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Abstract

Functional neuroimaging is widely used to examine changes in brain function associated

with age, gender or neuropsychiatric conditions. FMRI (functional magnetic resonance

imaging) studies employ either laboratory-designed tasks that engage the brain with

abstracted and repeated stimuli, or resting state paradigms with little behavioral constraint.

Recently, novel neuroimaging paradigms using naturalistic stimuli are gaining increasing

attraction, as they offer an ecologically-valid condition to approximate brain function in real

life. Wider application of naturalistic paradigms in exploring individual differences in brain

function, however, awaits further advances in statistical methods for modeling dynamic and

complex dataset. Here, we developed a novel data-driven strategy that employs group

sparse representation to assess gender differences in brain responses during naturalistic

emotional experience. Comparing to independent component analysis (ICA), sparse coding

algorithm considers the intrinsic sparsity of neural coding and thus could be more suitable in

modeling dynamic whole-brain fMRI signals. An online dictionary learning and sparse cod-

ing algorithm was applied to the aggregated fMRI signals from both groups, which was sub-

sequently factorized into a common time series signal dictionary matrix and the associated

weight coefficient matrix. Our results demonstrate that group sparse representation can

effectively identify gender differences in functional brain network during natural viewing,

with improved sensitivity and reliability over ICA-based method. Group sparse representa-

tion hence offers a superior data-driven strategy for examining brain function during natural-

istic conditions, with great potential for clinical application in neuropsychiatric disorders.

Introduction

Functional neuroimaging techniques, such as functional magnetic resonance imaging (fMRI),

are widely used to examine changes in brain function associated with age, gender, and a wide

range of neuropsychiatric disorders [1–3]. Most of these studies used task-based paradigms,

where participants perform laboratory-designed tasks in the scanner. While these tasks are

designed to engage and isolate a particular aspect of brain function such as working memory
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or visual perception, it is unclear whether and to what extent such paradigms could uncover

the complex mental processes in real life. To address such limitation, recent fMRI studies

employed naturalistic stimuli, such as movie and music, to examine neural processes under

real-life condition [4–10]. Despite the dynamic and complex nature of these naturalistic para-

digms, they evoke highly consistent brain responses across individuals, laying down the foun-

dation of using naturalistic paradigms to study real-life cognition [4–10].

While naturalistic fMRI paradigms are increasingly used to map brain function in healthy

populations, only a handful of studies have adopted them to the examination of group differ-

ences [2,7–9]. One challenge is the lack of effective statistical models to decode neural corre-

lates of naturalistic stimuli [11]. The inputs in naturalistic paradigms are often dynamic and

complex, hence difficult to model using traditional hypothesis-driven methods such as general

linear model (GLM) [12]. Data-driven approaches, which do not depend on specifications of

the input stimuli, are hence better suited for naturalistic fMRI studies. Progress has been made

with inter-subject correlation and independent component analysis (ICA): several studies

have demonstrated that neural synchrony, as measured by inter-subject correlation, during

natural viewing is reduced in patients with autism and depression [8,9]. However, inter-sub-

ject correlation compares neural responses at the group level, offering very limited view on

individual brain responses. ICA, on the other hand, could reconstruct the functional networks

for individual brain. A recent naturalistic fMRI study has successfully used ICA to capture

altered functional brain networks in individual patients with reduced levels of consciousness

[13].

ICA is based on the assumption of independence between each signal source [14]. Since

brain is composed of complex interconnected networks, there is no biological reason for dif-

ferent spatial components to hold independent distributions [15]. In addition, ICA does not

account for the intrinsic sparsity of neural coding [14]: the brain encodes information with

activities of sparse sets of neuronal ensembles while the majority of neurons are silent [16]. To

address this issue, recent studies have decomposed fMRI signals into linear combinations of

multiple atoms based on sparse representation of whole-brain fMRI signals [17–23]. Sparse

population coding of a set of neurons has been showed to be more effective than ICA in recon-

structing brain networks [15], which is increasingly applied to fMRI data analyses [18,20,24].

The basic sparse representation pipeline is to extract the whole-brain fMRI signals of one sub-

ject into a big data matrix, which is subsequently decomposed into a dictionary matrix and an

associated coefficient matrix by sparse coding algorithm [25]. Thus, the time series of each dic-

tionary atom corresponds to the functional activities of a brain network, and its associated

coefficient vector represents the spatial map of this brain network.

However, as there is no correspondence of dictionary atoms across subjects and groups, it

is difficult to derive group inference or compare group differences using previous single sub-

ject sparse representation. To address this problem, we here adopted a group sparse represen-

tation-based computational framework to extract functional networks during natural viewing

[26]. The advantage of our method is that a common signal dictionary can be learned from the

aggregated fMRI signals of two groups of subjects and then the coefficient matrices corre-

sponding to each common dictionary can be used to statistically assess group differences. To

learn a common signal dictionary for two groups of subjects from group sparse representation,

we assumed that all the subjects evoke highly consistent neural temporal responses during nat-

ural viewing, as revealed by previous naturalistic fMRI studies [6,27,28]. Here, we applied

group sparse representation to naturalistic fMRI data acquired from healthy males and females

while they watched an emotional movie. We then statistically compared the gender differences

of functional activity based on the correspondences established by the common learned dictio-

nary. The effectiveness and the reproducibility of our method were further evaluated against
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ICA-based method. Our results demonstrated the feasibility and superiority of group sparse

representation on elucidating functional networks and group differences in functional brain

activity under naturalistic conditions.

Materials and methods

Overview

The overview of our analytical pipeline is shown in Fig 1. First, whole-brain fMRI signals of

each subject were extracted using a common mask and then stacked into a 2D signal matrix

(Fig 1a). Signal matrices from all participants were pooled and concatenated in the spatial

dimension into a 2D matrix S (Fig 1b), which was then factorized into one common dictionary

matrix D, and the associated coefficient matrix A composed of 2D individual coefficient sub-

matrices for each participant, using online dictionary learning and sparse coding method (Fig

1c) [25]. Finally, the derived coefficient matrices were used to assess functional differences

between two groups of subjects, and the test-retest reliability of group sparse representation

(Fig 1d). All variables used in the main text are defined in S1 Table.

Data acquisition and pre-processing

18 right–handed (10 females, 8males) healthy subjects (ages 27±2.7) participated in the study,

who were all recruited from the University of Queensland and compensated for their partici-

pation. Every participant signed a written informed consent. The subject recruitment for the

first session lasted from April to October in 2014, while the recruitment for second session

lasted from July to December in 2014. The study was approved by the ethics committee of the

Fig 1. The computational framework of group sparse representation on the whole-brain fMRI signals from two groups of

subjects (GF: Female, GM: Male). (a) Extracting whole-brain fMRI data from subjects x (subscript represents the label of subject,

e.g., x). (b) FMRI data matrices (Sx) from all the subjects are aggregated (S). (c) Coefficient matrix A with the same spatial

information and group correspondence of S, which is decomposed into 2 matrices (AGF, AGM) corresponding to two groups (GF,

GM), and each group is made of sub-matrices corresponding to the sparse representation for each subject.

https://doi.org/10.1371/journal.pone.0190097.g001
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University of Queensland and was conducted according to National Health and Medical

Research Council guidelines. The experiments comprised two scanning sessions with an inter-

val of around 3 months. For each session, participants underwent an 8 min resting state fMRI

exam with eyes closed, and then freely viewed a 20-min movie The Butterfly Circus. This is a

short, positively valenced movie that depicts the story of a man born without limbs who is

encouraged by the showman of a renowned circus to discover his own potential. All partici-

pants reported that they had not previously seen the movie. The movie stimulus was presented

using the Presentation software (NeuroBehavioral Systems, USA) and displayed via an MRI-

compatible monitor located at the rear of the scanner. The soundtrack of the movie was deliv-

ered through MRI-compatible audio headphones (Nordic NeuroLab, Norway). After 3

months, 16 (9 females, 7 males) subjects were scanned with the same protocol for test-retest

reliability analysis (session B dataset), although 2 subjects could not return for the re-scan.

Thus these 2 subjects were excluded from our test-retest reliability analysis. All structural

and functional images were scanned in a whole-body 3T Siemens Trio MRI Scanner. The

scanning parameters are TR/TE/FA/FOV of 2200ms/30ms/79˚/134mm×134mm, resolution of

3mm×3mm×3mm, and dimension of 64×64×44.

Functional images were preprocessed using Statistical Parametric Mapping toolbox

(SPM12). The preprocessing pipeline included slice timing correction and realigning, co-regis-

tration, normalization, motion correction, spatial smoothing with 6mm full width half maxi-

mum Gaussian kernel, and band pass filtering (0.0085–0.15 Hz). Nuisance covariates

including WM, CSF and Friston-24 motion parameters were then regressed out using the

Data Processing Assistant for Resting-state fMRI software (DPARSF) to reduce potential

effects of physiological confounds. By computing the intersection of all single brain masks of

each participant together, we generated a group-wise common mask to extract whole brain

signals. In this way, we ensured that the same voxels are processed for each participant. We

also calculated the mean head motion parameter as the mean absolute displacement of

each brain volume as compared to the previous volume estimated from the translation

parameters in the x (left/right), y (anterior/posterior), and z (superior/inferior) directions

(displacement = square root (x2+y2+z2)) of two groups [29], and found no significant group

differences of mean head motion parameter (P>0.05, Mean±SD: 0.0552 mm±0.0357 for the

female group, and 0.0703 mm±0.0292 for the male group).

While the whole naturalistic fMRI dataset was 20-minitute, we first segmented the 20-min

fMRI dataset into three segments, according to the narrative structure of the movie The Butter-
fly Circus performed by three experts trained in screenwriting and film theory [10]. We then

applied our framework to one segment of fMRI data (7~13min, both sessions) that comprised

a complete event, for the efficiency of computation and investigation of the over-completion

problem. We finally replicated all analyses on the whole 20-minute dataset for further valida-

tion. Based on both results, we investigated the over-completion problem, that is, less observa-

tions (n) than predictors (p) [25]. Since the two datasets yielded similar results, only results

based on middle segment of fMRI are presented in the main text, while the results based on

whole fMRI datasets are provided in the supplemental materials (S1–S4 Figs, S2 and S3

Tables).

Affective ratings of the movie. After participants completed each scanning session, they

were asked to rate their experience when watching the movie, including the level of boredom,

enjoyment, valence, as well as the audio and video quality of the movie during fMRI acquisi-

tion, in the scale between 1 and 5 (S4 Table). Note that higher rating of boredom means more

boring the participants feel, while higher rating of enjoyment refers to more enjoyable the

participants experience. Participants rated the movie as positive and happy (3.7±1.2). For rat-

ings of boredom, where males (2±1.07) tend to rate higher scores than females (1.10±0.32)
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indicating that females were more engaged than males during movie viewing (P<0.0217, two-

sample t-test; Table 1). We did not detect significant group differences in ratings of enjoyment,

valence and audio and video quality between male and female (P>0.05; Table 1).

Dictionary learning and sparse representation theory

The sparse coding framework is implemented by custom codes in Matlab (MathWorks, MA,

USA) and a publicly available software (http://spams-devel.gforge.inria.fr/). In this framework,

each signal sample si in the data matrix S = [s1,s2,. . .,sn]2Rt×n is modeled as the sparse and lin-

ear combination of atoms in a learned dictionary D = [d1,d2,. . .,dm]2Rt×m, i.e., si = D × ai and

S = D × A, where A = [a1,a2,. . .,an]2Rm×n is the weight coefficient matrix for sparse representa-

tion and each column ai is the corresponding weight vector for si [30].

Training a solution for sparse representation of S = [s1,s2,. . .,sn]2Rt×n, the empirical cost

function is summarized in Eq (1) by considering the average loss of representation for n sig-

nals.

f n Dð Þ≜
1

n

Xn

i¼1
‘ðsi;DÞ ð1Þ

The loss function is defined in Eq (2) with the ℓ2 norm that yields the minimization of the

representation error, and the ℓ1 norm that constrains the sparsity of ai. Here, λ is a regulariza-

tion parameter to trade off the representation error and sparsity level.

‘ si;Dð Þ≜ min
ai2Rm

1

2
ksi � Daik

2

2
þ λkaik1

ð2Þ

As we mainly focus on the fluctuation shapes of input signals and aim to prevent D from

becoming arbitrarily large, we constrain columns d1,d2,. . .,dm in D with Eq (3).

C≜ fD 2 Rt�m s:t: 8j ¼ 1; . . . m; dT
j dj � 1g ð3Þ

In summary, the sparse representation problem is summarized as a matrix factorization

problem as shown in Eq (4). Similar as in Eq (2), the Frobenius norm is employed for factori-

zation error minimization, and the ℓ1 norm of A matrix yields sparsity. The alternative optimi-

zation strategy [31] is usually employed to solve the problem, where the dictionary D and

coefficient A are iteratively optimized, by alternatingly minimizing over one while keeping the

other fixed, and the dictionary D is initialized randomly, as proposed by [31]. A method based

on this strategy, called online dictionary learning, which could deal with infinite data input

[25], was proposed and the software (http://spams-devel.gforge.inria.fr/) was developed for

public use. Comparing with classical dictionary learning methods that access the whole train-

ing data at each iteration to optimize the dictionary D and coefficient A, the online dictionary

learning improves the efficiency by progressively augmenting the training data [25,32]. In each

iteration, the sparse coding and dictionary updating is performed with a subset of the training

data based on stochastic optimization. Afterwards, the subset is then augmented with a new

Table 1. Affective ratings of the movie and head motion parameter of females and male.

gender boredom * enjoyment valence audio/video quality head motion

female 1.10±0.32 4.20±1.23 3.60±1.17 3.90±0.99 0.0552±0.0357

male 2.00±1.07 3.75±0.89 3.62±1.19 4.00±0.76 0.0703±0.0292

* indicates significant differences between females and males; P<0.0217, two-sample t-test

https://doi.org/10.1371/journal.pone.0190097.t001
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training sample, and the optimization is performed again on the new training data with the

outcome of the previous iteration as warm restart. The online dictionary learning repeats these

iterations until all training data have been adopted, providing an efficient solution with low

memory consumption and computational cost as compared to classical dictionary learning

methods [25]. In this paper, we employ this online dictionary learning and sparse coding

method for our group sparse representation analysis.

min
D2C;A2Rm�n

1

2
kS � DAk

2

F þ λkAk
1;1

ð4Þ

Sparse representation of whole-brain fMRI signals

S ¼ ½SGF
; SGM

�; SGF
¼ ½SF1; SF2; . . . ; SFk�; SGC

¼ ½SM1; SM2; . . . ; SMl� ð5Þ

Whole-brain fMRI signals of each subject were extracted and stacked into a 2D matrix Sx (x
represents the label of participant, SFp or SMq). The fMRI signals of each voxel make up the col-

umns of Sx. Then, all signal matrices from two groups were pooled and concatenated in the

spatial dimension into a big 2Dmatrix S (Fig 1). Online dictionary learning and sparse coding

method was adopted to decompose S into a learned dictionary matrix D and the coefficient

matrix A [25]. Note that D is commonly shared by all subjects, and the A has the same spatial

voxel organization and group correspondence of S, which permits group statistical analyses

and comparison. Thus, A can be decomposed into 2 matrices which represent male and female

groups, and each group comprises sub-matrices of participant as shown in Fig 2, e.g., AGF is

composed of AF1, AF2. . . AFk. Each column of D corresponds to a dictionary atom and its time

course, and each row in Ax (AFp or AMq) represents its coefficient vector that assigns a coeffi-

cient to each voxel in the brain and can be mapped back to the brain volume.

There are two essential parameters in sparse coding strategy: λ that keeps balance between

the residual error of sparse representation and the sparsity of spatial regions in each atom, and

the number of dictionary atoms m. Currently, there is no established criteria on determining λ
and m. We thus assessed the impact of parameter settings by systematically varying λ (0.1, 0.5,

1) and m (100, 200, 400). Specifically, we conducted network decomposition, group difference

detection and test-retest reliability analyses using different combinations of λ and m. Results

in the main text were obtained when λ is set as 0.5 and m as 200, and results using other

parameter settings are presented in the supplementary materials. While our main conclusion

is relatively robust to different parameter settings (S5–S7 Figs), we found the setting of λ as 0.5

and m as 200 produces the highest test-retest reliability and highest number of clusters show-

ing significant group difference, suggesting this setting is relatively more robust (S6–S8 Figs).

Group-wise statistical analysis

A ¼ ½AGF
; AGM

�;AGF
¼ ½AF1;AF2; . . . ;AFk�; AGC

¼ ½AM1;AM2; . . . ;AMl� ð6Þ

Coefficient matrix A maintains the spatial information and group correspondence of S. A can

be decomposed into 2 matrices corresponding to two groups (AGF, AGM), and each group is

made of sub-matrices corresponding to the sparse representation for each subject (Fig 2). F

and M denote female and male, respectively. Each row of this sub-matrix Ax represents the

individual coefficient spatial map of each dictionary atom (subscript x represents the label of

participant, e.g., Fp represents the pth subject in the Female group), so the Ax(i, j) in each sub-

matrix represents the reconstruction coefficient of the jth voxel to the ith atom in the dictionary

Sparse coding reveals gender differences
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(Fig 2). For all the subjects together, we hypothesize that each coefficient is group-wisely null,

and the T-test (with T defined as Eq (7)) is carried out to test acceptance or rejection of the

null hypothesis for each element. The derived T-value is transformed to z-score [12].

T i; jð Þ ¼
dAGði; jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAGði; jÞÞ

p ; AG i; jð Þ ¼ fAFp i; jð Þ : p ¼ 1;2; . . . k; AMq i; jð Þ : q ¼ 1;2; . . . lg

dAGði; jÞ ¼
1

k þ l

Xk

p¼1
AFpði; jÞ þ

Xl

q¼1
AMqði; jÞ

� �

Var AGði; jÞð Þ ¼
1

k þ l

Xk

p¼1
ðAFpði; jÞ � dAGði; jÞÞ2 þ

Xl

q¼1
ðAMqði; jÞ � dAGði; jÞÞ2

� �
ð7Þ

Due to the sparsity of coefficient matrix A, the t-test result of A is also sparse. Each row of t-

test result represents the statistically significant contribution to each dictionary atom, and can

be mapped back to brain volume. The resultant z-score map hence represents the spatial distri-

bution of the atom commonly shared by two groups (Fig 2). Corresponding coefficient spatial

maps were then used to compare differences between the two groups.

To test group differences in each dictionary atom, each row of sub-coefficient matrices Ax

(AFp or AMq) are set as input of SPM12 for two-sample t-tests. Search volume is masked by the

z-score map from the one-sample t-test corresponding to the same dictionary atom. Both left-

Fig 2. The computational framework of group-wise statistical analysis. Coefficient matrix A is composed

of two groups of subjects (GF: k female subjects, GM: l male subjects). Each row in group T-test represents a

component network, which is then mapped backed to brain volume color coding with z-scores and called z-

score map (nF1 = . . . = nFk = nM1 = . . . = nMl = nx). Each row of sub-coefficient matrices Ax (AFp or AMq)

representing individual coefficient spatial map of all the subjects are set as input of SPM12 for two-sample t-

tests.

https://doi.org/10.1371/journal.pone.0190097.g002
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tailed and right-tailed two-sample t-tests were performed. Group-difference results were thre-

sholded using a joint probability distribution method to correct for multiple comparisons [33].

Two levels of thresholding were used, where a threshold of P<0.005 was set for voxel height,

and paired with two different thresholds for cluster extent (FDR-corrected P<0.005 and FDR-

corrected P<0.05).

Independent component analysis

To evaluate the performance of group sparse representation method, we compared it to three

commonly-used data-driven strategies. First, we used tensor independent component analysis

(tensor ICA) implemented in FSL MELODIC toolkit [34]. Tensor ICA is commonly used for

decomposing the data into independent components where stimulus paradigm is consistent

among subjects. Specifically, the number of components in our study was experimentally set

to 50, or 100 when specified in the text. Dual regression was then used to project tensor ICA

components to each subject space, which were then used for group statistical and test-retest

reliability analyses. Similar method is employed to conduct group statistical analysis in

SPM12. As no significant results were revealed with the stringent threshold used for group

sparse representation, we used a lenient threshold where P<0.01was used for voxel height, and

P<0.01was used for cluster extent.

In addition to tensor ICA, we also examined the functional data with spatial concatenation

group ICA method, where the input and output is organized in the same way as group sparse

representation [35,36]. This ICA method was implemented using the Fast ICA algorithm

[37,38]. Specifically, subjects’ data were concatenated in the spatial dimension into a big signal

matrix, which was then factorized into a common time series mixing matrix and the indepen-

dent spatial components matrix. The spatial components matrix had the same spatial organiza-

tion of input data and was composed of 2D sub-matrices representing the spatial components

for each participant, similar to the coefficient matrix derived by our group sparse representa-

tion. Here, the number of components was experimentally set to 50, or 100 when specified in

the text. Similar method was adopted to generate group z-score maps and conduct group sta-

tistical analysis. As no significant results were revealed with the stringent threshold used for

group sparse representation, we used a lenient threshold of P<0.01 for voxel height and

P<0.01 for cluster extent.

Finally, we also adopted commonly used temporal concatenation group ICA, as imple-

mented using GIFT Matlab software [39]. Subject-specific spatial maps were extracted using

back-reconstruction for group statistical and test-retest reliability analyses. As no significant

results were revealed with the stringent threshold used for group sparse representation, we

used a lenient threshold where P<0.05 was used for voxel height and P<0.05 was used for clus-

ter extent. Since temporal concatenation group ICA yielded similar results, they were mostly

presented in the supplemental materials (S9 and S10 Figs, S5 Table).

Corresponding brain networks derived across methods were identified by matching them

to established network template [40], followed by careful visual inspection. Furthermore, the

corresponding clusters showing gender difference detected across methods were defined by

matching them to the Brodmann area and automated anatomical labeling (AAL) atlas, fol-

lowed by careful visual inspection.

Test-retest reliability analysis

To test the reproducibility of each brain network fMRI measures, we conducted the same

group sparse representation, tensor ICA, spatial and temporal concatenation group ICA on

fMRI dataset of session B (16 participants viewed the same movie for the second time), and
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then identified matching z-score maps which share maximum number of overlapping voxels.

The matching was also confirmed with careful visual inspection. For each selected matching

network, the networks from two scans were first binarized using a threshold of Z>1.65, and

then the common brain region shared by two scans was defined as a mask to evaluate the reli-

ability. The reliability was quantified by calculating the intra-class coefficient (ICC) between

measures from the two scans [41,42]. A oneway ANOVA was applied to the measures of the

two scans across subjects, to derive between-subject mean square error MSp and within-subject

mean square error MSe, where the measures here referred to z-score, thus ensuring measures

of different subjects comparable. ICC values were defined as Eq (8), where d is the number of

repeated sessions (here d = 2). This form of ICC has been widely used in previous test-retest

reliability analyses of fMRI data [43,44].

ICC ¼
MSp � MSe

MSpþ ðd � 1ÞMSe
ð8Þ

Only the common brain regions shared by both individual spatial maps and mask defined

above were included in ICCs calculation. For both group sparse representation and ICA-based

methods, we evaluated test-retest reliability at both scan-wise and voxel-wise levels, following

previous methods [43]. Scan-wise level was defined as the average z-score across all voxels

within the common mask generating a single ICC for whole network, while the voxel-wise

level was defined as the individual voxel’s z-score generating ICCs for all the voxels within

mask. The test-retest reliability is classified as excellent (ICC>0.8), good (ICC 0.6–0.79), mod-

erate (ICC 0.4–0.59), fair (ICC 0.2–0.39) or poor (ICC<0.2).

Results

Functional brain networks identified with group sparse representation

We first investigated whether group sparse representation approach could identify functional

brain networks of interests during movie viewing. We applied group sparse coding to natural-

istic stimuli fMRI data aggregated from 18 healthy subjects. Voxels with significant reference

to each dictionary atom were determined using an experimentally determined threshold

(Z>1.65, one-sample t-test). Group sparse representation identified several brain networks

that have been established previously, including auditory (#72), visual (#19, #143, #37), dorsal

attention (#28), default mode (#46), and salience networks (#119) (Fig 3). Some networks

identified with sparse representation appeared to be combinations of different networks, such

as auditory and supplementary motor networks (#16), default mode and salience networks

(#81), default mode and cerebellar networks (#54, #132), salience and executive control net-

works (#64), auditory and visual networks (#61) (Fig 3). While network patterns identified

under different λ (0.1, 0.5, 1) and m (100, 200, 400) settings are generally similar, the impact

of parameter settings can be observed (S5 Fig): the coefficient maps appear to be coarse and

noisy with small λ and dictionary size, and become sparse with large λ and dictionary size

(S5 Fig). Overall, the setting of λ as 0.5 and m as 200 resulted in the most robust network

decomposition.

With the same threshold of Z>1.65, both tensor ICA and spatial concatenation group ICA

identified similar functional brain networks, including auditory (#7/#11), visual (#3, #22/#28,

#47), dorsal attention networks (#11/#26), and default mode and salience (#2/#10) (Fig 4). Five

networks were detected by all three methods (labeled in the same color in Figs 3 and 4). These

results validate that group sparse representation can identify meaningful brain networks

driven by naturalistic stimuli. In addition, sparse representation method detected artifact com-

ponents that related to head-motion, white matter, susceptibility-motion, cardiac, and MRI
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acquisition/reconstruction (S11 Fig), similarly to the ICA methods [45,46]. While these net-

works share spatial patterns with ICA networks in general, they are more circumscribed than

the latter, suggesting the sparse representation framework might be more specific and accurate

in defining functional networks. We further examined this possibility by comparing 1) the sen-

sitivity in detecting group differences and 2) the test-retest reliability among the three data-

driven methods.

Gender differences in functional brain networks

A question rises up that whether group sparse representation could detect gender differences

in brain responses to natural emotional experience. As shown previously, females tend to

present greater emotional reactivity [2,7,47,48]. Hence, we hypothesized that brain responses

to the naturalistic emotional stimulus is more robust in female than male participants. To

test this hypothesis, we compared the coefficient spatial maps for each dictionary atom

between the female and male groups. Remarkably, several network regions were found to

show higher coefficients, or stronger functional connectivity, in females than males, whereas

no regions were found to be higher in males (Fig 5a; two-sample t-tests). Specifically, females

display significantly increased functional connectivity in higher order brain centers, includ-

ing posterior cingulate cortex, precuneus, insula, anterior cingulate cortex, superior medial

frontal gyrus, and superior parietal lobule, as well as thalamic nucleus and medial occipital

gyrus (Fig 5a; Table 2, clusters 1–7; P<0.005 for voxel height and FDR-corrected P<0.005 for

cluster extent). At a less stringent threshold, additional 7 clusters were detected at the precu-

neus, posterior cingulate cortex, superior temporal gyrus, inferior frontal gyrus, primary and

secondary visual cortices and cerebellar Crus I (Fig 5a; Table 2, clusters 8–14; P<0.005 for

voxel height and FDR-corrected P<0.05 for cluster extent). Note, with this less stringent

threshold or even an uncorrected threshold (P<0.005 for voxel height and P<0.005 for

Fig 3. Representative brain networks (z-score maps) identified by group sparse representation method. Networks identified by both

sparse representation and ICA methods are highlighted by rectangle frames (color code shared with Fig 4).

https://doi.org/10.1371/journal.pone.0190097.g003
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cluster extent), we did not detect any clusters showing greater functional connectivity in

male than female participants.

In contrast, the effect of gender difference was much weaker with tensor ICA and spatial

concatenation group ICA networks, where no significant gender difference was detected using

either the two FDR-corrected thresholds (P<0.005 for voxel height and FDR-corrected

P<0.005 or 0.05 for cluster extent), or the one without FDR correction (P<0.005 for voxel

height and P<0.005 for cluster extent). Only with a more lenient threshold were we able to

detect significant clusters– 3 clusters for tensor ICA and 6 clusters for spatial concatenation

group ICA—with greater connectivity in female than male participants (Fig 5b and 5c, S6

Table, clusters 1–3, S7 Table, cluster 1–6; P<0.01 for voxel height and P<0.01 for cluster

extent). Two of these clusters, precuneus and anterior cingulate cortex, were detected with the

group sparse representation results at stringent FDR-corrected thresholds (highlighted with

same color in Fig 5). These results suggested that group sparse representation is more effective

and sensitive for detecting functional differences in brain networks than the ICA-based

method.

In addition, we examined whether these results are robust to different parameter settings in

sparse representation. We repeated the group statistical comparison analyses with λ of 0.1, 0.5,

and 1, and dictionary size of 100, 200, and 400. Across all settings, we detected significantly

greater functional connectivity in female than male group, and nothing in the opposite con-

trast (P<0.005 for voxel height and FDR-corrected P<0.05 for cluster extent). The comparison

Fig 4. The representative brain networks (z-score maps) identified by (a) tensor ICA method, and (b) spatial

concatenation group ICA. Networks identified by both sparse representation and ICA methods are highlighted by

rectangle frames (color code shared with Fig 3).

https://doi.org/10.1371/journal.pone.0190097.g004
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Fig 5. Clusters showing gender difference. (a) 14 clusters detected by group sparse representation that show significantly higher activation in

females than males: clusters #1–7 (P<0.005 for voxel height and FDR-corrected P<0.005 for cluster extent); cluster #8–14 (P<0.005 for voxel

height and FDR-corrected P<0.05 for cluster extent). Clusters detected by (b) tensor ICA and (c) spatial concatenation group ICA that show

significantly higher activation in females than males (P<0.01 for voxel height and P<0.01 for cluster extent). Clusters belonging to same brain region

identified by all methods are highlighted in colors.

https://doi.org/10.1371/journal.pone.0190097.g005
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with λ as 0.5 and m as 200 appeared to be the most sensitive, with the more significantly differ-

ent regions detected than other settings (S6 Fig). Nonetheless, many of the same clusters were

detected using different parameters (S7 Fig), suggesting the gender difference results were

robust to parameter settings in sparse representation.

Table 2. Brain regions with greater activation in females than males as detected by group sparse representation (sorted by p-value in ascending

order). The Network Index refers to the index of dictionary atom generated by group sparse representation algorithm (corresponding to the index in Fig 3).

Cluster Index (x y z) T-value Broadmann’s area Region Cluster size Network Index

1 (-10–76 34) 6.45 7,31 precuneus, posterior cingulate cortex 245 19

(12–72 30) 4.97

(12–70 14) 4.60

2 (2 46 16) 4.74 9, 10, 32 superior medial frontal lobe, anterior cingulate cortex 245 132

(-10 52 16) 4.58

(-4 36 20) 4.30

3 (-16–20–2) 6.17 medial dorsal nucleus, ventral lateral nucleus 366 132

(-2–14–2) 5.90

(5–20 0) 4.83

4 (0 20 30) 4.77 32,24 anterior cingulate cortex 180 64

(-2 12 40) 4.59

(6 22 14) 4.15

5 (12–50–18) 4.71 cerebellum 185 132

(4–54–14) 4.61

(-6–54–16) 4.42

6 (32–70 40) 4.15 7, 19 superior parietal lobule, medial occipital gyrus 147 143

(28–78 42) 3.95

(38–80 42) 3.18

7 (-26 26–10) 6.07 13 insula 150 64

(-32 8 4) 4.92

(-32 20 0) 4.32

8 (0–54 48) 4.24 7 precuneus 104 46

(2–58 54) 3.83

(-2–50 54) 3.80

9 (26–74–24) 5.13 cerebellum 119 54

(34–86–32) 4.46

(20–80–24) 4.23

10 (-26–80–30) 5.80 cerebellum 140 54

(-12–76–24) 4.27

(-22–66–32) 4.17

11 (46 22 2) 4.93 22, 47 superior temporal gyrus, inferior frontal gyrus 95 64

(54 4 4) 4.07

(50 20–6) 4.02

12 (-58 6–2) 5.25 22 superior temporal gyrus 99 64

(-58–2 0) 3.48

(-50 12–12) 3.11

13 (20–96–4) 5.19 17, 18 Primary visual cortex, secondary visual cortex 81 143

(18–92–14) 4.40

(10–80–18) 3.97

14 (2–56 40) 4.48 7, 31 precuneus, posterior cingulate cortex 105 143

(-4–64 48) 4.23

(4–44 36) 3.31

https://doi.org/10.1371/journal.pone.0190097.t002
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Test-retest reliability

Next, we sought to establish the long term test-retest reliability of our method. The same par-

ticipants underwent the fMRI scan while they viewed the same movie three months later (ses-

sion B). Group sparse representation, tensor ICA, spatial and temporal concatenation group

ICA were used to identify functional brain networks in the repeated scan sessions. To compare

the test-retest reliability of these methods, we focused on four networks that can be detected

between session A and B by all three methods: visual network, auditory network, dorsal atten-

tion network, and default mode-salience network (Fig 6 and S8 Fig). In addition to these four

networks, group sparse representation identified one more matching network, the default

mode-cerebellar network (Fig 6a), while tensor ICA identified the frontoparietal network.

Fig 6. Test-retest reliability of brain networks. (a) Brain maps of the voxel-wise ICCs of matching networks identified by group sparse

representation. (b) Average voxel-wise ICCs and (c) scan-wise ICCs of networks detected by all the methods (Sparse representation/tensor

ICA/spatial concatenation group ICA/temporal concatenation group ICA: Visual: #143/#3/#28/#30; Auditory: #72/#7/#11/#1; Dorsal attention:

#28/#11/#26/#32; Default mode-salience: #81/#2/#10/#11). Error bars signify variance.

https://doi.org/10.1371/journal.pone.0190097.g006
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The reliability was assessed at both voxel-wise and scan-wise levels [43]. All four methods

showed a range of reliability at the voxel level across different networks (Fig 6), with greater

variability in tensor ICA networks (larger error bars in Fig 6b). On average, voxel-wise ICCs

are moderate in the visual network (0.4573, #143; 0.4459, #30) and the default mode-salience

network (0.5147, #81; 0.5376, #11) using group sparse representation and temporal concatena-

tion group ICA, but reduced to fair or poor level with tensor ICA (0.3693, #3; 0.3940, #2) and

spatial concatenation group ICA (0.3131, #28; 0.0363, #10) (Fig 6b). For the auditory network,

average voxel-wise ICCs are at the moderate level using all four methods (0.4261, #72; 0.5086,

#7; 0.4558, #11; 0.4268, #1) (Fig 6b). Average voxel-wise ICCs are fair in the dorsal attention

network using group sparse representation (0.3595, #28) and temporal concatenation group

ICA (0.3869, #32), and are at moderate level using the other two ICA methods (0.4969, #11

and 0.4794, #26) (Fig 6b). To statistically compare the reliability among four methods, we

focused on the voxels that are identified by all methods for these matching networks. In two

out of four (visual and default mode-salience), voxel-wise ICCs are significantly higher with

group sparse representation than tensor ICA and spatial concatenation group methods (paired

t-tests, Bonferroni-corrected P<0.001, Fig 6b).

Consistent with previous report [43], scan-wise ICCs are improved over the average voxel-

wise ICCs (Fig 6b and 6c). Specifically, scan-wise ICCs of the visual and auditory networks

using sparse representation are both excellent (0.8786, #143 and 0.8439, #72), and reduced

some with tensor ICA (0.6543, #3; 0.7131, #7), spatial (0.6123, #28; 0.8317, #11) and temporal

(0.7586, #30; 0.7087, #1) concatenation group ICA (Fig 6c). For the dorsal attention network,

scan-wise ICCs are all good across all four methods (0.7269, #28; 0.7402, #11; 0.7452, #26;

0.7418, #32) (Fig 6c). The reliability of the default mode-salience network also shows much

higher values with temporal concatenation group ICA (0.7632, #11) and sparse representation

(0.6357, #81) than the two ICA methods (0.3634, #2 and 0.1689, #10). Some additional net-

works identified by sparse representation also showed excellent scan-wise ICC such as the

default mode-cerebellar network (0.8064, #132).

To further assess the impact of parameter setting on test-retest reliability, we repeated the

reliability analyses using a combination of component numbers and lambda (m = 100, 200,

400; λ = 0.1, 0.5, 1) for group sparse representation and a high component number for tensor

ICA and spatial concatenation group ICA (100) (S8 Fig). We chose three functional networks

that can be robustly identified under all settings: visual, auditory and dorsal attention network.

Averaging across the three networks, the highest reliability was obtained with m = 200 and

λ = 0.5, further supporting the use of these parameters in the main analyses (S8 Fig). Similarly,

tensor ICA and group ICA were more reliable with 50 as the component number than 100

(S8 Fig).

Discussion

A variety of methods have been developed for functional neuroimaging analysis, such as gen-

eral linear model (GLM) [12], seed-based method [49], principal component analysis (PCA)

[50], singular value decomposition (SVD) [51], inter-subject correlation (ISC) [8], and inde-

pendent component analysis (ICA) [40]. While GLM is widely used in detecting task-evoked

brain activations, ICA is one of the most common methods in characterizing brain network

using naturalistic or resting-state fMRI paradigms. Tensor ICA is particularly suitable for nat-

uralistic fMRI paradigms when data are acquired with consistent stimulus presentation [9].

However, the underlying statistical assumption of ICA is not well supported by neurobiologi-

cal basis—brain networks are not necessarily independent from each other. Rather, they could

recruit inputs from the same cortical region and interact between each other in the service of
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behaviors [15,52–57]. On the other hand, sparse coding algorithm does not constrain dictio-

nary matrix to be uncorrelated or independent, resulting in low level of correlation among

atoms [18,24]. In addition, sparse population coding of a set of neurons has been shown to be

more effective in detecting brain activity patterns and brain networks [15,17,23]. Recently, a

Sparse SPM algorithm based on group sparse dictionary learning shows superior performance

for characterizing resting state functional network, over seed-based and ICA methods. How-

ever, due to generating common group network and different individual temporal dictionar-

ies, this algorithm differs from our framework that assumes common temporal responses

across subjects [23]. Therefore, our group sparse representation framework offers potential

advantage in extracting functional brain networks during naturalistic paradigms. Our study

presents comprehensive comparisons between group sparse representation-based and three

ICA-based methods, based on their performance on network decomposition, group difference

detection and test-retest reliability analyses. Our findings suggest that, while all four methods

offer comparable test-retest reliability, sparse representation-based method could be more sen-

sitive in identifying functional brain networks during naturalistic paradigms.

Our method builds upon previous studies that employed group sparse representation on

static task-based fMRI data [26], and provides one of the first applications of group sparse

representation to naturalistic neuroimaging paradigms. Comparing with individual-based

sparse representation methods [18,24], group sparse representation method can automatically

establish correspondences across individuals and populations, enabling detailed examinations

of group differences or brain-behavioral correlations. Our results revealed that this method

could identify well-known functional connectivity networks during dynamic naturalistic stim-

ulation. Furthermore, we developed rigorous statistical tests to characterize group differences

in functional activity, taking full advantage of the inherent correspondence between individual

networks established by group sparse representation.

The current study employed group sparse representation to detect gender differences in

brain responses during natural emotional experience. This was motivated by previous findings

in psychology and cognitive neuroscience that females respond more strongly than males to

affective stimuli [7,47,58–62]. It is well recognized that females responds more strongly than

males to affective stimulus, particularly in limbic regions such as the anterior cingulate cortex

in response to negative valence [60,62]. Here, we examined the gender differences in emo-

tional experience using a ecologically-valid paradigms [9]. We found support from behavioral

ratings that females were more engaged by this dynamic emotional stimulus than males

(Table 1). Furthermore, our study identified several brain regions that showed stronger func-

tional activations in female. Many of these brain regions are known to contribute to affective

processing. Several clusters are detected at the anterior insula (cluster #7) and anterior cingu-

late cortex (cluster #2, 4), which coactive in response to emotional salience [63]; the anterior

insula is particularly postulated as a hub region that integrates intero- and exteroceptive infor-

mation and generates the subjective experience of emotion [64,65]. In addition, the default

mode network, anchored by the precuneus (cluster #1, 8, 14) and posterior cingulate cortex

(PCC) (cluster #1, 14), is activated more strongly in females than males, potentially reflecting

greater episodic memory retrieval and self reflection associated with emotion and pain [66,67].

The superior temporal gyrus also showed stronger activations in females than males (cluster

#11, 12), consistent with its role in processing emotional facial stimuli [68]. Although the

underlying mechanism of these findings requires further investigation, they support greater

responses to naturalistic emotional stimuli in females than males.

Our study not only demonstrated gender differences in naturalistic emotional experience,

but also characterized meaningful functional brain networks. As shown in Fig 3, several brain

networks identified with group sparse representation are engaged in audio-visual processing,
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including visual (#19, #143, #37) and auditory networks (#72). In addition, networks well

established in the resting state literature are also detected, including the dorsal attention net-

work (#28) associated with attention-demanding activities [69], salience network (#119)

responding for salience detection [70], and default mode network (#46) [71]. Interestingly,

sparse representation approach also identified brain networks that appear to be combinations

of different network regions, such as auditory and supplementary motor networks (#16),

default mode and salience networks (#81), default mode and cerebellar networks (#54, #132),

salience and executive control networks (#64), auditory and visual networks (#61), which

could reflect the interactions between these brain regions during movie viewing. These net-

works show consistent spatial and temporal patterns across sparse representation and ICA

methods (Figs 3, 4 and 7). We then further assessed the test-retest reliability of these brain

Fig 7. Time courses of representative networks identified by group sparse representation, tensor ICA and spatial concatenation

group ICA. Pearson’s correlation between the time courses of group sparse representation and ICA is labeled on the panel of the

corresponding ICA method (upper left corner).

https://doi.org/10.1371/journal.pone.0190097.g007
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networks identified by our method. While participants might be less engaged in viewing the

same movie for the second time, we still observed good test-retest reliability for several net-

works, confirming that the natural viewing condition manifests improved reliability over rest-

ing state condition [72]. On the other hand, we found that the visual, auditory and attention

networks show higher scan-wise ICC values than that of default-salience network (Fig 6). The

lower reliable brain activities of higher order brain regions might indicate affective experiences

might have changed during repeated viewing. Nonetheless, as our main goal of reliability anal-

ysis is to compare the performance of our method to other ICA-based methods, the absolute

values for reliability is not the focus of this study. In addition, sparse representation method

could separate artifact components relating to head-motion, white matter, susceptibility-

motion, cardiac, and MRI acquisition/reconstruction (S11 Fig) [45,46]. Some of these artifact

components might also be influenced by the naturalistic stimuli, such as ones related to the

head motion. Overall, our method can effectively and robustly detect meaningful brain net-

works driven by naturalistic stimuli.

We further assessed the effect of parameter setting in sparse representation with rigorous

statistical analysis (S6 and S7 Figs). We found that the gender differences in functional con-

nectivity were very robust to parameter settings—significantly greater functional connectiv-

ity in female than male group was identified across all parameter settings (P<0.005 for voxel

height and FDR-corrected P<0.05 for cluster extent). The setting used for the main analysis,

λ as 0.5 and m as 200, generated the highest number of clusters showing significant gender

difference (S6 Fig). Network components extracted with this setting also showed the highest

test-retest reliability (S8 Fig), suggesting the selection of this parameter setting is relatively

more robust. Furthermore, our application was not significantly impacted by over-comple-

tion, that is, less observations (n) than predictors (p). Here, the observations are time points

of fMRI scan, and the predictors refer to the learned dictionary atoms. Sparse representation

using either a segment of fMRI data (n<p) or the whole data (n>p) generated very similar

results (S1–S4 Figs, S2 and S3 Tables), suggesting that our results are robust to over-comple-

tion. Other studies have also shown that over-completion is a valid setting in Lasso frame-

work and appears to offer several advantages, including greater robustness when facing with

noises and other kinds of degradation, superior flexibility in matching the generative model

to the structure of input data and better approximation of the underlying statistical distribu-

tion [25,73–75].

In summary, our study developed a novel application of group sparse representation on

naturalistic fMRI data. Using rigorous statistical analyses, we demonstrated that group sparse

representation could reliably identify functional networks during natural viewing and detected

subtle gender differences in these networks with higher sensitivity than ICA-based method.

Hence, the group sparse representation framework could offer a suitable approach in analyzing

dynamic fMRI data during naturalistic paradigms. In the future, dimension reduction of input

data can be investigated to further improve the effectiveness and efficiency of our framework.

In addition, it would be useful to test our framework to naturalistic fMRI datasets acquired

during different emotional movies to further validate and investigate gender differences dur-

ing affective processing. Moreover, this framework could potentially be useful in clinical

research, to detect abnormal brain function and develop neuroimaging markers for neuropsy-

chiatric disorders. One potential concern is that if large differences exist between the groups,

such as patients and healthy controls, it may be inappropriate to pool fMRI data together for

dictionary training. Further investigation is needed to further explore the potential of sparse

representation in clinical neuroscience.
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Supporting information

S1 Fig. Fifteen clusters detected by group sparse representation for whole fMRI data that

show significantly higher activation in females than males. (a) Clusters #1 (P<0.005 for

voxel height and FDR-corrected P<0.001 for cluster extent) (b) Cluster #2–15 (P<0.005 for

voxel height and FDR-corrected P<0.05 for cluster extent). Clusters identified by both group

sparse representation and tensor ICA are highlighted in color (color code shared with S2 Fig).

(TIF)

S2 Fig. Two clusters detected by tensor ICA for whole fMRI data that show significantly

higher activation in females than males (P<0.01 for voxel height and P<0.01 for cluster

extent). Clusters identified by both group sparse representation and tensor ICA are

highlighted in colors (color code shared with S1 Fig).

(TIF)

S3 Fig. Test-retest reliability of brain networks identified for whole fMRI data. (a) Brain

maps of the voxel-wise ICCs of matching networks identified by group sparse representation

and tensor ICA for whole fMRI data. (b) scan-wise ICCs and (c) average voxel-wise ICCs of

networks detected by both methods. Error bars signify variance.

(TIF)

S4 Fig. Comparison of test-retest reliability results using different parameters (m = 100,

200, 400; λ = 0.1, 0.5, 1) for group sparse representation and different component numbers

for tensor ICA (m = 50, 200) (whole fMRI data). (a) Brain maps of the voxel-wise ICCs of

matching networks identified by the two methods. (b) Average scan-wise and voxel-wise ICCs

(Error bars signify the average variance of each network’s voxel-wise ICC).

(TIF)

S5 Fig. Seven representative functional networks identified using different parameters

(m = 100, 200,400; λ = 0.1, 0.5, 1) for group sparse representation.

(TIF)

S6 Fig. Comparison of number of clusters showing significantly greater functional connec-

tivity in female than male group using different parameters (m = 100, 200,400; λ = 0.1, 0.5,

1) for group sparse representation.

(TIF)

S7 Fig. corresponding clusters showing significantly greater functional connectivity in

female than male group using different parameters (m = 100, 200, 400; λ = 0.1, 0.5, 1) for

group sparse representation (clusters identified under m = 200 and λ = 0.5 share the same

indices with Fig 5 in main text).

(TIF)

S8 Fig. Comparison of test-retest reliability results using different parameters (m = 100,

200, 400; λ = 0.1, 0.5, 1) for group sparse representation, and different component num-

bers for tensor ICA and spatial concatenation group ICA (m = 50, 100), and temporal con-

catenation group ICA. (a) Brain maps of the voxel-wise ICCs of matching networks identified

by the three methods. (b) Average scan-wise and voxel-wise ICCs (Error bars signify the aver-

age variance of each network’s voxel-wise ICC).

(TIF)

S9 Fig. The representative brain networks identified by temporal concatenation group

ICA. Networks identified by all methods are highlighted by rectangle frames (color code

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 19 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s009
https://doi.org/10.1371/journal.pone.0190097


shared with Fig 3 in the main text).

(TIF)

S10 Fig. Clusters detected by temporal concatenation group ICA that show significantly

higher activation in females than males (P<0.05 for voxel height and P<0.05 for cluster

extent). Clusters identified by all methods are highlighted in colors (color code shared with

Fig 5 in the main text).
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sor ICA, (c) and spatial concatenation group ICA.

(TIF)

S1 Table. The variables and the explanations.

(DOCX)

S2 Table. Brain regions with greater activation in females than males as detected by group

sparse representation for whole fMRI data(sorted by p-value in ascending order).

(DOCX)

S3 Table. Brain regions with greater activation in females than males as detected by tensor

ICA for whole fMRI data(sorted by p-value in ascending order).

(DOCX)

S4 Table. The questionnaire for subjects rating their experience after scanning session.

(DOCX)

S5 Table. Brain areas with greater activation in females than males as detected by temporal

concatenation group ICA (sorted by p-value in ascending order).

(DOCX)

S6 Table. Brain areas with greater activation in females than males as detected by tensor

ICA (sorted by p-value in ascending order).

(DOCX)

S7 Table. Brain regions with greater activation in females than males as detected by spatial

concatenation group ICA (sorted by p-value in ascending order).

(DOCX)

Author Contributions

Investigation: Yudan Ren.

Methodology: Yudan Ren, Jinglei Lv.

Supervision: Christine Cong Guo.

Writing – original draft: Yudan Ren.

Writing – review & editing: Yudan Ren, Lei Guo, Jun Fang, Christine Cong Guo.

References

1. Calhoun VD, Eichele T, Pearlson G (2009) Functional brain networks in schizophrenia: a review. Fron-

tiers in human neuroscience 3: 17. https://doi.org/10.3389/neuro.09.017.2009 PMID: 19738925

2. Kret ME, De Gelder B (2012) A review on sex differences in processing emotional signals. Neuropsy-

chologia 50: 1211–1221. https://doi.org/10.1016/j.neuropsychologia.2011.12.022 PMID: 22245006

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 20 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190097.s018
https://doi.org/10.3389/neuro.09.017.2009
http://www.ncbi.nlm.nih.gov/pubmed/19738925
https://doi.org/10.1016/j.neuropsychologia.2011.12.022
http://www.ncbi.nlm.nih.gov/pubmed/22245006
https://doi.org/10.1371/journal.pone.0190097


3. Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of

PET and fMRI studies on working and episodic memory. Brain 128: 1964–1983. https://doi.org/10.

1093/brain/awh608 PMID: 16049041

4. Bartels A, Zeki S (2005) Brain dynamics during natural viewing conditions—a new guide for mapping

connectivity in vivo. Neuroimage 24: 339–349. https://doi.org/10.1016/j.neuroimage.2004.08.044

PMID: 15627577

5. Malinen S, Hlushchuk Y, Hari R (2007) Towards natural stimulation in fMRI—issues of data analysis.

Neuroimage 35: 131–139. https://doi.org/10.1016/j.neuroimage.2006.11.015 PMID: 17208459

6. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity

during natural vision. science 303: 1634–1640. https://doi.org/10.1126/science.1089506 PMID:

15016991

7. Codispoti M, Surcinelli P, Baldaro B (2008) Watching emotional movies: Affective reactions and gender

differences. International Journal of Psychophysiology 69: 90–95. https://doi.org/10.1016/j.ijpsycho.

2008.03.004 PMID: 18433903

8. Hasson U, Avidan G, Gelbard H, Vallines I, Harel M, et al. (2009) Shared and idiosyncratic cortical acti-

vation patterns in autism revealed under continuous real-life viewing conditions. Autism Research 2:

220–231. https://doi.org/10.1002/aur.89 PMID: 19708061

9. Guo CC, Nguyen VT, Hyett MP, Parker GB, Breakspear MJ (2015) Out-of-sync: disrupted neural activ-

ity in emotional circuitry during film viewing in melancholic depression. Scientific reports 5: 1–12.

10. Nguyen VT, Sonkusare S, Stadler J, Hu X, Breakspear M, et al. (2016) Distinct Cerebellar Contributions

to Cognitive-Perceptual Dynamics During Natural Viewing. Cerebral Cortex.

11. Bordier C, Puja F, Macaluso E (2013) Sensory processing during viewing of cinematographic material:

Computational modeling and functional neuroimaging. Neuroimage 67: 213–226. https://doi.org/10.

1016/j.neuroimage.2012.11.031 PMID: 23202431

12. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, et al. (1994) Statistical parametric maps in

functional imaging: a general linear approach. Human brain mapping 2: 189–210.

13. Naci L, Cusack R, Anello M, Owen AM (2014) A common neural code for similar conscious experiences

in different individuals. Proceedings of the National Academy of Sciences 111: 14277–14282.

14. Bartels A, Zeki S (2004) The chronoarchitecture of the human brain—natural viewing conditions reveal

a time-based anatomy of the brain. Neuroimage 22: 419–433. https://doi.org/10.1016/j.neuroimage.

2004.01.007 PMID: 15110035

15. Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, et al. (2009) Independent component

analysis for brain fMRI does not select for independence. Proceedings of the National Academy of Sci-

ences 106: 10415–10422.

16. Quiroga RQ, Kreiman G, Koch C, Fried I (2008) Sparse but not ‘grandmother-cell’coding in the medial

temporal lobe. Trends in cognitive sciences 12: 87–91. https://doi.org/10.1016/j.tics.2007.12.003

PMID: 18262826

17. Lee K, Tak S, Ye JC (2011) A data-driven sparse GLM for fMRI analysis using sparse dictionary learn-

ing with MDL criterion. Medical Imaging, IEEE Transactions on 30: 1076–1089.

18. Lv J, Jiang X, Li X, Zhu D, Chen H, et al. (2015) Sparse representation of whole-brain FMRI signals for

identification of functional networks. Medical image analysis 20: 112–134. PMID: 25476415

19. Lv J, Jiang X, Li X, Zhu D, Zhang S, et al. (2015) Holistic Atlases of Functional Networks and Interac-

tions Reveal Reciprocal Organizational Architecture of Cortical Function. Biomedical Engineering, IEEE

Transactions on 62: 1120–1131.

20. Xie J, Douglas PK, Wu YN, Brody AL, Anderson AE (2017) Decoding the encoding of functional brain

networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent

component analysis (ICA), and sparse coding algorithms. Journal of Neuroscience Methods 282: 81–

94. https://doi.org/10.1016/j.jneumeth.2017.03.008 PMID: 28322859

21. Nguyen HM. Dictionary learning based on sparse representations for resting-state functional MRI data

analysis; 2017. IEEE. pp. 7–10.

22. Ren Y, Hu X, Lv J, Quo L, Han J, et al. Identifying autism biomarkers in default mode network using

sparse representation of resting-state fMRI data; 2016. IEEE. pp. 1278–1281.

23. Lee Y-B, Lee J, Tak S, Lee K, Na DL, et al. (2016) Sparse SPM: Group Sparse-dictionary learning in

SPM framework for resting-state functional connectivity MRI analysis. Neuroimage 125: 1032–1045.

https://doi.org/10.1016/j.neuroimage.2015.10.081 PMID: 26524138

24. Lv J, Jiang X, Li X, Zhu D, Zhang S, et al. (2015) Holistic atlases of functional networks and interactions

reveal reciprocal organizational architecture of cortical function. IEEE Transactions on Biomedical Engi-

neering 62: 1120–1131. https://doi.org/10.1109/TBME.2014.2369495 PMID: 25420254

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 21 / 24

https://doi.org/10.1093/brain/awh608
https://doi.org/10.1093/brain/awh608
http://www.ncbi.nlm.nih.gov/pubmed/16049041
https://doi.org/10.1016/j.neuroimage.2004.08.044
http://www.ncbi.nlm.nih.gov/pubmed/15627577
https://doi.org/10.1016/j.neuroimage.2006.11.015
http://www.ncbi.nlm.nih.gov/pubmed/17208459
https://doi.org/10.1126/science.1089506
http://www.ncbi.nlm.nih.gov/pubmed/15016991
https://doi.org/10.1016/j.ijpsycho.2008.03.004
https://doi.org/10.1016/j.ijpsycho.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18433903
https://doi.org/10.1002/aur.89
http://www.ncbi.nlm.nih.gov/pubmed/19708061
https://doi.org/10.1016/j.neuroimage.2012.11.031
https://doi.org/10.1016/j.neuroimage.2012.11.031
http://www.ncbi.nlm.nih.gov/pubmed/23202431
https://doi.org/10.1016/j.neuroimage.2004.01.007
https://doi.org/10.1016/j.neuroimage.2004.01.007
http://www.ncbi.nlm.nih.gov/pubmed/15110035
https://doi.org/10.1016/j.tics.2007.12.003
http://www.ncbi.nlm.nih.gov/pubmed/18262826
http://www.ncbi.nlm.nih.gov/pubmed/25476415
https://doi.org/10.1016/j.jneumeth.2017.03.008
http://www.ncbi.nlm.nih.gov/pubmed/28322859
https://doi.org/10.1016/j.neuroimage.2015.10.081
http://www.ncbi.nlm.nih.gov/pubmed/26524138
https://doi.org/10.1109/TBME.2014.2369495
http://www.ncbi.nlm.nih.gov/pubmed/25420254
https://doi.org/10.1371/journal.pone.0190097


25. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding.

Journal of Machine Learning Research 11: 19–60.

26. Lv J, Jiang X, Li X, Zhu D, Zhao S, et al. (2015) Assessing effects of prenatal alcohol exposure using

group-wise sparse representation of fMRI data. Psychiatry Research: Neuroimaging 233: 254–268.

https://doi.org/10.1016/j.pscychresns.2015.07.012 PMID: 26195294

27. Ren Y, Nguyen VT, Guo L, Guo CC (2017) Inter-subject Functional Correlation Reveal a Hierarchical

Organization of Extrinsic and Intrinsic Systems in the Brain. Scientific Reports 7: 10876. https://doi.org/

10.1038/s41598-017-11324-8 PMID: 28883508

28. Hasson U, Malach R, Heeger DJ (2010) Reliability of cortical activity during natural stimulation. Trends

in cognitive sciences 14: 40–48. https://doi.org/10.1016/j.tics.2009.10.011 PMID: 20004608

29. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional con-

nectivity MRI. Neuroimage 59: 431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044 PMID:

21810475

30. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM review 43:

129–159.

31. Lee H, Battle A, Raina R, Ng AY (2007) Efficient sparse coding algorithms. Advances in Neural Informa-

tion Processing Systems 19: 801–808.

32. Tosic I, Frossard P (2011) Dictionary learning. IEEE Signal Processing Magazine 28: 27–38.

33. Poline J-B, Worsley KJ, Evans AC, Friston KJ (1997) Combining spatial extent and peak intensity to

test for activations in functional imaging. Neuroimage 5: 83–96. https://doi.org/10.1006/nimg.1996.

0248 PMID: 9345540

34. Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisub-

ject FMRI analysis. Neuroimage 25: 294–311. https://doi.org/10.1016/j.neuroimage.2004.10.043

PMID: 15734364

35. Calhoun VD, Liu J, Adalı T (2009) A review of group ICA for fMRI data and ICA for joint inference of

imaging, genetic, and ERP data. Neuroimage 45: S163–S172. https://doi.org/10.1016/j.neuroimage.

2008.10.057 PMID: 19059344

36. Svensén M, Kruggel F, Benali H (2002) ICA of fMRI group study data. NeuroImage 16: 551–563.

PMID: 12169242

37. Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE

transactions on Neural Networks 10: 626–634. https://doi.org/10.1109/72.761722 PMID: 18252563

38. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural net-

works 13: 411–430. PMID: 10946390

39. Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from functional

MRI data using independent component analysis. Human brain mapping 14: 140–151. PMID:

11559959

40. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, et al. (2009) Correspondence of the brain’s functional

architecture during activation and rest. Proceedings of the National Academy of Sciences 106: 13040–

13045.

41. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psy-

chological methods 1: 390.

42. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychological bul-

letin 86: 420. PMID: 18839484

43. Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, et al. (2012) One-year test–retest reliability of intrinsic

connectivity network fMRI in older adults. Neuroimage 61: 1471–1483. https://doi.org/10.1016/j.

neuroimage.2012.03.027 PMID: 22446491

44. Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, et al. (2012) Test–retest reliability of resting-

state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:

1404–1412. https://doi.org/10.1016/j.neuroimage.2011.08.044 PMID: 21888983

45. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, et al. (2014) ICA-based arte-

fact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage

95: 232–247. https://doi.org/10.1016/j.neuroimage.2014.03.034 PMID: 24657355

46. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, et al. (2014) Automatic denois-

ing of functional MRI data: combining independent component analysis and hierarchical fusion of classi-

fiers. Neuroimage 90: 449–468. https://doi.org/10.1016/j.neuroimage.2013.11.046 PMID: 24389422

47. Bianchin M, Angrilli A (2012) Gender differences in emotional responses: A psychophysiological study.

Physiology & behavior 105: 925–932.

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 22 / 24

https://doi.org/10.1016/j.pscychresns.2015.07.012
http://www.ncbi.nlm.nih.gov/pubmed/26195294
https://doi.org/10.1038/s41598-017-11324-8
https://doi.org/10.1038/s41598-017-11324-8
http://www.ncbi.nlm.nih.gov/pubmed/28883508
https://doi.org/10.1016/j.tics.2009.10.011
http://www.ncbi.nlm.nih.gov/pubmed/20004608
https://doi.org/10.1016/j.neuroimage.2011.07.044
http://www.ncbi.nlm.nih.gov/pubmed/21810475
https://doi.org/10.1006/nimg.1996.0248
https://doi.org/10.1006/nimg.1996.0248
http://www.ncbi.nlm.nih.gov/pubmed/9345540
https://doi.org/10.1016/j.neuroimage.2004.10.043
http://www.ncbi.nlm.nih.gov/pubmed/15734364
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1016/j.neuroimage.2008.10.057
http://www.ncbi.nlm.nih.gov/pubmed/19059344
http://www.ncbi.nlm.nih.gov/pubmed/12169242
https://doi.org/10.1109/72.761722
http://www.ncbi.nlm.nih.gov/pubmed/18252563
http://www.ncbi.nlm.nih.gov/pubmed/10946390
http://www.ncbi.nlm.nih.gov/pubmed/11559959
http://www.ncbi.nlm.nih.gov/pubmed/18839484
https://doi.org/10.1016/j.neuroimage.2012.03.027
https://doi.org/10.1016/j.neuroimage.2012.03.027
http://www.ncbi.nlm.nih.gov/pubmed/22446491
https://doi.org/10.1016/j.neuroimage.2011.08.044
http://www.ncbi.nlm.nih.gov/pubmed/21888983
https://doi.org/10.1016/j.neuroimage.2014.03.034
http://www.ncbi.nlm.nih.gov/pubmed/24657355
https://doi.org/10.1016/j.neuroimage.2013.11.046
http://www.ncbi.nlm.nih.gov/pubmed/24389422
https://doi.org/10.1371/journal.pone.0190097


48. Fugate JM, Gouzoules H, Barrett LF (2009) Separating production from perception: Perceiver-based

explanations for sex differences in emotion. Behavioral and Brain Sciences 32: 394–395.

49. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, et al. (2007) Disruption of large-scale

brain systems in advanced aging. Neuron 56: 924–935. https://doi.org/10.1016/j.neuron.2007.10.038

PMID: 18054866

50. Friston K, Frith C, Liddle P, Frackowiak R (1993) Functional connectivity: the principal-component anal-

ysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism 13: 5–14.

51. Worsley KJ, Chen J-I, Lerch J, Evans AC (2005) Comparing functional connectivity via thresholding cor-

relations and singular value decomposition. Philosophical Transactions of the Royal Society of London

B: Biological Sciences 360: 913–920. https://doi.org/10.1098/rstb.2005.1637 PMID: 16087436

52. Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and

parietal cortex. Proceedings of the National Academy of Sciences 110: 16616–16621.

53. Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent

behaviour. Trends in cognitive sciences 14: 172–179. https://doi.org/10.1016/j.tics.2010.01.004 PMID:

20171926

54. Pessoa L (2012) Beyond brain regions: Network perspective of cognition–emotion interactions. Behav-

ioral and Brain Sciences 35: 158–159. https://doi.org/10.1017/S0140525X11001567 PMID: 22617666

55. Kanwisher N (2010) Functional specificity in the human brain: a window into the functional architecture

of the mind. Proceedings of the National Academy of Sciences 107: 11163–11170.

56. Anderson ML, Kinnison J, Pessoa L (2013) Describing functional diversity of brain regions and

brain networks. Neuroimage 73: 50–58. https://doi.org/10.1016/j.neuroimage.2013.01.071 PMID:

23396162

57. Gazzaniga MS (2004) The cognitive neurosciences: MIT press.

58. Yang H, Zhou Z, Liu Y, Ruan Z, Gong H, et al. (2007) Gender difference in hemodynamic responses of

prefrontal area to emotional stress by near-infrared spectroscopy. Behavioural brain research 178:

172–176. https://doi.org/10.1016/j.bbr.2006.11.039 PMID: 17222468

59. Morita Y, Morita K, Yamamoto M, Waseda Y, Maeda H (2001) Effects of facial affect recognition on the

auditory P300 in healthy subjects. Neuroscience Research 41: 89–95. PMID: 11535298

60. George MS, Ketter TA, Parekh PI, Herscovitch P, Post RM (1996) Gender differences in regional cere-

bral blood flow during transient self-induced sadness or happiness. Biological psychiatry 40: 859–871.

https://doi.org/10.1016/0006-3223(95)00572-2 PMID: 8896772

61. Kemp AH, Silberstein RB, Armstrong SM, Nathan PJ (2004) Gender differences in the cortical

electrophysiological processing of visual emotional stimuli. NeuroImage 21: 632–646. https://doi.org/

10.1016/j.neuroimage.2003.09.055 PMID: 14980566

62. Wrase J, Klein S, Gruesser SM, Hermann D, Flor H, et al. (2003) Gender differences in the processing

of standardized emotional visual stimuli in humans: a functional magnetic resonance imaging study.

Neuroscience letters 348: 41–45. PMID: 12893421

63. Decety J, Jackson PL (2004) The functional architecture of human empathy. Behavioral and cognitive

neuroscience reviews 3: 71–100. https://doi.org/10.1177/1534582304267187 PMID: 15537986

64. Craig AD (2009) How do you feel—now? the anterior insula and human awareness. Nature reviews

neuroscience 10: 59–70. https://doi.org/10.1038/nrn2555 PMID: 19096369

65. Nguyen VT, Breakspear M, Hu X, Guo CC (2015) Hierarchical integration of interoception and extero-

ception in the anterior insula during naturalistic emotional experience. Autonomic Neuroscience: Basic

and Clinical 192: 81.

66. Nielsen FÅ, Balslev D, Hansen LK (2005) Mining the posterior cingulate: segregation between memory

and pain components. NeuroImage 27: 520–532. https://doi.org/10.1016/j.neuroimage.2005.04.034

PMID: 15946864

67. Lou HC, Luber B, Crupain M, Keenan JP, Nowak M, et al. (2004) Parietal cortex and representation of

the mental self. Proceedings of the National Academy of Sciences of the United States of America 101:

6827–6832. https://doi.org/10.1073/pnas.0400049101 PMID: 15096584

68. Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, et al. (2007) Superior temporal gyrus, lan-

guage function, and autism. Developmental neuropsychology 31: 217–238. https://doi.org/10.1080/

87565640701190841 PMID: 17488217

69. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al. (2005) The human brain is intrinsically

organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sci-

ences of the United States of America 102: 9673–9678. https://doi.org/10.1073/pnas.0504136102

PMID: 15976020

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 23 / 24

https://doi.org/10.1016/j.neuron.2007.10.038
http://www.ncbi.nlm.nih.gov/pubmed/18054866
https://doi.org/10.1098/rstb.2005.1637
http://www.ncbi.nlm.nih.gov/pubmed/16087436
https://doi.org/10.1016/j.tics.2010.01.004
http://www.ncbi.nlm.nih.gov/pubmed/20171926
https://doi.org/10.1017/S0140525X11001567
http://www.ncbi.nlm.nih.gov/pubmed/22617666
https://doi.org/10.1016/j.neuroimage.2013.01.071
http://www.ncbi.nlm.nih.gov/pubmed/23396162
https://doi.org/10.1016/j.bbr.2006.11.039
http://www.ncbi.nlm.nih.gov/pubmed/17222468
http://www.ncbi.nlm.nih.gov/pubmed/11535298
https://doi.org/10.1016/0006-3223(95)00572-2
http://www.ncbi.nlm.nih.gov/pubmed/8896772
https://doi.org/10.1016/j.neuroimage.2003.09.055
https://doi.org/10.1016/j.neuroimage.2003.09.055
http://www.ncbi.nlm.nih.gov/pubmed/14980566
http://www.ncbi.nlm.nih.gov/pubmed/12893421
https://doi.org/10.1177/1534582304267187
http://www.ncbi.nlm.nih.gov/pubmed/15537986
https://doi.org/10.1038/nrn2555
http://www.ncbi.nlm.nih.gov/pubmed/19096369
https://doi.org/10.1016/j.neuroimage.2005.04.034
http://www.ncbi.nlm.nih.gov/pubmed/15946864
https://doi.org/10.1073/pnas.0400049101
http://www.ncbi.nlm.nih.gov/pubmed/15096584
https://doi.org/10.1080/87565640701190841
https://doi.org/10.1080/87565640701190841
http://www.ncbi.nlm.nih.gov/pubmed/17488217
https://doi.org/10.1073/pnas.0504136102
http://www.ncbi.nlm.nih.gov/pubmed/15976020
https://doi.org/10.1371/journal.pone.0190097


70. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, et al. (2007) Dissociable intrinsic connectiv-

ity networks for salience processing and executive control. The Journal of neuroscience 27: 2349–

2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007 PMID: 17329432

71. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Annals of the New

York Academy of Sciences 1124: 1–38.

72. Wang J, Ren Y, Hu X, Nguyen VT, Guo L, et al. (2017) Test–retest reliability of functional connectivity

networks during naturalistic fMRI paradigms. Human brain mapping 38: 2226–2241. https://doi.org/10.

1002/hbm.23517 PMID: 28094464

73. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: A strategy employed by

V1? Vision research 37: 3311–3325. PMID: 9425546

74. Lewicki MS, Sejnowski TJ (2000) Learning overcomplete representations. Neural computation 12:

337–365. PMID: 10636946

75. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries

for sparse representation. IEEE transactions on signal processing 54: 4311–4322.

Sparse coding reveals gender differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0190097 December 22, 2017 24 / 24

https://doi.org/10.1523/JNEUROSCI.5587-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17329432
https://doi.org/10.1002/hbm.23517
https://doi.org/10.1002/hbm.23517
http://www.ncbi.nlm.nih.gov/pubmed/28094464
http://www.ncbi.nlm.nih.gov/pubmed/9425546
http://www.ncbi.nlm.nih.gov/pubmed/10636946
https://doi.org/10.1371/journal.pone.0190097

