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Summary

1. Null models are an important component of the social network analysis toolbox. However, their use in

hypothesis testing is still not widespread. Furthermore, several different approaches for constructing null models

exist, eachwith their relative strengths andweaknesses, and often testing different hypotheses.

2. In this study, I highlight why null models are important for robust hypothesis testing in studies of animal

social networks. Using simulated data containing a known observation bias, I test how different statistical tests

and null models perform if such a bias was unknown.

3. I show that permutations of the raw observational (or ‘pre-network’) data consistently account for underlying

structure in the generated social network, and thus can reduce both type I and type II error rates. However, per-

mutations of pre-network data remain relatively uncommon in animal social network analysis because they are

challenging to implement for certain data types, particularly those from focal follows andGPS tracking.

4. I explain simple routines that can easily be implemented across different types of data, and supply R code that

applies each type of null model to the same simulated dataset. The R code can easily be modified to test hypothe-

ses with empirical data. Widespread use of pre-network data permutation methods will benefit researchers by

facilitating robust hypothesis testing.
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Introduction

With increasing interest in the study of animal social behaviour

has come a greater reliance on statistical tools tailored to ana-

lysing social data. One notablemethod is social network analy-

sis. An important element in applying social network method

to animal data has been the development of specialised

hypothesis testing routines (Whitehead 1995, 1999; Bejder,

Fletcher & Brager 1998; Lusseau, Whitehead & Gero 2008;

Franz & Nunn 2009; Sundaresan, Fischhoff & Dushoff 2009;

Farine 2014). One such method is null models, which are used

to generate the patterns expected from the data in the absence

of the process of interest (Croft et al. 2011; Farine & White-

head 2015). Null models are important because networks are

based on non-independent observations of multiple individu-

als, and because small differences in how data are collected

between individuals can easily generate patterns that appear as

social structure. Thus, the aim of constructing a null model is

to account for non-social factors that affect co-occurrence of

individuals (e.g. individual attractions to resources such as bird

feeders and watering holes: VanderWaal et al. 2013; Adelman

et al. 2015), so that we can extract the signal of social factors

that structure the social network. Social network studies that

test hypotheses without such informed null models should be

interpreted with caution.

While there are well-developed and frequently used routines

for constructing null models appropriate for social network

analysis, these methods were largely designed for observations

of randomly and independently sampled groups. However,

there is no well-defined routine for constructing null models

using raw data generated from successively following focal

individuals and recording their interactions with others,

despite this being a common sampling method (Altmann

1974). Furthermore, new animal tracking techniques (Krause

et al. 2013; Kays et al. 2015; Strandburg-Peshkin et al. 2015)

are generating new types of data formats that require tailored

approaches for implementing null models. In this paper, I

explain what null models are, why they are important and how

to apply them to social network analysis. I describe recently

developed and new null model routines for a range of different

data types. I then provide recommendations for how to decide

on which null model to use.

WHAT IS A NULL MODEL?

A null model is any routine that generates datasets against

which the observed dataset can be compared (Gotelli &Graves

1996). Routines can include simulations (e.g. creating random

graphs) or randomisations of data (permutations). The aim of

the null model is to create replicated datasets in which the

aspect that is of most interest to us, often who is observed with

who, is randomised. At the same time, the model should strive

to maintain constant all other aspects of the data that are not*Correspondence author. E-mail: dfarine@orn.mpg.de
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directly relevant to the hypothesis, such as the location where

individuals were observed. Thus, the aim is to create ‘random’

datasets where only the particular aspect of interest is random,

but all else remains equal. The most commonly used with

social networks are permutation tests, where the observed data

itself are shuffled to create the randomised datasets. The pro-

cess of shuffling can maintain aspects of the data consistent,

while allowing others to change.

WHY NULL MODELS ARE NEEDED FOR ANIMAL SOCIAL

NETWORK ANALYSIS

Social data are inherently non-independent. For example, for

one individual to have three edges connected to it in the net-

work, it requires three other individuals to have at least one

edge. Thus, it violates the assumptions of data independence in

parametric statistics (Croft et al. 2011). Furthermore, testing

whether the global structure of a network is non-random

requires something against which to compare the network. A

parametric test could only determinewhether the networkmet-

ric differs significantly from zero – a highly unsatisfactory null
hypothesis. Finally, null models are a general and powerful

approach for testing hypotheses across all levels of social net-

work analysis. They enable us to test specific hypotheses, to

explicitly separate out alternative hypotheses, and potentially

even to draw comparisons between networks.

SIMPLE STEPS FOR DESIGNING NULL MODELS

Design principles

When designing null models, it is useful to consider two

questions:

1. What ‘could’ have happened by chance?

2. Howwould the data look if the process of interest is present

or absent?

These questions represent the fundamental foundations of

hypothesis testing from both a biological and a data perspec-

tive. The aim of the first question is to critically evaluate what

the possible outcomes of a set of behaviours in the study spe-

cies could be. In the context of social networks, this often con-

cerns the distribution of individuals’ social interactions with

potential receivers. For example, individuals behaving at ran-

dom could (i) interact equally with everyone they come into

contact with, (ii) come into contact equally with all others they

share a home range with or (iii) share a home range with a ran-

dom set of other individuals. Thus, the distribution of individ-

uals’ interactions, the patterns of contact or the distribution of

individuals in space all represent different potential processes

that could (or not) have happened by chance. One aim of net-

work analysis is to quantify the minimum contribution that

social preference can play in structuring the network, above

and beyond factors such as home range overlap or shared use

of resources.

The answers to the first question should then guide how we

answer the second. Here, we aim to specify how the observed

data would be structured if the process(es) identified in part 1

operated at random. For example, individuals with preferences

for the same resources could repeatedly be observed together,

and thus appear to have social preferences even if they have

none. Alternatively, social preferences can drive patterns of

space or resource use (Shizuka et al. 2014; Firth et al. 2015). In

the former, the probability of observing two individuals

together will be determined by the overlap in their distributions

of preference for each resource. In the latter, the probability

will be significantly higher than what the preferences alone can

explain.

Outline of the basic routine

The general process for testing a hypothesis using a permuta-

tion-based null model involves performing four general steps

(see Fig. 1):

1. Generate the social network from the observed data

2. Calculate and record the test statistic, using conventional

statistics such as linear (mixed effect) models on the data from

the observed network

3. Randomise the observed data and generate a ‘random’

social network

4. Calculate and record the test statistic, using the exact same

model as in 2, but on the random social network

Step 1 involves making decisions about how to generate net-

works from the data. There are several useful guides to help

with this process (Whitehead 2008; Farine &Whitehead 2015).

In general, the decisions made here should have little impact

on the choice of the null model used (but may have an impact

on the outcomes of the study). For example, the choice of how

to quantify the relationship between individuals (e.g. the asso-

ciation index) can influence the distribution of edge weights

(Cairns & Schwager 1987; Farine & Strandburg-Peshkin

2015). However, because the null model will construct the null

networks in exactly the same way (including using the same

association index), the choice of index should not interact with

the choice of null model.

In steps 2 and 4, the choice of statistical model will depend

on what is appropriate for a particular study. For this paper

(and elsewhere, e.g. Farine 2013; Boogert, Farine & Spencer

2014; Farine & Whitehead 2015), I have found that linear or

mixedmodels are useful for extracting test statistics when com-

paring among nodes in a network. I recommend using the coef-

ficient of the slope as the test statistic when constructing null

models rather than the t or Z statistics. This is because the coef-

ficient describes the data, whereas the t or Z statistics represent

the departure of the data from the parametric null hypothesis.

To calculate significance of network-level metrics, the metric

itself can be used as the test statistic (e.g. the mean degree or

coefficient of variation in edge weights). When using null mod-

els, steps 3 and 4 are repeated a large number of times, at least

1000 times, although many more are required if the dataset is

large. The best way to determine if enough samples are drawn

from the null model is to plot the value of the test statistic vs.

the randomisation number to see if the value has stabilised, or

to plot the P value against randomisation number (see Fig. 2

in Bejder, Fletcher & Brager 1998). The following section deals
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Fig. 1. Overview of how to use null models for hypothesis testing. (a) Fourmain steps involve creating a social network from the observed data, cal-

culating a test statistic (a slope or network-level metric), randomising the network or the observation data and recording the distribution of possible

test statistics. Comparing the observed to the distribution provides theP-value (see Fig. 2). (b)Data perspective of network and pre-network permu-

tation models. The former randomly swaps all of the data between all individuals (e.g. A gets all of C’s data in one permutation, then randomly gets

all of B’s data in another permutation, see Section ‘Network permutations’). These swaps are typically performed on the adjacency matrix. Pre-net-

work permutations incrementally swap observations among individuals one at a time (by swapping what time they were observed, such as observa-

tions of individuals B and E being swapped so that B now occurs at time 7 while E occurs at time 4, see Section ‘Pre-network data permutations’). (c)

Network perspective of permutation models. Network permutations maintain the same network but change where all individuals are located in the

network. Pre-network data permutations generate increasingly different networks that could reasonably have occurred.

Fig. 2. Distributions with all different possible combinations of test results. For most hypothesis being tested, the observed test statistic could be

either greater or smaller than random, and two-tailed values are used. The result is significant at P = 0�05 if fewer than 2�5% of the random values

are greater than the observed value (a), or if more than 97�5%of the random values are greater than the observed value (b). Inmany social networks,

the distribution of random values will not be centred on 0 (e.g. because individuals are not randomly distributed in space). In these cases, the same

logic applies, with significance thresholds (forP = 0�05) when fewer than 2�5%of the random values are greater than the observed (c), or more than

97�5% are greater than observed (d). In two-tailed tests, the P value reported is twice the proportion (e.g. the P = 0�05 threshold lies at 0�025), with
values close to 1 being subtracted from 1 (e.g. a value of 0�975 or above is significant atP = 0�05 as 1�0�975 = 0�025).
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in detail with how to accomplish step 3. The set of values

recorded in step 4 is used to generate the expected distribution

of the data if the process was random. We then use this

expected distribution to compare the observed data against.

Based on the distribution of test statistic values generated by

the null model, we can calculate the significance of the test to

determine whether we can reject the null hypothesis. Signifi-

cance is calculated by determining where the observed test

statistic falls relative to the distribution of test statistics calcu-

lated using the random networks. This is done by counting the

number of times a random test statistic was greater or smaller

than the observed test statistic, and dividing this by the number

of null datasets that was compared. Figure 2 provides a sche-

matic to guide interpretation.

Demonstrating the importance of using null models: a

simulation

Farine &Whitehead (2015) demonstrated why null models are

important for hypothesis testing in animal social networks

using simulated data of social associations among individuals

in a population. In their simulation, they introduced an obser-

vation bias for females, mimicking a process in which dull

females were more easily overlooked during observations than

bright males, by removing 20% of the observations of females

(i.e. although females were always present, they were only

recorded in 80%of the samples). Although there was no statis-

tical difference in the weighted degree between males and

females in the original data (before removing 20% of the sam-

ples), a parametric test incorrectly rejected the null hypothesis

in the observed data, thus claiming that females had a signifi-

cantly lower degree. However, when using a pre-network data

permutation test (see Section ‘Pre-network data permuta-

tions’), the null hypothesis was not rejected (i.e. avoided a type

I error). Because the permutation test was based on the

observed data, each version of the permuted data against

which the observed data were compared contained the same

sampling bias. Thus, females had fewer observations in all per-

muted version of the data.

In the simulations by Farine &Whitehead (2015), males and

females had similar social phenotypes, but females were

observed fewer times. Throughout this paper, I will use amodi-

fied simulation where I create social groups in which females

truly have stronger bonds (i.e. a higher ‘weighted degree’;

Fig. 3a). I then replicate the same observation bias (mimicking

a scenario where inconspicuous females are more difficult to

observe than ornamented males) and randomly remove 20%

of the data from the females (herein the observed data). This

results in no apparent difference in the weighted degree

between males and females (Fig. 3b): applying a regular linear

model (Weighted degree ~ Sex) to the observed data suggests

that there is no significant difference in weighted degree

between the sexes (b = 0�15 � 0�15, P = 0�299) in the

observed data. However, this result is subject to a type II error

because we know that a difference in sociality exists (a benefit

of using simulated data, see Fig. 3a). I note here that in most

studies, the number of observations could be fit as a fixed effect

in the model, which in this case could fix the coefficient value

(although the P value could still not be used for inference due

to non-independence issues). However, the aim of this simula-

tion is to demonstrate how null models can directly maintain

features of these data rather than having to try controlling for

them after generating the networks.

Applying a permutation test that randomises observations

from which the social network is inferred (‘pre-network data

permutation test’, see Section ‘Pre-network data permuta-

tions’) correctly identifies that females have a significantly

higher weighted degree relative to males when compared to

what is expected by chance given our data (P < 0�01). That is,
the coefficient estimates for the effect of sex in the randomised

data are more positive than the value of the coefficient we cal-

culated for the observed data (Fig. 3c). Evaluating the hypoth-

esis using a node permutation test (which randomises the

network itself rather than the data on which the network is

based, see Section ‘Network permutations’) also fails to

account for patterns arising from the sampling bias and return

a non-significant result (P = 0�85, Fig. 3d). This example

demonstrates that node permutations also suffer from type II

errors in these scenarios (as previously noted elsewhere, Croft

et al. 2011; Farine 2014), and I deal with why this occurs in

more detail in Section ‘Network permutations’. To show that

this result is not because the null model is always different to

the observed data in this simulation, I also provide supplemen-

tary R code performing a baseline simulation using the same

test on data where there is no difference in weighted degree and

no observation bias. In that case, both the pre-network data

permutation and the node permutation models return non-sig-

nificant results.

CONSTRUCTING PERMUTATION TESTS

There are many different ways that permutations can be imple-

mented. These can generally be classed two categories: net-

work permutations and pre-network data permutations. The

former is performed after the networks are generated, whereas

the latter is performed on the data before generating the net-

work (see Fig. 1a). Here, I briefly explain the most common

network permutation method (node permutations), and then

explain how to perform pre-network data permutations across

a range data types.

Network permutations

The simplest, and perhaps most widely used, permutation test

in social network analysis is the node permutation test. In this

test, the identity of each node is randomised, thus breaking the

link between the network and the traits of interest (the pheno-

type of each node). This process is most easily achieved by ran-

domising the node labels (i.e. the mapping of the phenotypes

to the nodes). For example, take a network containing individ-

uals with sexes [M, M, M, F, F, F]. We construct our network

(step 1 in the basic routine), and then (step 2) make a model to

test, for example, weighted degree relative to sex in our net-

work (Weighted degree ~ Sex). In a node permutation (step 3),
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we randomise the phenotypes (now [F, M, F, M, F, M]), and

(step 4) fit the same model or calculate the same test statistic as

performed on the original data (step 2).We can repeat this ran-

domisation process (steps 3 and 4) many times, creating differ-

ent versions of the mapping of phenotype to node each time

(Fig. 4) but always maintaining the same number of each phe-

notype and the same network structure.

Node permutations perform a complete swap of all observa-

tions (the observations that determine an individual’s position

in the social network) among individuals (by assigning their

Fig. 3. Simulated data demonstrating that pre-network data permutation tests avoid type II errors in hypothesis testing. (a) A dataset is simulated

such that females have a higher weighted degree (strength) than males. (b) After removing a random 20% of data from females, the observed data

suggest no difference in weighted degree between the sexes. (c) A pre-network data permutation test (Section ‘Pre-network data permutations’) cor-

rectly identifies that the observed coefficient’s value (red vertical line) is significantly smaller than that expected by chance (the black histogram). (d)

By contrast, a node permutation test (Section ‘Network permutations’) does not return the correct result. Both null models used 1000 permutations.

Fig. 4. Example of a node permutation. Data are generated as in Fig. 3 to create a social network (left), but where 20% of female observations are

removed. In each permutation (n = 1000), all the node labels in the original network (red = female, blue = male) are randomly re-allocated to new

nodes, but the network is kept the same. The same model (Weighted degree ~ Sex) is run for each of the permuted networks, which in this case fails

to detect a significant effect (see Fig. 3).
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identity to a different node). This means that an individual can

occupy any position, from the most central (which might gen-

erate a positive test statistic) to the most peripheral position

(whichmight generate a negative test statistic). The outcome of

this process is that the complete spectrum of potential out-

comes is generated by the null model. One way to identify

whether a node permutation has been used is that the resulting

distribution of test statistics is centred on, or near, zero.

An alternative to node permutations are edge permutations.

Here, the edges among individuals are re-arranged, for exam-

ple, swapping the edge (or edge values) between A and B to A

andC, thus creating new versions of the network each time but

always maintaining the same number of edges (and distribu-

tion of edge weights if applicable). I do not go into further

detail, as their use is relatively uncommon and not applicable

to the data I present here, but further discussion can be found

in Croft et al. (2011).

Pre-network data permutations

Researchers studying animal social systems realised early on

that existing permutation tests were not sufficiently robust for

testing many hypotheses of interest. Bejder, Fletcher & Brager

(1998) proposed a null model where permutations are per-

formed within the pre-network data, and thus enabling better

control over the model and the hypothesis being tested. The

model was originally designed for data where observations

are made of animals using the ‘gambit of the group’ approach

(Whitehead & Dufault 1999; Franks, Ruxton & James 2010):

individuals are recorded as occurring in a social group, and

all individuals recorded in the same group are assumed to be

associating. In the pre-network permutation model, single

observations of two individuals occurring in different groups

are swapped, such that an individual A that occurred in group

1 now occurs in group 2, and individual B that occurred in

group 2 now occurs in group 1. Each swap incrementally

changes the network a small amount (Fig. 5). The swapping

process in this model is often described as finding a ‘checker

board’ pattern in the group by individual matrix. A strength

of this approach is that it preserves both the number of times

individuals were seen, the number and size of groups. Later

refinements (Whitehead 1999; Whitehead, Bejder & Ottens-

meyer 2005; Sundaresan, Fischhoff & Dushoff 2009) included

restricting swaps by time, location, phenotype and a range of

other factors. Thus, the swapping algorithm can constrain

swaps to occur only between individuals observed at the same

place and/or within the same period and/or with the same

phenotype. In doing so, the algorithm can control for factors

such as home range, observational sampling biases or under-

lying behavioural differences that might mask the hypothesis

being tested.

Permuting focal observation data

Focal observations, where a particular individual is followed

and its interaction with others are recorded, are a particularly

challenging type of data for which to construct null models.

The reason is that these data are structured by the focal indi-

vidual, and randomising data using traditional methods would

break this feature of the data. Pre-network data permutations

can be performed by introducing a simple modification: what

was a ‘group’ in the pre-network data permutation method is

now the observation of one focal individual with all its associ-

ates. The observations of whom two different focal individuals

were observed with can now be swapped, taking care to make

the extra check that neither of the individuals being swapped

are also one of the focal individuals. That is, instead of being

swapped between groups, individuals are now swapped

between sets of focal observations. This process is illustrated in

Fig. 6.

As with the previously described pre-network data permuta-

tion method (see Section ‘Pre-network data permutations’),

Fig. 5. Example of a pre-network data permutation. Data are generated as in Fig. 3. Observations of two individuals are swapped between groups,

thus in this case only slightly changing the edge structure in the social network with each permutation. Because the swaps are performed incremen-

tally, the network after 1 permutation is very similar to the original network, and thus the coefficient does not change much. However, after many

swaps, the coefficient of the model on the permuted networks becomes increasingly different from the coefficient estimated from the observed data,

with the final result that females in the observed data have a significantly higher degree relative tomales than expected.Note that in this case, the ‘ran-

dom’ coefficient values stabilised between values of 0�8 and 1�0, thus providing evidence that a bias is present in the observation data.
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Fig. 6. Demonstration of a pre-network data permutation applied to focal data. For each randomisation, two focal samples are selected at random

(dashed boxes), ensuring that these two focal samples are of different focal individuals. One individual from each focal is then chosen and their data

are swapped, but only if these individuals do not occur in both sets of observations (including the focal individuals themselves). This process is

repeated at least 1000 times, incrementally randomising the data at each step. Note that some, or even all, of the other group members can be the

same across the two sets of focal observations between which individuals are swapped, so long as the two focal individuals and the two individuals to

be swapped represent four unique individuals.
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swapping observations in this way maintains the frequency at

which individuals occur in the data, and maintains the number

of interactions or associations present in each focal observa-

tion. To control for temporal features of the data, swaps can

be restrained to only occur between focal observations occur-

ring on the same day or similar time period. Restrictions can

also be placed on which pairs of individuals are swapped. For

example, to control for male–female patterns of affiliations, it

is possible to only swap observations between sets of observa-

tions where the two focal individuals are both male (or both

female). Maintaining such features in the data will allow for

precise hypotheses to be tested. In Fig. 7, I demonstrate that

pre-network permutations are useful for focal data. As with

pre-network data permutations, the structure of the edges in

the network is only changed slightly after each permutation

(Fig. 8).

Permuting autocorrelated data streams (e.g. GPS data)

Some data types do not lend themselves to performing pre-net-

work data stream permutations. For example, researchers

tracking animals using GPS generally want to maintain the

autocorrelation structure of each individual track, and thus

avoid constructing null models that contain tracks with

unrealistic individual movements. Several approaches have

been suggested to resolve this issue. The general principle has

been to segment tracks into discrete chunks (e.g. daily tracks),

and perform permutations independently on each of these

chunks. However, it is easy to fall into the trap of generating

node permutations. Instead, the principles of swapping when

individuals were observed (the underlying principle of the Bej-

der, Fletcher & Brager (1998) method) are a more robust

approach.

In a recent study on sleepy lizards (Tiliqua rugosa), the

social network was constructed from GPS points collected

every 10 min (Godfrey et al. 2014). To maintain the daily

tracks of lizards, a null model was developed such that the

identity of each individual was randomised for each day.

Thus, the same tracks occurred each day but these were allo-

cated to different individuals, and the identity of the individu-

als assigned to the tracks differed across days. This appears to

be a pre-network data permutation (because the data are

swapped before inferring the network). However, this

approach still swapped entire chunks of data among individu-

als (e.g. the 3 days of observations of individual A are now

comprised of data from individuals B, E and H respectively).

Thus, it replicated node permutations and resulted in the

same limitations.

Fig. 7. Simulated focal observation data demonstrating the ability for permutation tests to avoid type II errors in hypothesis testing. (a) A dataset is

simulated such that females have a higher weighted degree. (b) After removing 20%of data from females, the observed data suggest no difference in

degree between the sexes. (c) A focal pre-network data permutation test correctly identifies that the observed coefficient (red vertical line) is less than

expected by chance (the black histogram). (d) By contrast, a node permutation test, which is commonly used on data collected using focal observa-

tions, applied to exactly the same data does not return the correct result. Both null models used 1000 permutations.
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In general, we should aim to avoid directly swapping chunks

of data among individuals unless this is an explicit aim of the

model (see Section ‘Which null model to use?’). In the original

pre-network data permutation model proposed by Bejder,

Fletcher &Brager (1998), only the ‘timing’ of focal individuals’

detections were changed (by moving them from one group to

another). For studies usingGPS tracks to infer networks, Spie-

gel et al. (2016) propose randomising the date of each daily

track within individuals instead of swapping data between

individuals. The result is that individuals maintain exactly the

same spatial data (home range) in the null model as in the

observed data, but who they come into contact with (and thus

the social network) changes because the order of these data is

randomised. In Fig. 9, I confirm that this model has many of

the desirable properties of pre-network data permutations. By

contrast, implementing models based on swapping data

between individuals do not achieve these same properties (the

code for demonstrating this is included in the supplemental R

script associated with this figure).

ALTERNATIVE METHODS FOR HYPOTHESIS TESTING IN

SOCIAL NETWORKS ANALYSIS : CURRENT APPROACHES

AND LIMITATIONS

In the previous sections, I have shown that null models that

maintain as many of the features from the original data as

possible are generally better at avoiding erroneous findings.

A major implication of this is that many existing approaches

for hypothesis testing developed for studies in sociology are

likely to have inadequate underlying null models for most

hypotheses we are interested in testing. For example, quadra-

tic assignment procedure (QAP) and multiple regression

QAP (MRQAP) tests are based on the logic of node permu-

tations, and all simulation-based approaches, such as expo-

nential random graph models (ERGMs), are based on

replicating the observed network (hence making the same

assumptions as network permutation methods). Here, I

briefly discuss the implications of the findings above on these

two approaches.

Fig. 8. Example of a focal pre-network data permutation. Data are generated as in Fig. 7 to create a social network (left). In each permutation

(1000 performed), observations of two individuals are swapped between sets of focal observations (per Fig. 6), thus only slightly changing the edge

structure in the social network.

Fig. 9. Example of a pre-network data permutation test applied toGPS data. Individual movements are simulated in an arena wheremales move at

randomand females are 5 timesmore likely tomove to a neighbouring cell containing a conspecific than to a neighbouring cell containing no individ-

uals. Once generated, 20% of female observations are removed. In each permutation (1000 performed), the ordering of days for each individual is

randomised within individuals. The results of applying this null model are consistent with those from the pre-network data permutation example

(Fig. 5).
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Multiple quadratic assignment procedure

QAP and MRQAP tests are important statistical approaches

for hypothesis testing in social network analysis because they

evaluate edge-based hypotheses. Put simply, they perform the

equivalent of a regression, where the dependent variable and

the independent variables are all networks. In QAP, the signifi-

cance of the parameter estimate for each independent network

is calculated by conducting a node permutation on the depen-

dent network, and comparing the slope of each predictor in the

observedmodel to the slopes generated by the randomisations.

MRQAP improves the technique by performing node ran-

domisations on each fixed effect, or its residuals, independently

(see Dekker, Krackhardt & Snijders 2007 for further details on

why). MRQAP has been used to compare the structure of the

social network with the relatedness of each pair of individuals

(e.g. Godfrey et al. 2014) or to compare patterns of associa-

tions with similarity in pathogen presence (e.g. VanderWaal

et al. 2013).

First, I highlight how the reliance of node permutation

approaches inMRQAP can generate type II errors by evaluat-

ing the method with the same simulated situation as described

throughout this paper. Importantly, MRQAP is used to test

hypotheses based onmatrices, i.e. Individual by Individual net-

works, rather than a data table with individual-level measures,

i.e. an Individual by Observation (or N 9 K) data frame as

commonly used in linear models. I therefore simulate data but

this time categorise each dyad (pair of individuals) into three

sex categories: 1 = both males, 2 = male–female dyads,

3 = both females, creating an N 9 N matrix of sex categories

for each dyad as the predictor variable. I then use MRQAP to

test if there is a relationship between the social network and the

sex category of each dyad (AssociationNetwork ~ Sex Similar-

ity). Because females have a higher degree in the ‘real’ network,

we expect a significantly positive relationship between associa-

tion strength and sex category (edges connected to females

should be stronger).

The effect of sex similarity when the model was applied to

the simulated data with biased observation was weak

(b = �0�003). The standard MRQAP model suggested it was

non-significant (P = 0�233). An alternative is to generate a set

of ‘null’ networks using a more robust permutation method,

and fit these networks to theMRQAP function to generate the

null distribution of test statistics. I have implement a function

inmy R package ASNIPE (Farine 2013) to enable customised null

models to be used in conjunction with a QAP or MRQAP

regression. Using a pre-network data permutation test on the

simulated data gave the correct results: P = 0�005 (99�5% of

the random networks resulted in a b > �0�003). This result is
exactly what we expect: females all have a higher degree and

males a lower degree, and thus edges connected to females

should have higher weights than expected by chance. In the

absence of any relationship in the data, the method based on

the pre-network data permutation accurately reports no signif-

icant effect (see supplemental baseline code for this method).

These results suggest that using pre-network permutation test

withMRQAPwarrants further consideration.

Exponential randomgraphmodels (ERGMs)

ERGMs are used to generate hypotheses about what struc-

tural processes underpin the formation of social networks

(Snijders et al. 2006), and function by randomly adding and

removing edges to see how they change the network. The

model uses the changes in the network to determine how the

different parameters in the model (what we would call ‘fixed

effects’ in linear models) predict the changes in the structure

of the network. For example, it can test the propensity for

two individuals to share the same co-associates (which is

called triadic closure) by evaluating whether removing edges

disproportionately disconnects triads (sets of three nodes all

connected together). An issue arising with these models is

that they work directly with the observed networks, without

consideration of underlying uncertainty or data collection

methodology. Although ERGMs have been used with ani-

mal social networks (Ilany, Booms & Holekamp 2015; Ran-

kin et al. 2016), they also do not incorporate a permutation

procedure for testing hypotheses.

Using the simulation framework previously described, I gen-

erated networks and fit a standard ERGMmodel (using the R

package STATNET, Handcock et al. 2015) that includes sex as a

node effect. This model tests whether edges are disproportion-

ately likely to be connected to females (which we know should

be the case because the simulated data are designed that way).

The first issue with this approach is that it can only work with

binary networks (where edges are 1 or 0). An issue with this

approach is it cannot have completely connected networks,

despite these being common, such as in primates. I cut the net-

work at the median edge weight, such that the top 50% of

edges remain (are 1) and the lower 50% are removed (now 0),

but note that thresholding the network is problematic because

it is arbitrary and ignores important weak edges (see Farine

2014). The results of the ERGM suggest a significant negative

relationship between being female and having connected edges

(b � SE = �0�308 � 0�104, P = 0�003). This is clearly incor-

rect, as running the same model on the original network (with-

out the removed observations but with the same thresholding

applied) shows that females do in fact have a higher degree

than expected (b � SE = 0�410 � 0�105, P = 0�0001). Thus,
ERGMs do not presently have the functionality to contrast the

observed data to an appropriate null hypothesis.

WHICH NULL MODEL TO USE?

Throughout this paper I have focused largely on answering

questions about the individual drivers of social network struc-

ture. For example, a hypothesis might be that individuals with

bold personalities have higher binary degree (more associates)

in the social network (e.g. Aplin et al. 2013). If the null model

controls for spatial distribution, then a correlation between

boldness and degree suggests that bold individuals have a

higher degree than expected within the context of the social

environment they experience. By contrast, if the null model

does not control for spatial distribution (such as in a standard

node permutation), then a correlation suggests that bold
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individuals have a higher or lower degree than everyone else in

the network, but this could be because of where they live as

well as because of their behaviour. Thus, controlling for space

is important for discrimination between social avoidance and

spatial separation (Spiegel et al. 2016).

In some cases, it is necessary to maintain the same network

structure. In a study on repeatability of social network position

in great tits (Parus major) detected at feeders using PIT tags,

Aplin et al. (2015) needed tomaintain the variance structure in

terms of network positions in their null model, and thus the

same distribution of node values in the social network (which

is not the case for pre-network data permutations because the

network structure changes). Faced with the issue of having to

avoid swapping individuals widely across the study site, the

authors swapped data between individuals that were observed

at the same location and within the same time period. This null

model is still a node permutation (it performs swaps after the

network has been inferred), but one controls for variation in

density and some other factors that are determined by individ-

uals’ home range by preventing swapping individuals to new

locations.

Maintaining the social network constant is also likely to

be particularly important for studies that focus on studying

processes occurring over the network itself. For example,

one could test for correlations between binary degree and

acquiring a disease. Using a node permutation will test if

individuals that have more associates were more likely to be

observed with the disease. In most cases, this is what we are

actually interested in finding out. Alternatively, we could be

interested in understanding the effects of local behavioural

differences on disease risk, in which case a pre-network data

permutation model would test whether the individuals that

are relatively more social are also at greater risk of acquiring

the disease. A network (node) permutation tests hypotheses

at the network level (did the disease spread in the densest

part of the network). A pre-network permutation tests

hypotheses at the individual level (did more social individu-

als acquire the disease). Many studies would benefit from

implementing multiple null models (Farine et al. 2015), and

explicitly testing competing hypotheses.

COMPARING NETWORKS

Amajor challenge for animal social networks is the difficulties

with comparing networks (Croft, James & Krause 2008).

Many factors, such as the density of the network, the number

of nodes and how the network data was collected, can influ-

ence network metrics (such as degree). For example, recording

associations using the gambit of the group will yield higher

density networks than recording interactions, thus creating

networks where individuals have a higher average degree as a

by-product. Network comparisons need to be able to disentan-

gle real differences in network structure or metrics from appar-

ent differences due to non-biological processes. Null models

could provide a useful tool for allowing comparisons between

networks. For example, permutations can test if the networks

differ more or less than expected by chance. In this case, the

observed statistic is a measure of difference (e.g. the difference

in mean degree). Both networks are then simultaneously ran-

domised (by performing one swap at a time within both net-

works), and after each step the statistic is recalculated. The P-

value is then calculated by comparing the observed difference

between the network to the distribution of possible differences

(per Fig. 2).

Conclusions

Null models are an important part of hypothesis testing in ani-

mal social networks, and careful consideration is needed when

choosing which null model to use. Although pre-network data

permutation models were first described nearly 20 years ago

(Bejder, Fletcher & Brager 1998), they are still not as widely

used as they should be. I have shown in this paper that null

models can be implemented on all data types. I also highlight

that we need to continue efforts to further develop existing

methods for hypothesis testing to be able to apply them to ani-

mal social networks.
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