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Abstract: A significant body of evidence demonstrates that isoflavone metabolites are good markers
of soy intake, while research is lacking on specific markers of other leguminous sources such as
peas. In this context, the objective of our current study was to identify biomarkers of pea intake
using an untargeted metabolomics approach. A randomized cross-over acute intervention study
was conducted on eleven participants who consumed peas and couscous (control food) in random
order. The urine samples were collected in fasting state and postprandially at regular intervals and
were further analysed by ultra-performance liquid chromatography coupled to quadrupole time
of flight mass spectrometry (UPLC-QTOF-MS). Multivariate statistical analysis resulted in robust
Partial least squares Discriminant Analysis (PLS-DA) models obtained for comparison of fasting
against the postprandial time points (0 h vs. 4 h, (R2X = 0.41, Q2 = 0.4); 0 h vs. 6 h, ((R2X = 0.517,
Q2 = 0.495)). Variables with variable importance of projection (VIP) scores ≥1.5 obtained from
the PLS-DA plot were considered discriminant between the two time points. Repeated measures
analysis of variance (ANOVA) was performed to identify features with a significant time effect.
Assessment of the time course profile revealed that ten features displayed a differential time course
following peas consumption compared to the control food. The interesting features were tentatively
identified using accurate mass data and confirmed by tandem mass spectrometry (MS using
commercial spectral databases and authentic standards. 2-Isopropylmalic acid, asparaginyl valine
and N-carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid were identified as markers reflecting pea
intake. The three markers also increased in a dose-dependent manner in a randomized intervention
study and were further confirmed in an independent intervention study. Overall, key validation
criteria were met for the successfully identified pea biomarkers. Future work will examine their use
in nutritional epidemiology studies.
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1. Introduction

Diet is one of the major lifestyle related risks associated with a wide range of chronic diseases [1–3].
However, the exact relationship between diet components and health still needs to be determined and
it is a prerequisite to achieve accurate measurement of food intake. Traditional dietary assessment
methods include self-reporting platforms such as food frequency questionnaires (FFQ), 24 h dietary
recalls and food diaries. These self-reported tools have a number of well documented limitations
such as energy underreporting, recall errors and misjudgement in the estimation of portion sizes
and therefore attenuate the diet and disease relationship [4–6]. To overcome some of these issues,
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food intake biomarkers have emerged as a more objective measurement and could be an adjunct to
the existing assessment methods [7–9]. These biomarkers measure in human biofluids reflect food
intake [10]. The emergence of metabolomics technology has resulted in the discovery of putative
biomarkers of exposure to a range of foods and food groups such as cruciferous vegetables [11,12],
citrus fruits [13–15], red meat [16], sugar-sweetened beverages [17], coffee [18], and black tea [19].
Some of the well-established and validated food intake biomarkers include urinary tartaric acid
for determination of red grape intake [20], urinary proline-betaine for citrus fruit consumption [21]
and alkylrescorinols [22]. However, we still lack validated biomarkers for a range of foods that are
important for health and legumes are an example.

Legumes are fruits or seeds of a plant belonging to the Fabaceae family and are consumed as
traditional diets in many regions of the world. Well known legumes include peas, beans, lentils, lupins,
soybeans and peanuts. Legumes are rich sources of vegetable protein and provide slow, digestible,
complex carbohydrates, soluble and insoluble fibres, various phytochemicals and micronutrients
including iron, copper and manganese [23,24]. Legumes are associated with potential health benefits
with evidence stemming from epidemiological studies [25–28]. Our previous work employing a
systematic review of the literature reveals that to date the field of biomarkers of legume intake has
focused predominantly on soy intake [29]. The isoflavone metabolites genistein and daidzein are
reported as good markers of soy consumption [30,31]. On the other hand, there are very limited studies
that have explored biomarkers of other leguminous sources such as pulses. For dry bean intake, serum
markers such as pipecolic acid, S-methyl cysteine [32] and urinary kaempferol have been reported [33].
N-methylnicotinic acid was proposed as a biomarker related to consumption of peas, although it is
reported as a non-specific marker due to its presence in higher amounts post consumption of other
sources such as coffee, tea, cacao, etc. [34]. Although several health benefits [35] have been linked
to pea intake, information on specific biomarkers is lacking. The objective of this study was to use a
metabolomics-based approach to identify potential urinary biomarkers associated with pea intake.

2. Materials and Methods

2.1. Acute Study: Ethical Approval, Subject Recruitment and Study Design

The present work was performed under the umbrella of the FOODBALL project [36] and the
focus was biomarkers of legume intake. The acute study was approved by the Human Research
Ethics Committee at University College Dublin (UCD) (LS-15-62-Brennan) and registered as a Clinical
Trail (ISRCTN70680593). We aimed to recruit a total of 12 participants as previous studies had
demonstrated that a samples size of 8–12 was sufficient to use metabolomics to identify biomarkers
of food intake [37–39]. All procedures were conducted according to the principles expressed in the
Declaration of Helsinki. Inclusion criteria were healthy men and women aged between 18 and 40 years;
Caucasian; Body Mass Index (BMI) >18.5 and <30 kg/m2; non-smokers; not taking any medication
(with the exception of oral contraceptive pill); not having any known or chronic infectious diseases; not
planning a pregnancy or pregnant or lactating; and not on supplements or antibiotics. The recruitment
was conducted via posters, college website advertisement, and word of mouth. The individuals who
made contact were screened for eligibility and anthropometric measurements were taken. Body height
was measured using the Leicester portable height measure (Chasmores), weight was measured using
a Tanita body composition analyser BC-420MA (Tanita Corporation, Middlesex, UK) and waist and
hip circumferences were measured using a non-stretch tape measure (Seca, Birmingham, UK). Height
and weight were used to calculate BMI (weight (kg)/height (m2)), and waist and hip circumferences
were used to calculate waist-hip ratio (waist (cm):hip (cm)). After successful completion of screening,
the participants provided an informed consent form. All eligible participants were randomized to
consume test food (peas, 138 g) and control food (couscous, 138 g) in a random order.

Participants were asked to refrain from consuming alcohol and fruits and vegetables for 2 days
prior to the study visit. On the day prior to the study visit, participants were asked to consume
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a standardized dinner (Chicken and rice meal) and to fast for 12 h prior to the appointment. On
the morning of the study visit, participants collected a fasting first-void urine sample, which was
immediately placed on ice in the urine kit bag provided and transported to the study centre. Following
test/control food consumption, the urine samples were collected over the following intervals: 0–1, 1–2,
2–4, 4–6, 6–12, 12–24 and 48 h post consumption. Participants refrained from eating but were allowed
to drink ~100 mL of water (provided every hour) for the first 6 h post consumption of the food. All
urine samples were centrifuged at 1800× g for 10 min at 4 ◦C and 1-mL aliquots were stored at – 80 ◦C
for further analysis.

2.2. Dose–Response Study for Biomarker Validation

The dose–response study was approved by the Human Research Ethics Committee at University
College Dublin (UCD) (LS-16-92-Brennan). All procedures were conducted according to the principles
expressed in the Declaration of Helsinki. All the inclusion, recruitment and screening criteria were the
same as the acute study. Participants (n = 12) consumed known quantities of peas daily for a period
of 4 days and collected a fasting urine sample on Day 5. The study was repeated over 2 weeks so
that three different quantities (low (40 g), medium (75 g), and high (165 g)) of peas were consumed.
The portions were chosen according to “A photographic atlas of food portion sizes” which is designed
to help people describe amounts of food consumed and is widely used by dieticians and nutritionists
across UK and Ireland. On Days 1, 2, 3, and 4 of each intervention week, the participants consumed
peas as part of their evening meal after 18:00. They were also asked to photograph the meal pre- and
post-consumption to confirm consumption of the peas. On Day 5, a first void urine sample and a
fasting blood sample were collected. Samples were processed as described above. On Day 5, a 24 h
dietary record was also collected.

2.3. Independent Acute Study for Biomarker Confirmation

An independent acute study at university of Copenhagen aimed to identify biomarkers of meat
intake utilizing peas as a control food and was used here to confirm the markers of pea consumption.
This study was approved by the Regional Ethics Committee for the capital area in Denmark (registration
number H-15020401) and is registered at ClinicalTrials.gov (NCT03305718).

The study design in terms of recruitment, inclusion and exclusion criteria was similar to the
above-described study for peas biomarker identification, as it was conducted as part of the FOODBALL
project. Briefly, the study was a randomized controlled four-way cross-over meal trial (n = 10) aimed
at discovering biomarkers for intake of meat. The test meals comprised three types of meat and
an iso-caloric control, i.e., green pea protein and egg white (pea burger-patty) and the volunteers
consumed the foods in a random order. Urine samples were collected at regular intervals of time until
48 h post-consumption.

2.4. Nontargeted Ultra-Performance Liquid Chromatography Coupled to Quadrupole Time of Flight Mass
Spectrometry (UPLC-QTOF-MS) Metabolite Profiling Analysis

The solvents acetonitrile and formic acid as well as standards and internal standards were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Reagent water was ion exchanged and purified
further by a Millipore unit to obtain an electrical resistance of below 18 MΩ.

2.4.1. Standards

A standard mixture of 18 biologically relevant metabolites belonging to different compound
classes (arginine, taurine, 1-methyl-L-histidine, citrulline, creatinine, malic acid, methionine, citric
acid, succinic acid, ketoglutaric acid, isoleucine, fumaric acid, leucine, methylmalonic acid, glutaric
acid, adipic acid, hippuric acid, and pimelic acid) and a mixture of four internal standards (malic
d3, methionine d3, succinic acid d4, and adipic acid d4) were prepared. Both mixtures were used
for quality control assessment of the analytical platform. The stock concentration of the individual
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standards was prepared at 1000 µg mL−1. Both standard and the internal standard mix were prepared
at 10 mg/L concentration.

2.4.2. Sample Preparation

The standard and internal standard mix working stock solutions, 1-mL aliquots of pooled urine
(QC) and test urine sample were thawed for 20 min and centrifuged at 3884× g (VWR, Galaxy ministar,
Vienna, Austria). Samples were prepared by adding 100 µL of standard/pooled urine (QC)/test
urine to 100 µL of internal standard mix. The mixture was vortexed for 15 s at 25 Hertz (VELP
scientifica, Usmate, Italy) and centrifuged at 200× g for 5 min. The supernatant was then transferred
to autosampler vials with 250 µL inserts.

2.4.3. Sample Analysis

The samples were analysed by UPLC-QTOF-MS (Agilent Technologies, Santa Clara, CA, USA),
which consisted of 1290 Infinity II LC system and an Agilent Jetstream (AJS) Electrospray ionization
(ESI) source coupled to a 6545 QTOF mass spectrometer. The samples were analysed by using
reverse phase chromatography (RP). Data acquisition was performed using the Masshunter acquisition
B.06.00 software (Agilent Technologies). The sample batch run commenced with a standard test mix,
followed by 4 QCs to achieve a stable instrument response. Test urine samples were then injected
in a randomized order followed by two QCs and a standard test mix to check for the instrument
performance and stability over the data acquisition course. The RP analysis was performed on a Zorbax
Eclipse plus C18 RRHD (2.1 × 50mm, 1.8 µm) coupled to a UHPLC guard column Zorbax Eclipse plus
C18 (2.1 × 5mm, 1.8Micron). The column was maintained at 30 ◦C throughout the analysis and the
injection volume was 5 µL. A flow rate of 0.4 mL/min was used with a linear gradient of 0.1% formic
acid in water (Eluent A) and 0.1% formic acid in acetonitrile/water (80:20) (Eluent B). The gradient
profile was as follows: 1% B (0–1.5 min); 11% B (1.5–9 min); 25% B (9–15 min); 50% B (15–18 min);
99% B (18–18.05min); 99% B (18.05–21 min); 1% B (21–21.05 min); and 1% B (21.05–23 min). The mass
spectrometer was operated in both positive and negative ionization mode with Jetstream electrospray
ionization (ESI) source. The MS parameters were as follows: drying gas temperature, 325 ◦C; drying
gas flow rate, 10 L/min; sheath gas temperature, 350 ◦C; sheath gas flow rate, 11 L/min; nebulizer
pressure, 45 gauge pressure (pounds per square inch); capillary voltage, 3500 V; nozzle voltage, 1000 V;
fragmentor voltage, 100 V; and skimmer, 45 V. A 2-GHz extended dynamic range mode was used and
the accurate mass spectra was acquired over a mass range of m/z 50–1600. The data were collected in
centroid mode at scan rate of 1 spectra/s and an abundance threshold of 300. The targeted MS/MS
was performed with the same chromatographic and MS conditions as described above. The data were
acquired at MS/MS scan range of 40–700 m/z at a scan rate of 1 spectra/s. Collision energies of 10 eV,
20 eV and 40 eV were applied.

For the independent acute study, the urine samples were analysed on a UPLC-ESI-QTOF/MS
high-performance liquid chromatographic system (Acquity UPLC, QTOF Premier, Waters, Manchester,
UK) as previously described [40].

2.5. Data Treatment and Analysis

The acquired data were processed using MassHunter Qualitative Analysis B.07.00 software
(Agilent Technologies, Santa Clara, CA, USA). The molecular feature extractor (MFE) algorithm was
used to extract molecular features characterized by retention time (RT) corresponding m/z values
representing different adducts or isotopes of the same compound and provides details of the signal
intensity and accurate mass. The target data type was set to small molecules and the threshold value
for peak height was set to 5000 counts. The isotopic peak spacing tolerance was 0.0025 m/z with
maximum charge state of 1 and isotope model was set to common organic molecules. The data output
was then transferred to Compound Exchange Format (.cef) files. These .cef files were loaded on to
Mass profiler software (Version B.07.01; Agilent technologies) used for compound alignment and
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data filtration. The alignment of RT and m/z values was set using a tolerance window of 0.3 min and
2.0 mDa, respectively. The reduction in the number of molecular features was enabled by setting
the sample occurrence frequency by 50% across all samples. Missing values were replaced by half
of the minimum value of that particular feature abundance (or corresponding variable). All feature
abundance values were normalized to osmolality measured using an Advanced Micro Osmometer
model 3D3 (Advanced Instruments, Norwood, MA, USA). For the independent acute study, the
acquired data were pre-processed using mzMine, as described previously [40].

Multivariate statistical analysis was performed using Simca-P software (version 13.0.3, Umetrics,
Sartorius Stedim Biotech, Umea, Sweden). Datasets were scaled using Pareto scaling. Principal
component analysis (PCA) reduced the dataset to a small number of principal components. Partial
least-squares discriminant analysis (PLS-DA) was used to identify the features that discriminated
between the groups. PLS-DA models obtained were validated by permutation testing. The variable
importance of projection (VIP) was used to identify the most influential variables with a cut-off of
1.5. Repeated measures ANOVA was performed to identify metabolites with a significant time effect.
All p values were corrected for multiple comparisons (Metaboanalyst 3.0). The interesting features
were identified using MassHunter ID browser (Version B.07.00, Agilent technologies) by molecular
formula generation and an accurate mass data search using a personal compound database library
obtained from METLIN public database. MS/MS was performed to attain structural confidence for
the metabolites identified by the accurate mass. Each metabolite was attributed to different levels
of identification as illustrated [41]. Briefly, four levels of confidence in metabolite identification
were reported: Level I (identified compounds); Level II (putatively annotated compounds); Level
III (putatively characterized compound classes); and Level IV (Unknowns). For MS/MS compound
identification, sources such as authentic reference standards, competitive fragmentation modelling
for metabolite identification (CFM-ID 2.0, http://cfmid.wishartlab.com) and molecular structure
correlator (Version B.08.00, Agilent technologies) platforms were used.

3. Results

3.1. Discovery Study Characteristics

An overview of the recruitment process is reported in Figure S1. The details of study population
characteristics are presented in Table 1. The average age was 25 ± 4.2 and the average BMI was
24 ± 2.9 kg/m2.

Table 1. Acute study population characteristics in the Intervention study.

Characteristics Male Female

No. of participants 6 5
Age, year 26 ± 3 24 ± 5
Height, m 1.8 ± 0.03 1.6 ± 0.08
Weight, kg 77.2 ± 8.06 63.2 ± 8.69

BMI, kg/m2 24.1 ± 2.43 24.3 ± 3.7
Waist circumference, cm 82 ± 3.13 74.2 ± 5.84
Hip circumference, cm 100.3 ± 4.63 101.8 ± 6.22

Waist-hip-ratio 0.82 ± 0.03 0.73 ± 0.02

All values are mean ± SD.

3.2. Identification of Features Related to Pea Consumption

A total of 73,734 (positive mode) and 84,161 (negative mode) features were detected across all
samples using molecular feature extractor. Further data processing and filtration steps by mass profiler
resulted in reduction of features and a dataset comprising a total of 819 (+ve) and 1004 (−ve) features
was obtained. PCA was applied to the dataset to explore trends in the data. An example of the PCA for

http://cfmid.wishartlab.com
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the baseline and the time point 4 h post consumption of peas is depicted (Figure S2). Robust PLS-DA
models revealed discrimination between baseline urinary profiles and post-pea consumption profiles.
For example, baseline and the time point 4 h post-pea consumption model had a Q2 value of 0.4 for
negative ion mode data (Figure 1).

Figure 1. Partial least square discriminant analysis (PLS-DA) of Ultra-Performance Liquid
Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry (UPLC-QTOF-MS) urine
data of time point 0 (�) and time point 4 h post consumption of peas (�). Q2, 0.4; R2X, 0.41; t [1],
PLS component 1; t [2], PLS component 2. At the timepoint 4 h, urine samples were unavailable for
two participants.

The model was further validated by permutation testing (Q2 = (0.0, −0.00618). A variable
importance of projection (VIP) plot was generated from the PLS-DA models and the most discriminant
features identified (Figure S3). Furthermore, univariate analysis identified features with significant
changes over time (Tables S1 and S2). Examination of the interesting features kinetic profiles in
comparison to the control food revealed that 10 features (five in negative mode and five in positive
mode) displayed a differential time course (Figures 2 and 3). The peak intensity values are represented
as mean ± Standard error of the mean (SEM).

Figure 2. Cont.
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Figure 2. Kinetics of the selected discriminating negative ion mode features obtained from the
discovery study represented with accurate mass (176.06838 (A); 231.1221 (B); 103.9369 (C); 398.0101
(D); and 556.2011 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are
mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality
normalized peak intensity.

Figure 3. Cont.
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Figure 3. Kinetics of the selected discriminating positive ion mode features obtained from the discovery
study represented with accurate mass (231.1221 (A); 168.0288 (B); 152.0706 (C); 325.0796 (D); and
210.0642 (E)) after pea intake and compared with control food couscous (p < 0.05). Values are
mean ± SEMs. X-axis values represent time course in hours and Y-axis values represent osmolality
normalized peak intensity.

3.3. Identification of Potential Biomarkers

To commence identification of the selected features, compound identification was performed
using the METLIN database. Using single MS accurate mass data for the molecular ion and its isotopes,
a molecular formula for each feature was generated (Table 2).

Table 2. Single MS accurate mass data generated using METLIN database.

RT (min) Elemental
Composition

Type of
Molecular Ion Predicted m/z Observed m/z Error (ppm)

5.78 C7H12O5 [M-H]− 175.06134 175.0612 −0.8
1.76 C9H17N3O4 [M-H]− 230.11463 230.11427 1.58
0.88 C14H12N3O7S2 [M-H]− 397.00439 397.00434 0.13
1.61 C21H36N10S4 [M-H]− 555.1934 555.192 2.61
0.53 [M-H]− 102.9616
1.8 C9H17N3O4 [M+H]+ 232.12918 232.12942 −1.01
0.90 C5H4N4O3 [M+H]+ 169.03562 169.03631 −4.09
0.8 C8H10NO2 [M+H]+ 153.07843 153.07826 1.08
1.65 C14H15NO8 [M+H]+ 326.08704 326.08713 −0.13
3.40 C9H10N2O4 [M+H]+ 211.0767 211.0775 −3.79

RT is the retention time of the given compound in minutes. Predicted m/z is the mass to charge ratio of the isotope
calculated from the proposed molecular formula. Observed m/z is the theoretically observed mass to charge ratio.
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Table 3 shows a summary of the mass spectral data obtained from MS/MS supporting
biomarker annotations.

Table 3. Summary of mass spectral data supporting biomarker annotation.

RT
min

Experimental
m/z

Suggested
Ion

Elemental
Composition

MS/MS Fragment
Ions (Relative

Abundancy) a,b
Identification/Annotation c

5.8 175.0611 [M-H]− C7H12O5

115.0399 (100);
175.061 (98.49);
113.0605 (35.27);
85.06581 (31.74)

2-Isopropylmalic acid I

1.8 230.11461 [M-H]− C9H17N3O4

187.1087 (100);
230.1145 (46.09);
231.0879 (43.2);
145.0983 (26.56)

Asparaginyl valine II

3.4 211.0727 [M+H]+ C9H10N2O4

211.072 (100);
165.0663 (43.45);
185.1035 (29.81)

N-Carbamoyl-2-amino-2-(4-
hydroxyphenyl)acetic acid II

a Per cent of relative intensity; b Data obtained at 10 eV collision energy. c Metabolite Identification (MI) levels as
reported according to Metabolomics standards initiative (MSI). I Compounds identified using standards (Level I);
II Putatively annotated compounds (Level II).

2-Isopropylmalic acid (2-IPMA) with m/z 175.06134 appeared as a marker compound in negative
ionization mode. It was identified based on MS/MS fragmentation match in CFM-ID and Metlin and
further verified by authentic analytical standard (Figure 4). The fragments obtained from the standard,
157.05053, 115.04024, 85.0660, and 59.01386, matched with those of the sample in terms of percentage of
intensity as well as the fragmentation pattern. The compound was also confirmed by comparison with
predicted LC-MS/MS spectra by CFM-ID obtained at 10, 20 and 40 eV (HMDB ID: HMDB00402). The
identification is also supported by extract ion chromatogram (EIC), which shows the same retention
time and matched isotopic patterns of standard and sample; assessment by find by formula spectrum
further supports the compound identification. The excretion kinetics of 2-IPMA displayed a peak
excretion at 4 h and exhibited a differential time course when compared with the test food couscous
(Figure 2) (p < 0.05).
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Figure 4. Cont.
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Figure 4. MS/MS spectra of 2-Isopropylmalic acid at average collision energies (10, 20, 40 eV) of: a
pure analytical standard (A); and in the urine sample (B); extracted ion chromatogram (EIC) (C); and
Find by Formula spectrum (D).

Asparaginyl valine (Asp-Val) with m/z 230.1194 was identified as a putative biomarker.
The identification was based on the input MS/MS spectra scored against candidate spectra generated
and calculated from the HMDB database using CFM-ID. The major fragments m/z 230.1145, 213.08785,
and 187.1086 matched well between the candidate spectra and the input spectra at low collision energy
(10V). For compound identification using CFM-ID, when matching spectra were observed between
the candidate and the input spectra, the possible candidates were ranked according to how well their
predicted low, medium and high spectra matched the spectra of the test molecule. Jaccard scoring
function coefficient was a statistic used for comparing the similarity and diversity of sample sets.
However, a range/limit of score cannot be determined as the match patterns can be unique for each
identified compound. For Asp-Val, a score of 1.014 was obtained from the spectral match, enabling the
identification of the compound [42]. These results were also complemented by high correlation scores
obtained by molecular structure correlator utilizing METLIN database. Based on the spectral similarity
with commercial spectral libraries, a Level II identification of Asp-Val was proposed. The excretion
kinetics of Asp-Val displayed a peak excretion at 4 h and exhibited a differential time course when
compared with test food couscous (Figure 2) (p < 0.05).

N-Carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid (NC) with m/z 211.0714 was identified
as a putative biomarker. The major fragments with m/z 211.07123 and 165.06570 matched between
the candidate spectra and the input spectra in CFM-ID. Although the score is on the lower side
(0.352857), the database identified the compound to be NC and hence a Level II identification was
assigned. Molecular structure correlator also aided in identification of this compound using the
METLIN database. The excretion kinetics of NC displayed a peak excretion at 6 h and exhibited a
differential time course when compared with test food couscous (Figure 2) (p < 0.05).

3.4. Demonstration of A Dose–Response for the Key Biomarkers

Individuals in the dose–response study (n = 12) consumed increasing amounts of peas during
three weeks in the background of their habitual diet. The characteristics of the participants are
described in Table S3 (five males and seven females). The average age was 26 ± 4.9, while the average
BMI was 24 ± 2.9 (Table S3). EICs were obtained for the ions of interest (m/z 175.06134, 230.1194,
211.0714) and peak area values were determined across low (40 g), medium (75 g) and high (165 g)
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intake groups. Examination of the data revealed that excretion of 2-IPMA, Asp-Val and NC increased
with increasing intake of peas (p < 0.05) (Figure 5).

Figure 5. Urinary 2-Isopropylmalic acid (2-IPMA) (A); Asparaginyl valine (Asp-Val) (B); and
N-Carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid (NC) (C) demonstrated a dose–response to
intake of peas from the dose–response study. Values are means ± SEMs (n = 12). Participants consumed
a low (40 g) (L), medium (75 g) or high (165 g) portion of peas as part of their habitual diet for four
consecutive days for each intervention week and first void urine sample collected on the fifth day was
analysed. X-axis values represent pea intake (g); Y-axis values represent peak area ratio. Peak area ratio
is obtained by dividing the peak area of the sample with that of the internal standard.

3.5. Confirmation of Markers of Pea Intake in An Independent Acute Study

All three metabolites of interest were also confirmed in an independent acute study aimed to find
markers of meat intake with pea burger used as a control food. Differential time course profiles were
observed for all three metabolites when the control was compared to meat intake (Figure S4). Moreover,
the MS/MS fragmentation pattern obtained for the three ions in this independent meal-study also
matched well with the fragmentation pattern observed in the pea acute discovery study.

4. Discussion

Identification of objective markers of dietary intake has become an intensive area of research.
The current study identified a series of urinary markers specific for pea intake. Importantly, the markers
were validated in a dose–response study where participants were consuming their habitual diets,
indicating both a dose–response relationship and the robustness of the markers. Further confirmation
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was provided through measurement in an independent intervention study where pea served as the
control food.

In the present study, we used a multi-pronged approach to identify and validate the biomarkers.
Detailed assessment of the biomarkers is of paramount importance to ensure their usefulness both
as measures of compliance in intervention studies but also to study diet–disease relationships in
epidemiology studies. Recently, several candidate biomarkers across a range of foods have been
reported as biomarkers of food intake [43,44]. However, sufficient validity of these markers is lacking
to be useful for various applications in nutritional epidemiology. In this context, examination of
dose–response has become an essential prerequisite to demonstrate the use of biomarkers in dietary
assessment. For example, the discovery and validation of proline betaine as a biomarker of citrus
fruit intake has been widely investigated across a number of studies [13–15,45–47]. In particular, one
study identified urinary proline betaine as a biomarker displaying dose–response relationship in a
controlled intervention study where participants consumed orange juice at different quantities over
a three-week period [21]. Subsequently, calibration curves were developed using proline betaine
concentrations and orange juice intake and these calibration curves were used to determine citrus fruit
intake in an independent cohort. Overall, the literature clearly establishes the status of proline betaine
as a quantifiable biomarker to estimate citrus intake. Similarly, a controlled intervention trial aimed
to discover biomarkers of grape intake identified urinary tartaric acid displaying a dose–response
relationship with 0, 50, 100, and 150 g/day of reported intake. Calibration curves were developed for
urinary tartaric acid against red grape intake (g/day) with a correlation of 0.9 reported between actual
and estimated intake projecting a high level of agreement [20]. The combination of both studies clearly
demonstrates that well-defined urinary markers can be used to estimate dietary intake. Our present
study allows us to add to the literature by demonstrating a dose–response for pea intake. Importantly,
the peas were consumed as part of mixed meals constituting the participants’ habitual dietary intake.
Future work will examine if the dose–response curves could be used as calibration curves to determine
pea intake in a free living population.

An important aspect of the validation of biomarkers is the biological plausibility of such
markers; we argue here that all three metabolites associated with pea intake have plausible biological
interpretations [48]. 2-IPMA has been reported to be present in common peas (Alberta Food
Composition Database (AFCDB), ID: FDB030115). Our literature search revealed that 2-IPMA is
also present in other foods such as melon extracts, tomato and extracts from green leaf lettuce cultivars
such as baby, iceberg and romaine [49–51]. However, the fact that we observed a dose–response in
the background of a habitual diet would suggest that pea consumption is contributing to the majority
of urinary 2-IPMA. To our knowledge, there are no reports of studies showing urinary excretion of
2-IPMA reflecting dietary intake. Asp-Val, the Level II identified compound, has been reported to be a
breakdown product of protein catabolism or protein digestion (HMDB0028744) [52] and we hypothesise
that it is reflective of pea protein consumption. NC belongs to a class of compounds known as
N-Carbomoyl-alpha amino acids and is reported to be present in pulses (HMDB0031813). Subsequent
confirmation and validation of 2-IPMA, Asp-Val and NC in an independent study comparing with
meat protein sources and a dose–response study further evidenced utilization of these metabolites as
biomarkers of pea intake.

There are a number of strengths associated with the present study. A particular strength was
the evaluation of a dose–response relationship in the background of a habitual diet confirming
the suitability of these markers across a range of intakes. In addition, another unique strength is
confirmation of these putative biomarkers in a separate independent intervention study. However, a
limitation of the current study is the participants were restricted to European population groups and
hence further validation is required in different ethnic populations. Furthermore, the determination
of pea intake in an independent cross-sectional cohort could also pave the way for these markers to
become objective measures of intake.
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5. Conclusions

In summary, the present study demonstrates a successful application of an untargeted
metabolomics approach to discover biomarkers of pea intake. 2-IPMA, Asp-Val and NC were
discovered as potential biomarkers of pea intake. Key biomarker validation criteria were satisfied with
the results obtained from the dose–response study and confirmation of biomarkers in the independent
intervention study. The use of such validated biomarkers of pea intake opens up the possibility of
objective measures of legume intake. Future work will look into the possibilities of quantifying the
biomarkers which could allow application in nutritional epidemiology and to use them as biomarkers
of compliance to certain dietary regimes. Combining these biomarkers into a broader panel capturing
vegetable intake could open up possibilities for application to objectively assess vegetable intake.
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when pea burger (control) was compared with beef, chicken and pork in an independent study, Table S1:
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population characteristics.
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