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Abstract

An individualized cancer therapy is ideally chosen to target the cancer’s driving biological pathways, but identifying such pathways
is challenging because of their underlying heterogeneity and there is no guarantee that they are druggable. We hypothesize that a
cancer with an activated druggable cancer-specific pathway (DCSP) is more likely to respond to the relevant drug. Here we develop
and validate a systematic method to search for such DCSPs, by (i) introducing a pathway activation score (PAS) that integrates cancer-
specific driver mutations and gene expression profile and drug-specific gene targets, (ii) applying the method to identify DCSPs from
pan-cancer datasets, and (iii) analyzing the correlation between PAS and the response to relevant drugs. In total, 4,794 DCSPs from 23
different cancers have been discovered in the Genomics of Drug Sensitivity in Cancer database and validated in The Cancer Genome
Atlas database. Supporting the hypothesis, for the DCSPs in acute myeloid leukemia, cancers with higher PASs are shown to have
stronger drug response, and this is validated in the BeatAML cohort. All DCSPs are publicly available at https://www.meb.ki.se/shiny/
truvu/DCSP/.
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Introduction
Cancer is the second leading cause of deaths and was responsi-
ble for 9.6 million deaths worldwide in 2018. Approximately 1 in
6 deaths is due to cancer [1]. Cancer can result from an uncon-
trollable cell growth due to genetic alterations in their genomes
[2] that change the biological function of some oncogenes and
their associated pathways. Drugs designed for specific gene tar-
gets may not work as expected in a specific cancer because of
the underlying heterogeneity in its driving biological pathways.
To kill a specific cancer with an inhibitor, theoretically we need to
find one that can downregulate the cancer’s driving pathway(s).
There are at least 2 immediate challenges: (i) pathway activation
is only a necessary but not sufficient condition for its driving prop-
erty, and empirically, we can observe many activated pathways in
any given cancer, so it is not obvious how to determine which is
the driving pathway, and (ii) the driving pathway may not have
druggable targets, for example, the driving pathway has a poor
functional connectivity with the targets of the drug, leading to no
impact of the drug on the driving pathway. Thus, in our approach,
a pathway activity is first measured by the mRNA expression of
the genes in the pathway. The pathway activity is weighted by
the functional connectivity between the pathway, potential driver
genes, and drug targets. Then, we search for pathways that are
uniquely activated in specific cancers but not in others. We fo-
cus on druggable pathways, roughly those have known drug tar-
gets. (In the actual computation, we also allow genes upstream to
the targets.) We hypothesize that a cancer with an activated drug-
gable cancer-specific pathway (DCSP) is more likely to respond to
the relevant drug. Thus, our aim is to develop and validate a sys-
tematic method to search for such DCSPs.

Many studies [3–5] have investigated universal cancer signal-
ing pathways. For instance, the p53, RTK–RAS signaling or cell cy-
cle pathways are frequently altered across different cancers [6].
Recently, Sanchez and colleagues [7] analyzed the mechanisms
and patterns of somatic alterations in 10 common canonical path-
ways in different cancers using The Cancer Genome Atlas (TCGA)
cohort: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3–Kinase/Akt, RTK–
RAS, TGFβ signaling, p53, and β-catenin/Wnt. However, some al-
tered signaling pathways appear limited to specific tumors; for
example, some pathways of BRCA1 and BRCA2 tumor-suppressor
genes are known to be specific to breast and ovarian cancers [8–
10]. Altered signaling pathway due to the chromosomal rearrange-
ment event of PML–RARA fusion [11] is often observed only in
acute promyelocytic leukemia (APL), a distinct subgroup of acute
myeloid leukemia (AML). Here we shall consider only pathways
that are cancer specific.

For a given altered signaling pathway that is specific to a can-
cer, different drugs can affect the pathway differently, thereby po-
tentially producing distinct levels of drug response. Conceptually,
we expect the action of a drug from the role of its targets in the
pathway. For instance, midostaurin and gilteritinib are inhibitors
that target mutations of a type III receptor tyrosine kinase (FLT3)
[12], which occur in 30% of AML cases [13]. So, the action of these
inhibitors should be assessed in activated pathways that contain
the FLT3 gene. Therefore, the investigation of a signaling pathway
specific to a cancer is more informative clinically if it mediates the
action of a specific drug. In other words, the pathway is druggable,
so we need to capture the element of druggability in the definition
of the pathway activity.
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Here we develop a systematic methodology to identify and val-
idate druggable cancer-specific pathways. Briefly, we compute a
pathway activation score (PAS) to represent the activity level of
pathways for specific cancers and take drug targets into account.
The PAS of a tumor is calculated for each drug–pathway pair us-
ing information of gene expression and driver genes of the tumor
and target genes of the drug. Then, we implement cancer-specific
analysis to discover the cancer-specific pathways (DCSPs) that ex-
hibit high activation only in aingle cancer while activation scores
of the pathways in other cancers are not significantly different
from each other. The workflow of the study is presented in Fig. 1.
First, we apply the proposed method to identify DCSPs from the
Genomics of Drug Sensitivity in Cancer (GDSC) cohort [14] as the
discovery set, which contains 23 different cancers and 251 drugs.
Then, the DCSPs are validated in the TCGA cohort [15]. Finally, uti-
lizing the fruitful omic and drug data of the BeatAML study [16],
we focus on the DCSPs of AML, the most common type of leukemia
cancer in adults with a high relapse rate (50% within 6 months)
and poor survival outcome (only 10% within 5 years) [17, 18]. Some
recent studies also consider the integration of the GDSC and the
BeatAML cohort. For example, Jafari et al. [19] used the drug data
from 2 cohorts to develop bipartite network models to search for
potential combination therapies in AML. However, they did not fo-
cus on identifying potential biological pathways associated with
the drug response. In support of our hypothesis, for the DCSPs in
acute myeloid leukemia, cancers with higher PASs are shown to
have stronger drug response, and this is validated in the BeatAML
cohort.

Results
Pathway activation score
PAS is defined as a tumor-specific pathway activity level that is
relevant to a specific drug. It is calculated based on the connec-
tion between the driver gene(s), the drug-specific target gene(s),
and the tumor-specific mRNA expression level of the genes in the
pathway. PAS of a tumor is calculated for each drug–pathway pair.
Genes in a pathway P are classified into 2 groups: (i) Gu, which in-
cludes both the target and upstream genes, and (ii) Gd, which con-
tains the downstream genes. We first compute an upstream activ-
ity score S(Gu) as the sum of mRNA expression of the genes in Gu.
Next, the score is weighted by the functional network connectiv-
ity between the gene sets of the driver genes, the target genes, and
the pathways using the network enrichment analysis (NEA) [21],
which is described in further details in the Materials and Methods
section. Three connectivity weights w1, w2, and w3 are computed
for these pairs of gene sets: (driver genes ↔ target genes), (driver
genes ↔ pathway gene sets), and (target genes ↔ pathway gene
sets). Each weight ranges from 0 to 1, where 0 indicates little or
no functional interaction and 1 indicates a high interaction. The
final PASu, the pathway score for upstream activity, is calculated
as S(Gu)∗(1 + w1 + w2 + w3). In the implementation, we identify
recurrent mutations and fusions in each tumor as the potential
driver genes; more details are given in the Materials and Meth-
ods section. The pathway score for downstream activity PASd is
computed similarly. Fig. 1A illustrates a toy example of PAS for
PI3k/ATK pathway targeted by tanespimycin.

For the purpose of identifying DCSPs, we need to define a scalar
PAS. Our hypothesis is that for a drug to be effective on a tumor, its
target genes should be part of a pathway that is highly activated,
where high activation is measured relative to the other part of
the pathway. So we focus on the positive PAS ≡ PASu − PASd as the

primary pathway activation score. The hypothesis will be further
supported in terms of biological specificity if there is evidence that
the downstream activation is not informative of drug response.
As a motivation, suppose the driver is downstream of the target
and that part of the pathway (PASd) is highly activated, while the
target (or PASu) is not activated. This is the case where PASd −
PASu > 0, where the downstream activation is measured relative
to the upstream activation. So we also investigate this secondary
version of PAS as a measure of version downstream activation and
hypothesize that in this case, PAS does not correlate with drug
response.

PAS is computed for a set of biological pathways P = P1,..., PN,
a set of drugs D = D1,..., DM, and a set of tumor samples S = S1,...,
SK from Z types of cancers C = C1,..., CZ. A PAS of tumor sample
Sk, drug Di, and pathway Pj is PAS(Sk, Di, Pj), or simply PAS if it is
clear from the context. Thus, given tumor Sk, PAS is calculated
for each (Di, Pj) pair. In practice, we use N = 4,762 curated human
pathways from the MSigDB database. Using the GDSC data as the
discovery set, we have M = 251 drugs and K = 684 samples from Z
= 23 cancer types. The target genes of drugs are provided from the
GDSC cohort and extended with the curated information from the
DrugBank database [22]. The direction of regulatory interactions
between genes is taken from multiple directed network databases,
including HTRIdb [23], regulatory target gene sets of the MSigDB
database [24], transcriptional factor target database of the UCSC
Genome Browser Database [25], and kinase–substrate interaction
database [26].

Identification of druggable cancer-specific
pathways
Fig. 1 presents an overview of the process to identify DCSPs. First,
the gene expression data from GDSC are obtained to calculate
PAS. The list of the cancers, their abbreviation, and number of
samples of each cancer are provided in Supplementary Table S1.
Next, DCSP analysis is applied to discover DCSPs based on PASs.
The DCSP analysis takes into account all drug–pathway–cancer
triplets to discover highly activated druggable pathways that are
specific to each cancer. Finally, the DCSPs are validated using
TCGA cohort. For the DCSPs in AML, we assess the association
between PAS and drug sensitivity and validate it in the BeatAML
cohort. More details are described in the Materials and Methods
section.

From all drug–pathway combinations across 23 cancers and
251 drugs in the GDSC cohort, we put together a total of 250,479
DCSP candidates. Among these, we identify 69,986 DCSPs with t
statistics and a false discovery rate (FDR) <0.01 and those within
the first quartile of χ2 statistics. Supplementary Figure S1A dis-
plays the distributions of the statistics of these DCSPs. Among
these cancers, colon/rectum adenocarcinoma (COAD/READ) has
the largest number of DCSPs (17,057; 24,37%), followed by breast
cancer (BRCA), skin cutaneous melanoma (SKCM), and pancreatic
adenocarcinoma (PAAD), with more than 4,000 (>5%) DCSPs (see
Fig. 2A). In contrast, some cancers report only a few DCSPs, for ex-
ample, 112 and 233 for stomach adenocarcinoma (STAD) and thy-
roid carcinoma (THCA), respectively. Details of the numbers and
proportions of DCSPs identified in individual cancers are provided
in Supplementary Table S2 and Supplementary Figure S2. All DC-
SPs are available on the study website [27].

Validation of DCSPs in the TCGA cohort
Using the same computational procedure, among the 69,986 DC-
SPs identified in the GDSC cohort, 4,794 DCSPs are validated in
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Figure 1: Overview of identifying DCSPs from the pharmacogenomics data. (A) PAS is computed from the pharmacogenomics data of the GDSC along
with pathway and drug target databases. In the illustration of PAS, tanespimycin or 17-AAG has a target gene HSP90, which involves pathway
PI3k/AKT. For simplicity, the full information of the pathway is not shown in this example. The main analysis includes (i) identification of DCSPs from
the GDSC cohort with validation using the TCGA cohort (B, C) and (ii) investigation of the association between PAS and drug responses with validation
using the BeatAML cohort (D, E). These plots are derived from the analyses of the PASs of Martens–PML–RARA [20] druggable by quizartinib in AML.
The boxplots (B, C) show that the PAS of AML is overexpressed while the PASs of other cancers are low expressed and not significantly different from
each other. (D, E) Each point presents a tumor, and the lines are linear regression lines. The values of PAS and area under the curve (AUC) in the plots
are under the normal score transformation; see the Materials and Methods section.

the TCGA cohort. Fig. 2A shows the number of validated DCSPs for
each cancer using the TCGA cohort; details are mentioned in Sup-
plementary Table S2. BRCA has the largest number of validated
CSPs (1,284), followed by AML (992). However, the validation rate of
BRCA is relatively low (0.16) in comparison to AML (0.33), prostate
adenocarcinoma (PRAD) (0.51), and ovarian cystadenocarcinoma
(OV) (0.53). The numbers of validated DCSPs of PRAD (284) and OV
(160) are about 5 times less than the one of BRCA. These diseases
also have the top validation rates, while the other diseases have a
small validation proportion of less than 20%. The number of vali-
dated DCSPs and the validation rate of individual cancers are pro-
vided in Supplementary Table S2. The number of DCSPs found in
the TCGA cohort (n = 110,400) is higher than that in the GDSC co-
hort (n = 69,986). There are several possible reasons for the differ-
ence: the GDSC cohort contains data from cell lines, which tend
to be more homogeneous compared to the patient-derived data
from the TCGA cohort. Furthermore, the number of samples of
each cancer in the TCGA cohort is much higher than that in the
GDSC cohort (Supplementary Table S1), which increases the sen-
sitivity in the test of differences.

Correlation between PAS and drug sensitivity
Next we investigate the correlation between PAS and drug sensi-
tivity in AML, the disease with a high validation rate and for which
there exist extensive drug response assays in multiple datasets.
Drug sensitivity is measured in terms of area under the curve
(AUC) of cancer cell survival as a function of drug dose. A small
AUC indicates a good drug response (i.e., the drug kills the can-
cer cells at the low end of the dose range). A negative correlation

cor(PAS, AUC) means high PAS is associated with better drug re-
sponse. This happens if the drug is effective in killing the cancer
cells and the pathway P mediates the drug response. Such an ob-
servation would support our main hypothesis that cancers with
activated druggable cancer-specific pathways are likely more re-
sponsive to the relevant drug. If there is no correlation, it is either
because the drug is not effective (e.g., there is drug resistance) or
because its effect is mediated by other pathways. A positive cor-
relation means that higher PAS is associated with worse drug re-
sponse, or lower PAS with better response, which is the opposite to
our hypothesis. So our hypothesis would imply no positive corre-
lation, and we consider this part as a negative control. Further de-
tails are in the Materials and Methods. Data from the BeatAML co-
hort are used for validation. Figs. 1D and E present an example of
the involvement of quizartinib, pathway Martens–PML–RARA [20],
and AML, where the correlation between PAS and AUC is −0.14 in
the GDSC cohort and −0.20 in the BeatAML cohort. From all iden-
tified DCSPs for AML in the GDSC cohort, we collect 1,007 DCSPs
that share 56 overlapped drugs with the BeatAML cohort. PASs of
these DCSPs are also calculated in the BeatAML cohort. The DCSPs
are first ranked by the correlation cor(PAS, AUC) in the GDSC. This
rank is also used later for the results shown in Fig. 2. We assess the
validation by computing the rediscovery rate (RDR), defined as the
proportion of the top-ranking DCSPs identified in GDSC that have
significant cor(PAS, AUC) in the validation set (BeatAML). DCSPs
with P value <α are considered as significant, using target levels
α = 0.05 and 0.01.

Fig. 2B presents the RDRs of the set of DCSPs with negative cor-
relations. Here, the x-axis represents 5%, 10%, 20%, 30%, 40%, 50%,
and 100% of top-ranking DCSPs in the discovery set (GDSC); the y-
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Figure 2: (A) The number of DCSPs identified in the GDSC cohort and TCGA cohort. For each cancer on the x-axis, the left-most (blue) barplot
represents the results of the GDSC cohort, the middle (orange) barplot shows the number of DCSPs of the TCGA cohort, and the right-most (red)
barplot is the number of validated DCSPs. The y-axis is presented in log2 scale and the cancers on the x-axis are ordered by their number of validated
DCSPs. (B, C) The rediscovery rate (RDR) of DCSPs in terms of the association between PAS and drug sensitivity in AML. RDR is the proportion of the top
5%, 10%, 20%, 30%, 40%, 50%, and 100% of DCSPs identified in the discovery set (GDSC cohort) that is significant in the validation set (BeatAML cohort).
(B) RDR of DCSPs with negative correlations and (C) RDR of DCSPs with positive correlations. The horizontal dashed lines present the target lines for
the target levels of the P value at α = 0.05 (red) and 0.01 (blue). (D) PAS of Martens–PML–RARA (Pj) druggable by quizartinib (Di) from the GDSC cohort
in comparison with PASs of the following 3 groups: (i) same pathway but different drugs (Di, Pj), (ii) same drug but different pathways (Di, Pj), and (iii)
different drugs and different pathways (Di, Pj). P values of the permutation test are presented at the top of each pair. Di represents the set of other
drugs, while Pj refers to the set of other pathways. The values in parentheses of the x-axis are the numbers of samples for each group. The y-axis
presents PAS values of the groups.

axis represents the corresponding RDRs at 0.05 (red line) and 0.01
(blue line) thresholds. Both RDR curves generally slope downward
when the number of top DCSPs increases and closely reaches the
target (horizontal dashed lines) at top 100% (the full set). From
top 5% to top 20% of the red line, RDRs archive the highest value
at ∼0.20. Supplementary Table S3 shows 28 DCSPs at top 20%
that are rediscovered in the validation set. Our analyses of the
cor(PASu, AUC) and the cor(PASd, AUC) of these 28 DCSPs show that
the downstream pathway activation should be uninformative to-
ward drug response (data not shown). Fig. 2C presents the RDRs
for the set of DCSPs with positive correlations. The results show
that most RDRs are close to the target lines (the horizontal dashed
lines in the figure), supporting our expectation that there are no
DCSPs where lower PAS is associated with better drug response.

Fig. 1B (with extension in Supplementary Fig. S3A) illustrates
PASs of a top DCSP (ranked based on t statistics) of AML ver-
sus other cancers in the GDSC cohort. This AML-specific DCSP is
the Martens_bound_by_PML_RARA_fusion (Martens–PML–RARA),
which is druggable by quizartinib. Median PAS of AML (24.3) is
2.5 times greater than that of the remaining cancers (median
= 9.7). The pattern is validated in the TCGA cohort (see Fig. 1C
with extension in Supplementary Fig. S3B). The pathway was first

described by Martens and colleagues [20] in the study on genes
with promoters occupied by the PML–RARA fusion in APL, a well-
studied subtype of AML disease [28]. Intriguingly, quizartinib is
a small-molecule receptor tyrosine kinase inhibitor that targets
FLT3 genes and has been shown to work for FLT3-mutated AML
cases [29]. The FLT3 mutation is the one of the most common mu-
tations in AML, which can be caused by the internal tandem du-
plication of FLT3 (FLT3–ITD), point mutations, and indels in the ty-
rosine kinase domain (FLT3–TKD) [30]. Among patients with APL,
47.9% carry FLT3 mutations [31], and it has been shown that PML–
RARA fusion can collaborate with FLT3 mutation to induce an
APL-like disease in the mouse [32].

We then investigate the correlation between the downstream
activation and the drug sensitivity. Here PAS is defined as PASd –
PASu, so a high positive PAS corresponds to the downstream part
of the pathway having higher activation relative to the upstream
part. A similar procedure is applied for this version of PAS to com-
pute the RDRs. Supplementary Figs. S4A and B show the RDRs of
the set of DCSPs with negative and positive correlations, respec-
tively. The RDRs generally follow the P value target lines (0.05 and
0.01) closely, indicating there is no evidence of correlation between
downstream activation with drug response.
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Specificity of DCSPs in AML
We further investigate the specificity of the identified DCSPs of
AML using the case in Fig. 2C as an example. Given D the set of
drugs and P the set of pathways from the DCSPs identified in AML,
we define Di = {Dm|Dm ∈ D, m �= i} as the set of the other drugs.
Similarly, Pj is defined as the set of other pathways. Suppose a
DCSP is specified by a combination of drug Di and pathway Pj in
AML. Then we investigate the overexpression of its PASs in com-
parison to PAS of these 3 other sets: (i) the same pathway but dif-
ferent drugs (Di, Pj), (ii) the same drugs but different pathways (Di,
Pj), and (iii) different drugs and different pathways (Di, Pj). To com-
pare the PASs of group (Di, Pj) with another group, we use a per-
mutation test where the null distribution of the t statistic is gen-
erated by random permutation of cell-line labels. A total of 10,000
permutations are carried out to build the null distribution. Then,
the actual t statistic and the population of the t statistics from the
permuted dataset are used to calculate the empirical P values.

Fig. 2D presents the results of the permutation test for quizar-
tinib and the Martens–PML–RARA combination [20] from the
GDSC cohort. The results show that PASs of this DCSP (group [Di,
Pj]) are significantly higher than those of the groups of different
pathways or both drugs and pathways ((Di, Pj) and [Di, Pj]; P = 1e-4),
indicating that quizartinib is more closely linked to the Martens–
PML–RARA pathway compared to the other pathways. Compared
to the group of the same pathway but different drugs, this DCSP
also has significantly higher PASs (P < 1e-4). Similar results are
also observed for the other DCSPs of AML. The details are provided
in Supplementary Table S4 and illustrated on the interactive web-
site.

Discussion and conclusion
To investigate the hypothesis that cancers with activated drug-
gable cancer-specific pathways are more likely to respond to the
relevant drugs, we have introduced PAS and applied it to conduct
a systematic search of druggable cancer-specific pathways in 23
cancers from the GDSC cohort. The DCSPs of these cancers are
then validated in the TCGA cohort. In support of the hypothe-
sis, we observe a significant correlation between higher PAS and
stronger drug response among the DCSPs identified in AML and
validate this in the BeatAML cohort. All results are provided in an
interactive website available to users.

PAS is defined to capture the druggability of a pathway for an
individual cancer. In principle, this information can be used to
build a model for predicting drug responses of tumors in preci-
sion medicine. Current models often apply black-box statistical
and machine learning methods to multiple omics data to predict
responses of a single drug (monotherapy) or combination of drugs
(drug synergy) [33, 34]. This sometimes makes the interpretation
of the prediction models difficult [35]. One of the advantages of
using PASs for the prediction model is its ability to keep track of
the driving mechanisms through the pathway information. Fur-
thermore, PASs can be applied to prediction in both monotherapy
or drug synergy as long as the target gene list is collected from the
drug(s).

This study has been conducted using the rich resources; how-
ever, the data still have some weaknesses. First, information on
drug target genes is often incomplete, and off-target genes are
generally unknown. We collect the target gene list provided from
the GDSC cohort and extend with the curated information from
the DrugBank database [22]. Recently, a community effort has
been made to improve the target space of drugs via a web plat-

form named Drug Target Commons [36]. Investigating the use of
the drug target data of this database will be our future work. Sec-
ond, the pathway databases are still incomplete, and we expect
they will be improved in the future. Third, the number of cell lines
of individual cancers in the GDSC is limited and could not be rep-
resentative of the real data of the disease. Fourth, the GDSC and
BeatAML cohorts share only a small number of drugs; this means
a large number of DCSPs are not assessed in terms of drug re-
sponse. This problem can be improved by producing more drug
data. Despite the limited sharing drugs, integration of the 2 co-
horts is considered in some recent studies. For example, Jafari
and colleagues [19] propose bipartite network models to search
for combination therapies in AML using the data from both the
GDSC cohort and the BeatAML cohort . However, they did not fo-
cus on identifying potential biological pathways related to drug
response. Finally, there is general lack of publicly available drug
data of other cancers for validation.

Materials and methods
Functional network connectivity between driver
genes, pathway, and target genes of drugs
To achieve the weights for PAS using the interaction between
driver genes, pathway, and drug target genes, we utilize the net-
work enrichment analysis (NEA) [21]. Briefly, NEA originally as-
sesses the functional network connectivity between 2 gene sets:
a functional gene set (FGS; e.g., driver alteration) and an altered
gene set (AGS) associated with a certain downstream biological
state (e.g., differentially expressed [DE] genes). Compared to the
traditionally used gene-set enrichment analyses (GSEAs) [37], NEA
extends GSEA with topological information in terms of gene in-
teraction networks, which provide a biologically informative cat-
egory. A comprehensive network containing 1,445,027 functional
links between 16,299 distinct HUPO genes is considered in the
analysis.

In the current application, NEA is applied for 3 pairs of gene
sets, including driver genes, pathway genes, and drug target genes.
For each pair, 1 gene set is selected for FGS and the remaining gene
set is for the AGS. In particular, FGS is assigned for the set of drug
target genes in (drug target genes, pathway genes) and (drug target
genes, driver genes) while for (driver genes, pathway), the driver
genes are used for FGS. Finally, NEA simplifies the assessment of
the functional connectivity by defining an enrichment score as

z = dAF − dAF

σAF
(1)

where dAF is the number of connected links between AGS and FGS,
and dAF and σAF are the mean and standard deviation of dAF, re-
spectively, which are estimated on a randomized network under
the null hypothesis. Thus, for each PAS, we collect 3 corresponding
z scores expressing the overrepresentation of drug target genes on
cancer driver genes (z1), driver genes on pathway genes (z2), and
target genes on pathway genes (z3) based on the functional gene
network. Finally, these 3 enrichment scores are then converted
into normal probability scores (w1, w2, and w3), which are used
as the weights for PAS.

Discoveries of druggable cancer-specific
pathways
Given a drug Di, a pathway Pj is considered as specific to a can-
cer Cz, that is, DCSP, if the pathway overactivates in that cancer
while activation scores of this pathway in other cancers are not
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significantly different from each other (see Fig. 1B). The issue is
straightforward: if we consider only 2 cancers, a standard statis-
tical approach such as a t -test can be applied directly to PASs.
However, when there are more than 2 cancers (e.g., 23 different
cancers from the GDSC cohort in this study), the standard method
only ensures that a cancer is different from the rest, but the re-
maining cancers might be different from each other. Therefore, in
this case, the specificity of the pathway for the remaining cancers
is not guaranteed. To identify the DCSPs, we apply a 2-statistic ap-
proach originally developed in a recent study [38] for the PAS data
of the GDSC cohort. The method provides 2 statistics for each can-
cer: (i) a robust t -test (T1) for comparing between that cancer and
the rest and (ii) a χ2 statistic (T2) for jointly comparing the remain-
ing cancers.

For an activated pathway that is cancer specific, we expect a
large t statistic for T1 and a small χ2 statistic for T2. To account
for multiple testing, the FDRs [39] of T1 are calculated, and we
keep DCSPs with FDR <0.01. We further keep only DCSPs whose
χ2 statistics are within the first quartile. Finally, we apply the fol-
lowing sample size conditions: (i) for each DCSP, the number of
samples for each supporting cancer is larger than 5, and (ii) it is
supported by at least 3 cancers.

Pathway activation score in relation to drug
response
Our hypothesis is supported if the pathway Pj mediates the re-
sponse to drug Di in cancer Cz; statistically, this is the case if the
pathway activity of DCSP(Di, Pj, Cz) correlates with the drug re-
sponse. Fig. 1D shows an example in AML of the relation between
PAS and the AUC of drug sensitivity of the pathway Martens–PML–
RARA [20] druggable by quizartinib, where the AUCs are obtained
from cell lines actually treated with quizartinib. Given a DCSP(Di,
Pj, Cz), we first apply the normal score transformation on both
PAS and drug sensitivity (AUC) of the tumors in cancer Cz. Sub-
sequently, we calculate the Pearson correlation between PAS and
AUC as cor(PAS, AUC). Here, 2 versions of PAS for upstream and
downstream activation are used to compute cor(PAS, AUC). The
PAS of the upstream version is defined as PAS = PASu – PASd, while
for the downstream version, PAS = PASd – PASu. As activation, only
positive values are considered.

Datasets
We use the GDSC cohort as the discovery set. Validation sets have
been obtained from the following sources: (i) TCGA cohort, (ii)
Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) cohort, and (iii) BeatAML cohort.

GDSC dataset
The GDSC project [14] has been undertaken with the aim of dis-
covering cancer biomarkers that are highly responsive to anti-
cancer drugs. This cohort contains the genomic information of
more than 1,000 human cancer cell lines and drug sensitivities of
more than 250 drugs.

The drug data from the GDSC cohort (version 17.3) contain a to-
tal of 224,202 cell line–drug experiments from 251 drugs and 1,065
cell lines. We use only 125,894 monotherapy profiles of 684 cell
lines from 23 cancers after removing the profiles with more than 1
replicate. The number of cell lines of a cancer ranges from 6 to 64;
AML has 28 cell lines. The potential driver genes of the samples,
including mutations and fusion genes, are collected from Depmap
Portal [40]. We keep mutations with an occurrence at least 2% of
total samples across cancers. For the fusion genes, we keep all

fusions with at least 2 occurrences and overlapping with the fu-
sions found in the Mitelman database [41]. The expression data of
17,715 genes from these cell lines are also achieved.

TCGA and TARGET datasets
TCGA [15] is led by the National Cancer Institute’s Center for Can-
cer Genomics and the National Human Genome Research Insti-
tute with the aim of providing a landscape of genomic charac-
terization for more than 33 malignant diseases. TARGET is an
ongoing project that provides the comprehensive genomic land-
scape targeted toward countering childhood cancer. In the vali-
dation step, we collect data of 22 cancers from the TCGA cohort
and neuroblastoma (NB) from the TARGET cohort [42]. These can-
cers are matched with the cancers in the GDSC cohort of the dis-
covery set. The data contain expressions of 37,636 genes from a
total of 8,825 samples across 23 cancers. The detailed informa-
tion of these cancers is provided in Supplementary Table S1. Gene
expressions normalized by fragments per kilobase of transcript
per million mapped reads originally reported from the cohorts are
converted to transcript per million (TPM) for downstream analy-
ses. Mutations and fusion genes are also collected and filtered to
obtain potential driver genes with high occurrence. Frequent mu-
tations with occurrence of at least 1% of total samples are kept,
and the same filter in the GDSC cohort is applied for fusion genes.

BeatAML dataset
BeatAML [16] is an ongoing project that aims to provide an ex-
tensive landscape of AML, comprising clinical, genomic, and drug
response data. This cohort contains RNA sequencing samples of
461 AML cases. These samples are sequenced by the Illumina
HiSeq 2500 platform (100-bp paired-end reads) after processing
with the Agilent SureSelect Strand-Specific RNA Library Prepa-
ration Kit on the Bravo robot. The FASTQ files of these samples
are input to XAEM [43]; then, expressions in TPM of 26,086 genes
are collected. After removing unexpressed genes (TPM ≤ 1e − 2 in
more than 90% of samples), 23,035 genes remain. The mutations
and fusion genes collected from the BeatAML cohort are used. The
fusion genes are filtered by the same procedure in the GDSC co-
hort. The drug sensitivities of 122 compounds reported in terms
of both IC50 and AUC are also collected. The data consist of 47,650
records from 528 patients with AML.

The results of this study are available on the DCSP website [27].

Data Availability
The implementations of the PAS generation and the shiny appli-
cation are available on the DCSP website [27]. All related datasets
can be downloaded from a public Zenodo repository [44]. All sup-
porting data and materials are available in the GigaScience respos-
itory, GigaDB [45].

Additional Files
Supplementary Table S1. List of 23 cancers of the GDSC cohort
using in this study. Note that COAD and READ in the TCGA cohort
are combined together to be consistent with the GDSC cohort.
Supplementary Table S2. The DCSPs discovered from the GDSC
cohort and the TCGA cohort across 23 cancers. The validated DC-
SPs are the DCSPs identified in the GDSC cohort and rediscovered
in the TCGA cohort. The last column presents the proportion of
validated DCSPs (PV) in the TCGA cohort.
Supplementary Table S3. List of 28 DCSPs responding to anti-
cancer drugs in the GDSC cohort and the BeatAML cohort.
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Supplementary Table S4. PAS of pathway Pj treated by drug Di

in comparison with PASs of following 3 groups: (i) same pathway
but different drugs (Di, Pj), (ii) same drug but different pathways
(Di, Pj), and (iii) different drugs and different pathways (Di, Pj). The
values in the last 4 columns are the median PAS of the groups. P
values of the permutation tests are reported in parentheses.
Supplementary Fig. S1. The t statistics and χ2 statistics of DCSP
candidates from the GDSC cohort: (A) across 23 cancers and (B)
AML.
Supplementary Fig. S2. The proportion of identified DCSPs for in-
dividual diseases.
Supplementary Fig. S3. PASs of Martens–PML–RARA druggable by
quizartinib in the (A) GDSC cohort and (B) TCGA cohort. The or-
ange box plots represent PAS of AML, and the green ones represent
PASs of other cancers.
Supplementary Fig. S4. The rediscovery rate (RDR) of DCSPs in
terms of the association between PAS and drug sensitivity in AML.
RDR is the proportion of the top DCSPs identified in the GDSC co-
hort that is significant in the BeatAML cohort. Here, PAS is defined
as PASd − PASu, so a higher value of PAS indicates a higher activa-
tion of the downstream part than the upstream part. (A) RDR of
DCSPs with negative correlations and (C) RDR of DCSPs with pos-
itive correlations. The horizontal dashed lines present the P value
target lines (0.05 and 0.01). The RDRs follow the null target lines
(0.05 and 0.01), that is, null results, indicating that there is no ev-
idence of drug response when the pathway has higher activation
downstream rather upstream of the drug targets.
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AGS: altered gene set; AML: acute myeloid leukemia; APL: acute
promyelocytic leukemia; AUC: area under the curve; DCSP: drug-
gable cancer-specific pathway; FDR: false discovery rate; FGS:
functional gene set; GDSC: Genomics of Drug Sensitivity in Can-
cer; GSEA: gene-set enrichment analysis; NEA: network enrich-
ment analysis; PAS: pathway activation score; PASu/d: pathway ac-
tivation score for up/downstream activity; RDR: rediscovery rate;
TARGET: Therapeutically Applicable Research to Generate Effec-
tive Treatments; TCGA: The Cancer Genome Atlas; TPM: tran-
script per million.
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