extent of
cancer on all slices may be essential to train machine learning models. As such, C1-Pat3 does not show a Path label while cancer is present

evaluated with respect to all other label types, gener-
ating 4 × 4 evaluation matrices for each model and
each evaluation metric. A row in the 4 × 4 matrix
denotes a model trained with a particular label type,
when evaluated with all the label types. A column in
the matrix denotes models trained with different label
types when evaluated using one particular label type.

The 4 × 4 evaluation matrices of the best-performing
digital radiologist model (SPCNet) is presented in this
section (Figure 11), whereas evaluation matrices from
the other digital radiologist model architectures (U-Net,
branched U-Net, and DeepLabv3+) are presented in
Section V of the Supporting Information (Figures S2–
S4). A summary of the performance of all the models
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F IGURE 10 SPCNet predictions for two different patients from cohort C2 on (a) T2w and (b) ADC images. The (c)Rad-trained SPCNet
predictions miss the cancer in the row 2 patient C2-Pat2. The (d) Path-trained and (e) DPath

Lesion-trained SPCNet predictions detect the lesions in

both patients, with the (e) DPath
Lesion-trained predictions having the highest overlap with the cancer extent. The (f) DPath

Pixel -trained SPCNet
predictions are slightly off from the Rad labels for the row 2 patient C2-Pat2. The outlines for columns with SPCNet-predictions correspond to
radiologist labels (Rad)

F IGURE 11 Quantitative comparison between digital radiologist (SPCNet) predictions when trained and evaluated using different label
types in cohort C1 test. The top row shows results for cancer detection, while the bottom row shows results for aggressive cancer detection.
Darker blue boxes in the 4 × 4 matrices represent higher evaluation metrics.

(SPCNet, U-Net, branched U-Net, and DeepLabv3+) is
presented below,when the pathologist labels (Path) are
considered gold standard for evaluation in cohort C1
(second column in each sub-figure of Figure 11 and
Figures S2–S4).

Models trained with radiologist labels (Rad):
The SPCNet, U-Net, and branched U-Net mod-
els trained with radiologist labels (Rad) had lower

lesion-level ROC-AUCs and lower sensitivities than
their pathologist label-trained (Path) counterparts.
The DeepLabv3+ model trained with Rad exhib-
ited similar/slightly higher ROC-AUC and sensitivities
when compared to their pathologist label-trained coun-
terparts. All models trained with Rad had lower or
very similar Dice to their pathologist label-trained
counterparts.
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Models trained with pathologist labels (Path):
The SPCNet and U-Net models trained with pathol-
ogist labels (Path) achieved the highest ROC-AUC,
Dice coefficient, and sensitivities of all the models. For
branched U-Net and DeepLabv3+ models, the perfor-
mance of Path label-trained models was similar or
closely following the highest performing model.

Models trained with digital pathologist labels
(DPath

Lesion, DPath
Pixel ): All digital radiologist models (SPCNet,

U-Net,branched U-Net,and DeepLabv3+) when trained
with lesion-level digital pathologist labels (DPath

Lesion) con-
sistently achieved (a) higher lesion-level ROC-AUCs
than their radiologist label-trained (Rad) counterparts,
(b) similar or higher ROC-AUCs than their pathologist
label-trained (Path) counterparts, (c) similar or slightly
lower Dice compared to their pathologist label-trained
(Path) counterparts. All models trained with pixel-
level digital pathologist labels (DPath

Pixel ) also exhibited
similar ROC-AUC when compared to their patholo-
gist label-trained (Path) counterparts, although they
achieved slightly lower Dice coefficients. Most models
(SPCNet, U-Net, and DeepLabv3+) trained with 

DPath
Pixel

exhibited the highest specificities. The slightly inferior
performance of DPath

Pixel -trained models in comparison to


DPath
Lesion-trained models can be attributed to the nature

of these labels identifying indolent and aggressive can-
cer components on a pixel-level in mixed lesions, as
opposed to the other label types that consider the entire
lesion as aggressive or indolent.

The consistent performance of digital radiologists
trained with digital pathologist labels (DPath

Lesion and 
DPath
Pixel )

across different model architectures suggest their util-
ity in training digital radiologists, irrespective of the
model architecture.

For all digital radiologists, irrespective of model
architecture, highest Dice overlaps were achieved
when evaluated using radiologist labels (Rad) (darker
blue column 1 of first sub-figures in Figure 11 and
Figures S2–S4). This observation can be attributed to
the fact that cancers captured by Rad labels are more
prominent on MRI, making them easier to be learned by
the digital radiologists.

For all digital radiologist model architectures, the per-
formance on the held-out test sets presented above was
obtained by averaging the performances of the five mod-
els trained in five-fold cross-validation. This approach
provides an estimate of the generalizability of models,
and also helps deal with bias arising from particular
train–test splits. Section VI.B of the Supporting Infor-
mation includes the performance of the SPCNet-based
digital radiologist model on the validation sets of the
five-folds.Validation set performance also suggests that
digital pathologist label-trained models show consistent
and better/similar performance to other label-trained
models across folds.

Cohort C2: All models trained with all label types
were evaluated only with radiologist labels (Rad) in

cohort C2, as other label types were unavailable for
this cohort. Evaluation table for SPCNet (Table 4) is
presented below, while evaluation tables for the other
models (U-Net, branched U-Net, and DeepLabv3+) are
presented in Section V of the Supporting information
(Tables S2–S4). A summary of the performance of all
models in cohort C2 when evaluated with Rad labels is
presented below.

Models trained with radiologist labels (Rad):
All models (SPCNet, U-Net, branched U-Net, and
DeepLabv3+) trained with radiologist labels (Rad)
had the highest lesion-level ROC-AUC and Dice over-
laps (Table 4 and Tables S2–S4) for cancer and
aggressive cancer detection in cohort C2. The bet-
ter performance of Rad-trained models in cohort C2
can be attributed to the fact that evaluation is also
with respect to Rad in this cohort as other labels are
not available.

Models trained with pathology labels (Path,
LDPath_Lesion, DPath_Pixel):For cancer and aggres-
sive cancer detection, all models trained with pathology
labels had similar or slightly inferior ROC-AUC and Dice
overlaps in comparison to their radiologist label-trained
counterparts. It may however be noted that using Rad

as gold standard for evaluation can lead to missed can-
cers (Section 3.1), which can in turn lead to inferior
evaluation metrics for models trained with pathology
labels (Path,DPath

Lesion, and 
DPath
Pixel ).

4 DISCUSSION

In this study, we performed a detailed analysis to (a)
compare different prostate cancer labeling strategies,
and (b) study the effects these labeling strategies
have on the deep learning models (which we refer to
as digital radiologists) that are trained with them. Our
qualitative and quantitative evaluations indicate that
radiologist labels (Rad) have lower lesion-detection
rates than pathology labels (labels on whole-mount
histopathology images mapped onto MRI through MRI-
histopathology registration), and do not capture the true
extent of cancer, in line with prior studies.2,4,27 Subse-
quently, digital radiologist models trained with Rad also
have inferior performance when compared to models
trained with pathology labels (Path,DPath

Lesion, and 
DPath
Pixel ).

Digital pathologist (deep learning method for label-
ing of Gleason patterns on histopathology images25)
labels (DPath

Lesion and 
DPath
Pixel ) have high concordance with

pathologist labels (Path). Digital radiologists trained
with digital pathologist labels perform with compara-
ble or better accuracy than digital radiologists trained
with radiologist or pathologist labels. Moreover, digital
radiologists trained with pixel-level digital pathologist
labels (DPath

Pixel ) can enable selective identification of
aggressive and indolent cancer components in mixed
lesions, which is not possible by radiologists. Evaluation
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TABLE 4 Lesion-level evaluation in cohort C2 of the SPCNet models trained using cohort C1 train. Cohort C2 only had biopsy-confirmed
radiologist labels (Rad), thus all evaluations were with respect to Rad

Cancer versus all (N = 160, number of lesions = 193)

Trained with label type AUC-ROC Dice Sens. Spec.

Rad 0.84 ± 0.29 0.39 ± 0.28 0.70 ± 0.42 0.85 ± 0.28

Path 0.81 ± 0.33 0.37 ± 0.27 0.70 ± 0.43 0.73 ± 0.36


DPath
Lesion 0.81 ± 0.32 0.37 ± 0.27 0.71 ± 0.42 0.78 ± 0.34


DPath
Pixel 0.81 ± 0.31 0.35 ± 0.29 0.64 ± 0.45 0.87 ± 0.26

Aggressive cancer versus all (N = 160, number of lesions = 132)

Trained with label type AUC-ROC Dice Sens. Spec.

Rad 0.89 ± 0.24 0.43 ± 0.26 0.77 ± 0.39 0.84 ± 0.28

Path 0.87 ± 0.27 0.41 ± 0.25 0.79 ± 0.39 0.72 ± 0.37


DPath
Lesion 0.87 ± 0.26 0.42 ± 0.25 0.81 ± 0.37 0.77 ± 0.36


DPath
Pixel 0.88 ± 0.27 0.40 ± 0.28 0.73 ± 0.42 0.85 ± 0.29

Indolent cancer versus all (N = 160, number of lesions = 61)

Trained with label type AUC-ROC Dice Sens. Spec.

Rad 0.46 ± 0.42 0.00 ± 0.01 0.02 ± 0.13 0.99 ± 0.01

Path 0.43 ± 0.43 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00


DPath
Lesion 0.43 ± 0.40 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00


DPath
Pixel 0.64 ± 0.40 0.12 ± 0.17 0.33 ± 0.45 0.94 ± 0.14

in both cohorts indicate that the digital radiologists
trained with digital pathologist labels have generalizable
performance in biopsy as well as radical prostatectomy
patients. The trend of digital pathologist label-trained
digital radiologists performing better or comparable
to human label-trained digital radiologists is irrespec-
tive of the model architecture (Table 3). Thus, digital
pathologist labels provide a consistent, standardized,
accurate, labor and time-efficient method for training
reliable digital radiologists for selective identification of
aggressive and indolent prostate cancer.

Digital pathologist labels not only train the most
accurate digital radiologists, but also help overcome
the challenges associated with generating human-
annotated pixel-level histologic grade labels. It is
impractical for genitourinary pathologists to manu-
ally annotate all prostate pixels with Gleason pat-
terns for a sufficiently large population of patients
to train machine learning models. Automated Glea-
son grading on histopathology images by digital
pathologists (a) have excellent performance,25,36,48

and (b) have shown to significantly improve Gleason
grading by human pathologists.35 Digital pathologist
labels also improve uniformity in grading by reducing
inter- and intra-pathologist variation in Gleason grade
group assignment.

Prior studies16–19,21–24,26,41 47,49 on developing
machine learning methods for prostate cancer detec-
tion have used different kinds of labels to develop
their models. This is the first study to systematically
compare and analyze the effect of different labeling

strategies on the performance of automated algo-
rithms for prostate cancer detection on MRI (digital
radiologists). We trained four different model archi-
tectures (U-Net, branched U-Net, SPCNet, and the
DeepLabv3+) used in prior studies and tested in two
independent cohorts to further emphasize that the
effect of the labeling strategies is independent of the
model type and the dataset used for testing. Our study
showed that the SPCNet architecture outperformed the
other architectures, irrespective of the label type used
for training.

Our study has five noteworthy limitations. First, unlike
prior studies,24 the number of patients in cohort C1 is
relatively small (N = 115), primarily due to its unique-
ness including registered MRI and histopathology
images of radical prostatectomy patients, pixel-level
radiologist and pathologist labels, as well as pixel-level
digital pathologist labels. Despite its small size, the
generalizable performance of the deep learning models
on the independent cohort C2 indicate the utility of
the dataset. Second, all patients in this study are from
a single institution (Stanford University) and single
manufacturer (GE Healthcare).Third,our study includes
retrospective data and has not been used in prospec-
tive evaluation. Fourth, the digital pathologist was
trained on prostate biopsy histopathology samples,25

but was used to generate pixel-level histologic grade
labels on whole-mount histopathology images. Despite
being trained on biopsy histopathology images, the
digital pathologist showed high agreement with the
human pathologist on the whole-mount images. Finally,
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registration errors (˜2 mm on the prostate border and
3 mm inside the prostate) in the MRI-histopathology
registration platform31 may affect small lesions. Exclud-
ing lesions of volumes 250 mm3 (6 mm × 6 mm × 6 mm)
helps focus on aggressive cancer, as small lesions are
not deemed to be clinically significant45,46 while helping
counter the MRI-histopathology registration errors in
cohort C1. Automated MRI-histopathology registration
is a challenging task due to several factors including
the difference in acquisition procedures of radiology
and histopathology images, differences in image reso-
lution, slice thickness, and possible changes that may
occur between pre-operative MRI and radical prosta-
tectomy. Despite these challenges, our automated
MRI-histopathology approach provides an accurate
labor and time-efficient approach to map pathol-
ogy labels onto MRI, enabling the training of digital
radiologists with the most accurate ground truth labels.

Identifying and treating aggressive cancer,and reduc-
ing over-treatment of indolent cancer are the primary
goals of prostate cancer care. A digital radiologist can
help standardize radiologist interpretations, and assist
clinicians in reliably detecting and localizing aggressive
and indolent cancer on prostate MRI. In order to develop
a reliable digital radiologist, it is imperative to train it with
the best possible labels.Our experiments show that dig-
ital pathologist labels are the best way to train digital
radiologists not only because they help develop the most
accurate digital radiologist models, but also because
they circumvent the challenges associated with acquir-
ing pixel-level human-annotated histologic grade labels.
A reliable digital radiologist can help prostate cancer
care by (1) standardizing radiologist interpretations, (2)
helping detect and target aggressive cancers that are
currently missed, (3) helping reduce unnecessary inva-
sive biopsies in men without cancer or with indolent
cancer,and (4) helping reduce the number of biopsies to
detect aggressive cancers by localizing the aggressive
cancer components in mixed lesions.

5 CONCLUSION

Digital pathologist labels generated by deep learning
algorithms on prostate histopathology images can help
bridge the gap between prostate radiology and pathol-
ogy by enabling the training of reliable machine learning
models, referred to here as digital radiologists, for selec-
tive identification of aggressive and indolent prostate
cancer on MRI. Digital pathologists have similar per-
formance to pathologists in selective identification of
aggressive and indolent prostate cancer on prostate
histopathology images.Digital pathologist-trained digital
radiologists (1) enable selective identification of aggres-
sive and indolent cancer on prostate MRI on a lesion
level as well as on a pixel level (which is not possible
with any human-annotated label type), (2) perform bet-

ter than radiologist-trained models, (3) perform equally
well or better than pathologist label-trained models, and
(3) circumvent the labor, time, and variability challenges
associated with human annotations for training digital
radiologist models.

ACKNOWLEDGMENTS
We acknowledge the following funding sources: Depart-
ments of Radiology and Urology, Stanford University,
GE Healthcare Blue Sky Award, National Institutes
of Health, National Cancer Institute (U01CA196387,
to J.D.B.), and the generous philanthropic support of
our patients (G.S.). Research reported in this publica-
tion was supported by the National Cancer Institute of
the National Institutes of Health under Award Number
R37CA260346. The content is solely the responsibility
of the authors and does not necessarily represent the
official views of the National Institutes of Health.

CONFL ICT OF INTEREST
Mirabela Rusu has research grants from GE Healthcare
and Philips Healthcare.

DATA AVAILABIL ITY STATEMENT
The data that support the findings of this study are
available from the corresponding authors upon reason-
able request.

REFERENCES
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021.

CA Cancer J Clin. 2021;71:7-33.
2. Ahmed HU, Bosaily AE-S, Brown LC, et al. Diagnostic accuracy

of multi-parametric MRI and TRUS biopsy in prostate can-
cer (PROMIS): a paired validating confirmatory study. Lancet.
2017;389:815-822.

3. Bosaily AE-S, Parker C, Brown LC, et al. PROMIS–prostate MR
imaging study:a paired validating cohort study evaluating the role
of multi-parametric MRI in men with clinical suspicion of prostate
cancer. Contemp Clin Trials. 2015;42:26-40.

4. Johnson DC, Raman SS, Mirak SA, et al. Detection of individ-
ual prostate cancer foci via multiparametric magnetic resonance
imaging. Eur Urol. 2019;75:712-720.

5. van der Leest M, Cornel E, Israel B, et al. Head-to-head com-
parison of transrectal ultrasound-guided prostate biopsy versus
multiparametric prostate resonance imaging with subsequent
magnetic resonance-guided biopsy in biopsy-naïve men with ele-
vated prostate-specific antigen: a large prospective multicenter
clinical study. Eur Urol. 2019;75:570-578.

6. Sonn GA, Chang E, Natarajan S, et al. Value of targeted prostate
biopsy using magnetic resonance–ultrasound fusion in men with
prior negative biopsy and elevated prostate-specific antigen. Eur
Urol. 2014;65:809-815.

7. Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted
or standard biopsy for prostate-cancer diagnosis. N Engl J Med.
2018;378:1767-1777.

8. Liu W, Patil D, Howard DH, et al. Adoption of prebiopsy magnetic
resonance imaging for men undergoing prostate biopsy in the
United States. Urology. 2018;117:57-63.



5180 LINKING PROSTATE RADIOLOGY & PATHOLOGY

9. Sonn GA, Fan RE, Ghanouni P, et al. Prostate magnetic
resonance imaging interpretation varies substantially across
radiologists. Eur Urol Focus. 2019;5:592-599.

10. Barentsz JO, Weinreb JC, Verma S, et al. Synopsis of the
PI-RADS v2 guidelines for multiparametric prostate magnetic
resonance imaging and recommendations for use. Eur Urol.
2016;69:41.

11. Westphalen AC, McCulloch CE, Anaokar JM, et al. Variabil-
ity of the positive predictive value of PI-RADS for prostate
MRI across 26 centers: experience of the society of abdomi-
nal radiology prostate cancer disease-focused panel. Radiology.
2020;296:76-84.

12. Stolk TT, de Jong IJ, Kwee TC, et al. False positives in PIRADS
(V2) 3, 4, and 5 lesions: relationship with reader experience and
zonal location. 2019;44:1044-1051.

13. Viswanath SE, Bloch NB, Chappelow JC, et al. Central gland
and peripheral zone prostate tumors have significantly dif-
ferent quantitative imaging signatures on 3 Tesla endorectal,
in vivo T2-weighted MR imagery. J Magn Reson Imaging.
2012;36:213-224.

14. Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H.
Computer-aided detection of prostate cancer in MRI. IEEE Trans
Med Imaging. 2014;33:1083-1092.

15. Viswanath SE,Chirra PV,Yim MC,et al.Comparing radiomic clas-
sifiers and classifier ensembles for detection of peripheral zone
prostate tumors on T2-weighted MRI:a multi-site study.BMC Med
Imaging. 2019;19:22.

16. McGarry SD, Bukowy JD, Iczowski KA, et al. Gleason probability
maps: a radiomics tool for mapping prostate cancer likelihood in
MRI space. Tomography. 2019;5:127-134.

17. Sumathipala Y, Lay N, Turkbey B, Smith C, Choyke PL, Summers
RM. Prostate cancer detection from multi-institution multipara-
metric MRIs using deep convolutional neural networks. J Med
Imaging. 2018;5:044507.

18. Cao R, Bajgiran AM, Mirak SA, et al. Joint prostate cancer detec-
tion and Gleason score prediction in mp-MRI via FocalNet. IEEE
Trans Med Imaging. 2019;38:2496-2506.

19. Sanyal J, Banerjee I, Hahn L, Rubin D. An automated two-
step pipeline for aggressive prostate lesion detection from
multi-parametric MR sequence. AMIA Summits Transl Sci Proc.
2020;2020:552.

20. Bhattacharya I, Seetharaman A, Shao W, et al. CorrSigNet:
learning correlated prostate cancer signatures from radiology
and pathology images for improved computer aided diagno-
sis. In: International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention. Springer; 2020:315-
325.

21. Seetharaman A,Bhattacharya I,Chen LC,et al.Automated detec-
tion of aggressive and indolent prostate cancer on magnetic
resonance imaging. Med Phys. 2021;48:2960-2972.

22. Saha A, Hosseinzadeh M, Huisman H. End-to-end prostate
cancer detection in bpMRI via 3D CNNs:effect of attention mech-
anisms, clinical priori and decoupled false positive reduction.
arXiv:2101.03244. 2021.

23. Yu X, et al. Deep attentive panoptic model for prostate cancer
detection using biparametric mri scans. In: International Con-
ference on Medical Image Computing and Computer-Assisted
Intervention. Springer; 2020:594-604.

24. Hosseinzadeh M, Saha A, Brand P, Slootweg I, de Rooij M,
Huisman H. Deep learning–assisted prostate cancer detection
on bi-parametric MRI: minimum training data size require-
ments and effect of prior knowledge. Eur Radiol. 2021;32:2224-
2234.

25. Ryu HS, Jin M-S, Park JH, et al. Automated Gleason scoring and
tumor quantification in prostate core needle biopsy images using
deep neural networks and its comparison with pathologist-based
assessment. Cancers. 2019;11:1860.

26. Bhattacharya I, Seetharaman A, Kunder C, et al. Selective iden-
tification and localization of indolent and aggressive prostate
cancers via CorrSigNIA: an MRI-pathology correlation and deep
learning framework. Med Image Anal. 2021;75:102288.

27. Priester A, Natarajan S, Khoshnoodi P, et al. Magnetic reso-
nance imaging underestimation of prostate cancer geometry:use
of patient specific molds to correlate images with whole mount
pathology. J Urol. 2017;197:320-326.

28. Kalavagunta C, Zhou X, Schmechel SC, Metzger GJ. Reg-
istration of in vivo prostate MRI and pseudo-whole mount
histology using Local Affine Transformations guided by Inter-
nal Structures (LATIS). J Magn Reson Imaging. 2015;41:1104-
1114.

29. Hurrell SL, McGarry SD, Kaczmarowski A, et al. Optimized b-
value selection for the discrimination of prostate cancer grades,
including the cribriform pattern,using diffusion weighted imaging.
J Med Imaging. 2017;5:011004.

30. Losnegård A, Reisæter L, Halvorsen OJ, et al. Intensity-based
volumetric registration of magnetic resonance images and
whole-mount sections of the prostate. Comput Med Imaging
Graph. 2018;63:24-30.

31. Rusu M, Shao W, Kunder CA, et al. Registration of presurgical
MRI and histopathology images from radical prostatectomy via
RAPSODI. Med Phys. 2020;47(9):4177-4188.

32. Shao W, Banh L, Kunder CA, et al. ProsRegNet: a deep learning
framework for registration of MRI and histopathology images of
the prostate. Med Image Anal. 2021;68:101919.

33. Shao W, Bhattacharya I, Soerensen SJ, et al. Weakly super-
vised registration of prostate MRI and histopathology images.
In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer; 2021:98-107.

34. Sood RR,Shao W,Kunder C,et al.3D Registration of pre-surgical
prostate MRI and histopathology images via super-resolution
volume reconstruction. Med Image Anal. 2021;69:101957.

35. Bulten W, Balkenhol M, Belinga J-JA, et al. Artificial Intelligence
Assistance Significantly Improves Gleason Grading of Prostate
Biopsies by Pathologists. arXiv:2002.04500. 2020.

36. Bulten W, Pinckaers H, van Boven H, et al. Automated deep-
learning system for Gleason grading of prostate cancer using
biopsies: a diagnostic study. Lancet Oncol. 2020;21:233-241.

37. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks
for biomedical image segmentation. In: International Conference
on Medical image computing and computer-assisted intervention.
Springer; 2015:234-241.

38. Ghavimi S,Abdi H,Waterhouse J,et al.Natural history of prostatic
lesions on serial multiparametric magnetic resonance imaging.
Can Urol Assoc J. 2018;12:270.

39. Rais-Bahrami S, Turbey B, Rastinehad AR, et al. Natural history
of small index lesions suspicious for prostate cancer on multi-
parametric MRI: recommendations for interval imaging follow-up.
Diagn Interv Radiol. 2014;20:293.

40. Giganti F, Stabile A, Stavrinides V, et al. Natural history of
prostate cancer on active surveillance: stratification by MRI using
the PRECISE recommendations in a UK cohort. Eur Radiol.
2021;31:1644-1655.

41. De Vente C, Vos P, Hosseinzadeh M, Pluim J, Veta M. Deep
learning regression for prostate cancer detection and grading in
bi-parametric MRI. IEEE Trans Biomed Eng. 2020;68:374-383.

42. Schmidt B, Bhambhvani HP, Fan RE, et al. PD56-03 exter-
nal validation of an artificial intelligence algorithm for prostate
cancer Gleason grading and tumor quantification. J Urol.
2021;206:e1004-e1004.

43. Nyúl LG, Udupa JK, Zhang X. New variants of a method of MRI
scale standardization. IEEE Trans Med Imaging. 2000;19:143-
150.

44. Reinhold JC, Dewey BE, Carass A, Prince JL. Evaluating the
impact of intensity normalization on MR image synthesis. In:



LINKING PROSTATE RADIOLOGY & PATHOLOGY 5181

Medical Imaging 2019: Image Processing. vol. 10949. Interna-
tional Society for Optics and Photonics; 2019:109493H.

45. Matoso A, Epstein JI. Defining clinically significant prostate
cancer on the basis of pathological findings. Histopathology.
2019;74:135-145.

46. Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imag-
ing reporting and data system version 2.1: 2019 update of
prostate imaging reporting and data system version 2. Eur Urol.
2019;76:340-351.

47. Schelb P, Kohl S, Radtke JP, et al. Classification of cancer at
prostate MRI:deep learning versus clinical PI-RADS assessment.
Radiology. 2019;293:607-617.

48. Bulten W, Kartasalo K, Chen P-HC, et al. Artificial intelligence for
diagnosis and Gleason grading of prostate cancer: the PANDA
challenge. Nat Med. 2022;28:154-163.

49. Hosseinzadeh M, Brand P, Huisman H. Effect of adding prob-
abilistic zonal prior in deep learning-based prostate cancer
detection. arXiv:1907.12382. 2019.

SUPPORTI NG I NFORMATI ON
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Bhattacharya I, Lim DS,
Aung HL, Liu X, Seetharaman A, Kunder CA,
Shao W, Soerensen SC, Fan RE, Ghanouni P,
To’o KJ, Brooks JD, Sonn GA, Rusu M. Bridging
the gap between prostate radiology and
pathology through machine learning. Med Phys.
2022;49:5160–5181.
https://doi.org/10.1002/mp.15777

https://doi.org/10.1002/mp.15777

	Bridging the gap between prostate radiology and pathology through machine learning
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Data description
	2.1.1 | Magnetic resonance imaging
	2.1.2 | Histopathology images

	2.2 | Labels
	2.2.1 | Cancer and histologic grade labels
	2.2.2 | Prostate segmentations

	2.3 | Data preprocessing
	2.3.1 | MRI and histopathology images
	2.3.2 | Labels
	2.3.3 | Discarded Lesions

	2.4 | Model architectures
	2.5 | Experimental design
	2.5.1 | Comparison between labeling strategies
	2.5.2 | Establishing the best digital radiologist architecture
	2.5.3 | Studying the effect of different labeling strategies on digital radiologist performance

	2.6 | Evaluation methods

	3 | RESULTS
	3.1 | Comparison between labeling strategies
	3.2 | Establishing the best digital radiologist architecture
	3.3 | Studying the effect of different labeling strategies on digital radiologist performance
	3.3.1 | Qualitative comparison
	3.3.2 | Quantitative comparison


	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES
	SUPPORTING INFORMATION


