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Abstract Over the past few decades, research on Alzhei-

mer’s disease (AD) has focused on pathomechanisms

linked to two of the major pathological hallmarks of

extracellular deposition of beta-amyloid peptides and intra-

neuronal formation of neurofibrils. Recently, a third dis-

ease component, the neuroinflammatory reaction mediated

by cerebral innate immune cells, has entered the spotlight,

prompted by findings from genetic, pre-clinical, and clin-

ical studies. Various proteins that arise during

neurodegeneration, including beta-amyloid, tau, heat shock

proteins, and chromogranin, among others, act as danger-

associated molecular patterns, that—upon engagement of

pattern recognition receptors—induce inflammatory sig-

naling pathways and ultimately lead to the production and

release of immune mediators. These may have beneficial

effects but ultimately compromise neuronal function and

cause cell death. The current review, assembled by par-

ticipants of the Chiclana Summer School on
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Neuroinflammation 2016, provides an overview of our

current understanding of AD-related immune processes.

We describe the principal cellular and molecular players in

inflammation as they pertain to AD, examine modifying

factors, and discuss potential future therapeutic targets.

Key Points

Neuroinflammation plays an important part in the

pathogenesis of Alzheimer’s disease (AD), with both

positive and negative consequences.

Induction of inflammatory signaling pathways leads

to the production and release of immune mediators,

which ultimately compromises neuronal function

and causes cell death.

Anti-inflammatory therapeutic approaches to modify

AD progression are the basis for ongoing and future

therapeutic trials in this area.

1 Introduction

Dementias and related diseases of cognitive decline pose

an enormous and growing disease burden on our societies

and health economies. According to the most recent World

Health Organization (WHO) global disease burden report

[1], deaths from neurological diseases have risen by 114%

over the past 20 years to 1.2 million in 2010. The increase

is largely driven by neurodegenerative diseases such as

Alzheimer’s disease (AD) and Parkinson’s disease and by

an aging population in general. Not surprisingly, the

development of strategies to curb this frightening surge is a

high priority for life science research. The responsible

allocation of these resources requires the identification of

valid therapeutic targets. The immune system is particu-

larly alluring in this regard.

How the immune system and peripheral infections

contribute to cognitive decline remains incompletely

understood, but the past 15 years have established a key

role for inflammation in the progression of age-related

neurodegeneration. The immune privilege of the brain is

clearly not absolute, and cells of the central nervous system

(CNS) are sensitive to inflammatory events occurring both

within and outside of the brain.

We summarize the current state of neuroinflammation

research from cellular to molecular mechanisms, as they

pertain to the pathogenesis of AD. Further, we outline

leverage points for preventive strategies and therapeutic

approaches to stem the daunting surge in dementia diseases

facing our society.

2 Cellular Players

2.1 Microglia

Microglia are the principal innate immune cells in the

brain, and they are often considered the macrophages of the

CNS. Recent studies have shed light on their origin from

erythromyeloid progenitors from the yolk sac [2, 3], which

migrate into the brain at embryonic day 7.5 where they

further differentiate into microglial cells [2]. Microglia

exhibit the capacity of self-renewal within the brain [4, 5],

likely arising from a newly identified progenitor [6].

Microglia continuously survey their microenvironment and

monitor ongoing synaptic activity, including synapse

remodeling, debris clearance, and trophic support for

neurons. In addition, they drive a major part of the innate

immune response. Microglia react to pathological triggers

via pathogen-associated molecular patterns (PAMPs) or

danger-associated molecular patterns (DAMPs) [7–9].

Microglia are also phagocytic cells and can ingest

amyloid b (Ab) through a range of cell surface receptors,

including cluster of differentiation (CD)-14, toll-like

receptor (TLR)-2, TLR4, a6b1 integrin, CD47, and scav-

enger receptors, such as CD36 [10–13]. It has been sug-

gested that, in AD, a key factor in the accumulation of Ab
throughout the brain is the failure of microglia to remove

extracellular amyloid [14–16]. Indeed, in cortical tissue

specimens from patients with AD, the microglia sur-

rounding plaques are impaired at Ab uptake [15, 17, 18].

Newly developed positron emission tomography (PET)

techniques employ radio ligands to detect activated

microglia in vivo [19–21]. Many tracers target the 18 kDa

translocator protein (TSPO) [19], an outer mitochondrial

membrane protein present in microglia, which is upregu-

lated during activation [22–24]. The 11C-PK11195 ligand

was the first prototypical TSPO ligand, although second-

generation tracers have been developed more recently with

improved signal-to-noise ratios [25]. However, a common

polymorphism significantly influences the binding affinity

of these new compounds [26], thus making genetic

screening a necessary step for accurate quantification [27].

TSPO upregulation has been described in prodromal AD
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and in manifest AD dementia, using both 11C-PK11195

[28–31] and second-generation tracers [32–36] in regions

known to be affected by AD pathology and beyond. Mixed

evidence has emerged regarding the relationship between

in vivo microglial activation and Ab plaque burden

[29, 31, 32, 37, 38].

2.2 Astrocytes

Under pathological conditions, astrocytes exhibit morpho-

logical changes, including hypertrophy and upregulation of

glial fibrillary acidic protein (GFAP). Astrocytes can detect

aggregated proteins such as Ab or respond to inflammatory

molecules (e.g., cytokines, chemokines, see below).

Indeed, significant astrocyte reactivity has been reported in

sporadic [39–41] and familial AD [42]. Similar to micro-

glia, reactive astrocytes can polarize their processes around

amyloid plaques and are capable of amyloid plaque

degradation [43, 44]. Altered calcium signaling [45],

impaired glutamate homeostasis [46, 47], and increased

production of inflammatory mediators by astrocytes are

also observed in AD.

2.3 Oligodendrocytes

The involvement of oligodendrocytes in AD remains

poorly understood, although there is emerging evidence

that these cells contribute to the pathogenesis and pro-

gression of neurodegenerative disorders, including AD

[48]. Bartzokis et al. [49–52] demonstrated that the loss of

myelin integrity that normally occurs during aging is

strongly aggravated in human presenilin-1 familial, pre-

clinical, and sporadic AD cases, particularly near Ab pla-

ques. In addition, focal loss of oligodendrocytes has been

observed in sporadic cases of AD. This demyelination was

also found in transgenic mouse models of AD, specifically

at the core of Ab plaques [52]. Focal oligodendrocyte loss

has also been detected in Tg2576 and APP/PS1 transgenic

mice [52], a phenomenon that may negatively influence

cortical processing and neurite formation. Several cellular

processes such as neuroinflammation, oxidative stress, and/

or apoptosis may contribute to oligodendrocyte dysfunction

and death [52]. In addition, Ab can impair the survival and

maturation of oligodendrocyte progenitor cells and the

formation of the myelin sheath [53].

2.4 Myeloid Cells Other than Microglia

In addition to microglia, a variety of other monocytic cells

have been found in the brain, including perivascular cells,

meningeal macrophages, choroid plexus macrophages, and

peripheral blood-derived monocytes [54]. These cells may,

under certain circumstances, also phagocytize and degrade

amyloid plaques in a transgenic model of AD [55].

Migration of peripheral monocytes is dependent on C-C

chemokine receptor type 2 (CCR2), as its ablation in

Tg2576 mice results in decreased recruitment of these cells

and a corresponding increase in amyloid pathology [56]. In

contrast, blocking transforming growth factor (TGF)-b
signaling increased peripheral myeloid cell infiltration into

the CNS and significantly reduced the amyloid burden [57].

Glatiramer acetate has also been shown to increase

recruitment of peripheral monocytes to the CNS, and this

reduces amyloid deposition. Ablation of bone marrow-

derived myeloid cells in this model exacerbated amyloid

pathology [58]. In contrast, when resident microglia were

ablated from the APP/PS1 and APP23 mouse models,

recruitment of peripheral myeloid cells was not sufficient

to clear amyloid load [59, 60]. Furthermore, a recent

parabiosis experiment found no evidence of monocyte

infiltration around amyloid plaques [61]. Thus, the extent

of myeloid infiltration into the brain and its contribution to

damage or clearance of pathological proteins is still not

fully understood. A particularly critical aspect of this body

of work is the complexity and toxicity of experimental

approaches used.

3 PAMPs and DAMPs: Inducers and Modulators
of Neuroinflammation in Alzheimer’s Disease

During periods of pathogen invasion or tissue damage,

DAMPs and PAMPs alert the immune system of the host

and trigger an appropriate response to the insult.

DAMPs encompass a diverse class of molecules. A

well-characterized group of DAMPs consists of intracel-

lular proteins that are expressed at a basal level within a

cell and are released after injury. These include high-mo-

bility group protein B1 (HMGB1), S100 proteins, heat

shock proteins (HSPs), chromogranin A, and Ab. A second

class of DAMPs comprises nucleic acids and nucleotide

derivatives, such as mitochondrial DNA (mt-DNA), DNA,

and adenosine triphosphate (ATP) [62]. In contrast,

PAMPs mainly include microbial molecules that are nor-

mally not present in human cells, such as lipid A, flagellin,

lipoproteins from Gram-positive and Gram-negative bac-

teria, bacterial DNA containing particular CpG motifs, and

fragments of bacterial peptidoglycan [63].

Both PAMPs and DAMPs contribute to neuroinflam-

mation in AD. Ab can induce inflammatory responses [64]

via activation of pattern recognition receptors (PRRs) of

the innate immune system, including TLR2 [65], TLR4,

and TLR6, as well as their co-receptors, CD36, CD14, and

CD47. Neutralization by CD14 antibodies can reduce the

Ab-induced microglial activation [66]. Furthermore, the

NLRP1 and NLRP3 inflammasome can sense a range of
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aggregated proteins, including Ab [67]. Indeed, lack of

NLRP3 and caspase-1 has been shown to protect mice from

AD pathology [67, 68].

HMGB1 levels are increased in AD brains and are

associated with senile plaques, promoting their stabiliza-

tion [69]. It has been shown that microglia stimulation by

HMGB1 can reduce Ab phagocytosis [69]. HMGB1 pro-

motes the migration and proliferation of immune cells

through binding to advanced glycation end-product recep-

tors (RAGE) and TLRs [70]. HMGB1 can also act in

concert with other factors such as chemokines, growth

factors, and PAMPs, together promoting immune system

activation [71, 72].

Chromogranin A is associated with microglial activation

in neurodegeneration [73, 74] and induces the release of

interleukin (IL)-1b, indicating that TLRs and the NLRP3

inflammasome are involved in this pathway [75]. In AD,

increased levels of chromogranin A have been observed in

senile plaque dystrophic neurites [76]. Interestingly, the

immune stimulatory potential appears almost identical to

bacterial lipopolysaccharide (LPS), at least in vitro [77].

Many S100 proteins are involved in AD, including

S100A9, S100A8, and S100B. S100A8 and S100A9 form a

complex that is increased in the brain and cerebrospinal

fluid (CSF) of patients with AD [78, 79] and can activate

microglia through TLR4. Furthermore, S100A8-mediated

inflammatory stimuli are connected with the upregulation

of the b-site b-amyloid precursor protein (APP)-cleaving

enzyme BACE1, which is involved in APP processing

[80, 81]. S100B has been observed in both Ab plaques and

in the CSF [82, 83], and overexpression of human S100B

exacerbates amyloidosis and gliosis in the Tg2576 AD

mouse model [84].

Likewise, mt-DNA and DNA can be released from the

cells and act as DAMPs upon entering the blood circula-

tion, causing inflammation [85]. mt-DNA can bind to TLR-

9 and mediate the release of tumor necrosis factor (TNF)-a
and type I interferons (IFNs) [86]. Moreover, cell free

DNA can bind to TLR and non-TLR receptors. Upon TLR

binding, DNA activates the nuclear factor (NF)-jB path-

way, thereby promoting pro-inflammatory cytokine pro-

duction [87]. DNA can also bind to the absent in melanoma

2 (AIM2) inflammasome, releasing IL-1b, through the

caspase-1 activation pathway.

HSPs bind to several receptors, such as TLR2 and

TLR4, resulting in the production of inflammatory

cytokines, such as TNFa and IL-1b [88–90]. Furthermore,

HSPs may also exert beneficial effects in AD, thus, HSP70

can bind to APP and reduce the secretion of Ab1-40 and

Ab1-42 through interference with the APP processing

pathway [91]. HSP70, together with HSP90, can also

interact with tau and Ab oligomers and degrade them by

employing proteasomal degradation [92].

4 Endogenous Modulators

Neurotransmitters such as ATP, glutamate, dopamine, and

various neurotrophic factors, e.g., brain-derived neu-

rotrophic factor (BDNF) and nerve growth factor (NGF),

can act as endogenous modulators. Microglial cells are

equipped with a plethora of neurotransmitter receptors,

which makes them a primary target, particularly as sites of

non-synaptic release [93]. In AD, ATP production from

neurons declines. Mitochondrial dysfunction, as evidenced

by reduced ATP, is related to oxidative stress in AD

pathology [94]. Oxidative stress can also initiate inflam-

matory responses and contributes to the etiopathology of

AD [95].

In AD, glutamatergic neurotransmission is disturbed

because of an increased amount of soluble Ab oligomers

[96]. The possible inflammatory process occurs subse-

quently through activation of microglia with TNFa release,

synergizing with N-methyl-D-aspartate (NMDA)-mediated

neurodegeneration [97]. However, the modulation of glu-

tamate can be either pro- or anti-inflammatory depending

on the expression of different groups of glutamate recep-

tors (GluRs) on microglia and, most likely, on astroglial

uptake capabilities [98, 99].

Dopamine possibly mediates the activation of microglia

by triggering the mitogen-activated protein kinase

(MAPK)–NFjB cascade and inducing toxicity versus

dopaminergic neurons [100, 101]. In general, acetylcholine

prevents the inflammatory response in microglia via a7-

nicotinic acetylcholine receptors, mediated by the PLC/

IP3/Ca2? signaling pathway [102]. In patients with AD,

significant loss of cholinergic neurons is tightly related to

the progression of the disease. Failure in cholinergic neu-

rotransmission decreases the cholinergic input to microglia,

which in turn results in microglial activation [103]. In

addition, stimulation of microglia with norepinephrine

suppressed inflammation through cyclic adenosine

monophosphate (cAMP)/protein kinase A (PKA) signaling

cascades [104, 105]. Of note, the locus ceruleus, the chief

source of noradrenaline (NA) in the human brain, degen-

erates very early in the disease course. Thus, its projection

regions, most prominently the limbic system and neocor-

tex, experience decreased levels of NA. Modeling this in

rodents increased Ab-induced inflammation [106, 107] and

substantially increased neuronal death and memory deficits

[108]. Using 2-photon laser microscopy, it was demon-

strated that depletion of NA in APP/PS1 transgenic mice

caused complete inhibition of microglial Ab clearance,

and, subsequently, an increase in the number and volume

of Ab deposits [104]. The replenishment of NA levels in

the cortex and hippocampal after treatment with L-threo-

DOPS, an NA precursor, partly rescued this phenotype.
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The levels of BDNF and NGF are severely altered in the

brains of patients with AD. BDNF is released by activated

microglia and inhibits the release of TNF-a and IFN-c,

whereas it promotes the expression of anti-inflammatory

cytokines IL-4, IL-10, and IL-11 [109]. However, an

in vitro study has also shown prolonged microglial acti-

vation through a positive feedback loop by autocrine

BDNF [110], demonstrating that BDNF may modulate

inflammation at various levels. In addition, evidence from a

human microglial cell line suggested that NGF synthesis is

potentially stimulated by inflammatory signals (cytokines

and complement factors), as well as by exposure to Ab25-

35, through NFjB-dependent and -independent

mechanisms.

5 Inflammatory Mediators

5.1 Cytokines

Cytokines are released by glial cells, such as astrocytes and

microglia, upon every inflammatory challenge [111–113].

Many cytokines, such as IL-1b and IL-12, have been

related to the progression of AD pathology [114, 115].

Increased IL-1b serum levels have been linked to AD and

patients with mild cognitive impairment, a putative pro-

dromal phase of dementia [114, 116]. Several studies have

reported associations between IL-1b polymorphisms and

the onset of AD pathology [115, 117, 118], linking both IL-

1b polymorphisms and apolipoprotein E (APOE)-e4 to

higher levels of IL-1b in the blood and sleep disturbance in

patients [119]. IL-12 is related to the regulation of the

adaptive and the innate immune system [120], and an IL-12

polymorphism has been linked to AD in a Han Chinese

population [121]. Vom Berg et al. [122] suggested that

inhibition of the IL-12/IL-23 pathway may attenuate AD

pathology and cognitive deficits due to a decrease in the IL-

12p40 subunit and its receptor activity [122]. In this study,

the concentration of IL-12p40 was increased in the CSF of

patients with AD. Regarding anti-inflammatory cytokines,

IL-10 deletion attenuated AD-related deficits, such as

altered synaptic integrity and behavioral deficits in APP/

PS1 mice [123]. Chakrabarty et al. [124] showed that the

overexpression of IL-10 using adeno-associated viruses

(AAVs) increased amyloid deposition, behavioral deficits,

and synaptic alterations and impaired microglial phago-

cytosis of Ab in the APP transgenic mouse model [124].

Another major regulator of inflammation is TGF-b.

Increased TGF-b has been observed in amyloid plaques

[125] and in the CSF of patients with AD [126, 127].

However, this cytokine plays a dual role in AD. Overex-

pression of TGF-b in vivo induces Ab deposition in cere-

bral blood vessels, but it may also decrease microgliosis

while increasing Ab phagocytosis [128]. A link between

TGF-b and neuro-fibrillary tangles (NFTs) has also been

reported [129].

5.2 Chemokines

Chemokines participate in the chemoattraction of immune

cells from the periphery to the brain and in the recruitment

and activation of resident glial cells. In AD, chemokines

are implicated in both the resolution and the propagation of

pathology [130]. The most intensively studied chemokines

in AD are CX3C chemokine ligand 1 (CX3CL1) and

chemokine ligand 2 (CCL2).

CX3CL1, also termed fractalkine, is expressed by neu-

rons, whereas its receptor, CX3CR1, is predominantly

expressed by microglia [131, 132]. The participation of this

chemokine in the pathophysiology of AD is complex since

CX3CL1/CX3CR1 signaling can have a beneficial role in

the context of tau pathology [132–135] or a detrimental

role in an amyloid context [136]. In fact, in an amyloid

model, deficiency of CX3CR1 decreased Ab deposition

[136] but worsened tau pathology and lowered cognitive

performance [133, 134]. Moreover, the expression of

CX3CL1 has been shown to be increased in tau-injured

neurons but decreased in the brains of APP transgenic mice

[137]. However, in human patients, the level of CX3CL1 is

inversely correlated with AD severity [138]. Together, this

may point to the possibility that the same inflammatory

mediator may adopt various, if not opposing, effects and

properties during disease progression.

CCL2 has also been associated with a dominant role in

chronic inflammation [139]. A recent study has demon-

strated that the CCL2/CCR2 pathway of astrocyte-induced

microglial activation is associated with ‘‘M1-polarised’’

and enhanced microglial activity [140]. In AD, CCL2

levels were increased in mild but not in severe AD, sug-

gesting that elevated CCL2 may play a pathogenic role

during early AD stages [141]. In agreement with this,

Westin et al. [142] showed that CCL2 is associated with a

faster cognitive decline in early disease stages. Kiyota et al.

[143] found accelerated neurodegeneration in APP/CCL2

transgenic mice, indirectly suggesting that direct inhibition

of CCL2 signaling may modify microglial activation,

resulting in lower Ab deposition and improving behavioral

outcomes. CCL2 overexpression accelerated oligomeric

and diffuse Ab deposition and led to spatial and working

memory deficits by affecting Ab seeding in Tg2576 mice

[143].

5.3 Other Mediators

Nitric oxide (NO) is synthesized by three different isoforms

of NO synthase (NOS). Each isoform plays a role in either

Neuroinflammation in Alzheimer’s Disease 1061



AD progression or prevention, suggesting that NO can be

neuroprotective or neurotoxic. High doses of LPS induced

robust CNS inflammation and microglia-induced release of

NO. NO in the CNS can influence many signaling path-

ways, including protein nitrosylation, impairment of long-

term potentiation, or inhibition of mitochondrial respira-

tion. The impact of NO signaling depends on the local

cellular environment. In the AD brain, NO mainly derives

from the inducible isoform of NOS, NOS2, which is

expressed by neurons [144], microglia, and astrocytes

[145]. Nitrosative stress has been shown to affect all types

of cellular proteins, including, but not restricted to,

synaptic proteins. Post-translational protein modification

can take place either by s-nitrosylation of cysteine residues

or by nitration of tyrosine residues. Importantly, Ab itself

represents a nitration target at tyrosine 10 of its amino acid

sequence. Nitration at this position strongly increases the

peptide’s propensity to aggregate, and nitrated Ab pre-

dominantly resides in the core of the deposits, suggesting

that this mechanism contributes to the initiation of depo-

sition [146].

6 Effect of Neuroinflammation on Neuronal
Function

6.1 Cytokines and Synaptic Scaling

Synaptic plasticity is strongly influenced by basal levels of

cytokines [147]. Emblematic is the case of ‘‘synaptic

scaling,’’ a well-defined form of homeostatic plasticity that

regulates the density of GluRs at presynaptic and postsy-

naptic sites [148]. A homeostatic reduction of neuronal

excitability by withdrawal of GluRs is termed down-scal-

ing, whereas the increase of neuronal excitability (by

accumulation of GluRs) is known as up-scaling. TNFa has

been shown to support synaptic up-scaling by increasing

AMPA receptor-dependent miniature excitatory postsy-

naptic currents (mEPSC). Importantly, TNFa required for

up-scaling synapses is derived from glial cells [149] and

not from neurons themselves. Such evidence implies that

glial cells are able to release cytokines in response to

changes in neuronal activity. By contrast, enhanced release

of inflammatory cytokines, for instance during chronic

peripheral inflammation, can disrupt the physiological

mechanisms of synaptic plasticity, promoting neuronal

hyper-excitability and increased susceptibility to seizure

generation [150].

A growing body of evidence demonstrates that micro-

glia can actively respond to increased neuronal excitability,

and microglial processes make physical contact with

excitatory synapses [151–154]. This type of microglia–

synapse interaction has been shown to reduce neuronal

excitability [110, 155], potentially as a form of a regulatory

mechanism for preventing glutamatergic excitotoxicity

[152].

6.2 Microglia and Synaptic Pruning

Microglia can actively participate in remodeling synaptic

connections (‘‘synaptic pruning’’). A pathological form of

synaptic pruning may represent a commonly shared

mechanism among several neurological conditions of dif-

ferent nature: a recent study in a murine model of chronic

stress, showed electron-dense (dark) microglia co-localized

with synaptic terminals. This microglial phenotype asso-

ciated with synaptic pruning appeared clearly reactive,

possibly accounting for an increased loss of synapses

during chronic inflammation [156]. Microglia may also

remove synapses in a complement-dependent manner in a

mouse model of West Nile virus-induced neuroinflamma-

tion [157]. Mice with either a deficit in the number of

microglia (IL-34-/-) or a deficiency of complement com-

ponents (such as C3 protein or complement receptor 3

knock-out) were protected from inflammation-induced

synaptic loss [157].

An alternative hypothesis suggests that pathological

pruning of synapses during inflammation may also repre-

sent a form of ‘‘tissue remodeling’’ for auto-protective

purposes [158]. A study suggested that upon LPS injection,

microglia pruned preferentially GABAergic terminals,

thereby increasing excitatory synaptic activity and induc-

tion of neurotrophic pathways in downstream neurons. This

mechanism has been interpreted as an attempt to promote

neuronal viability in a pathological context, although the

price was a temporary imbalance of synaptic connectivity

[159].

In mouse models of Ab deposition, complement protein

C1q was elevated as early as 1 month of age in both DG

and frontal cortex. At this timepoint, neither plaques nor

synaptic loss are detectable. At a later age (mice aged

3–4 months), the number of synapses decreased signifi-

cantly; however, synaptic loss was rescued almost com-

pletely in the absence of either C1q, C3, or CR3.

Additionally, intracerebroventricular (ICV) injection of

oligomeric Ab in wild-type mice induced synapse loss and

activated a phagocytic phenotype in microglia. Moreover,

synapse loss in response to oligomeric Ab was not

observed in C1q or CR3 knock-out mice [160] (Table 1).

Similar findings have been obtained in a mouse model

deficient for the progranulin gene, typically associated

with frontotemporal dementia (FTD) in humans [161, 162].

Lack of progranulin has been shown to trigger an exag-

gerated inflammatory reaction in microglia and macro-

phages [161, 163]. Interestingly, the brains of progranulin-

deficient mice showed increased levels of complement
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proteins, a prominent pro-phagocytic activation of micro-

glia, and enhanced pruning of synapses [164].

6.3 Inflammation and Neurogenesis

Under homeostasis, immunological signals can actively

shape adult neurogenesis. Microglia were shown to rapidly

engulf and remove apoptotic neuronal progenitors,

remarkably, without any trace of inflammatory reaction

[165, 166]. Other evidence has pinpointed a close interplay

between different immune proteins and the neurogenic

process [167, 168]. IL-1b has often received particular

attention because of its anti-neurogenic activity [169–175].

One may assume that microglia are primarily responsible

for this reduction of neurogenesis during inflammatory

challenges. An interesting molecular player is the CX3C

axis between neurons and microglia, which is known to

preserve the microglial ‘‘resting’’ phenotype under physi-

ological conditions [176, 177]. Several consistent findings

showed reduced neurogenesis in CX3CR1-deficient mice,

along with increased NF-jB activation and IL-1b expres-

sion in microglia [178–181]. Consistently, when an

inflammatory challenge is applied under CX3CR1-deficient

conditions, microglia release an increased and uncontrolled

Table 1 Randomized clinical trials of non-steroidal anti-inflammatory drugs in patients with Alzheimer’s disease

Drug Trial details

(phase, design,

duration of

treatment)

Participants Primary endpoint (s) Main effect References

Aspirin 75 mg od Phase III,

randomized

open-label,

3 years

310 AD pts MMSE and BADLs No effect on cognition,

increased risk of bleeds

[388]

Indomethacin 100–150 mg

od vs. PL

Pilot study,

randomized

1:1, 6 months

28 AD dementia

pts

Psychometric tests Positive effects on a battery of

psychometric tests

[357]

Indomethacin 100 mg od

with omeprazole vs. PL

Pilot study,

randomized

1:1, 1 year

51 pts with mild-

to-moderate

AD

ADAS-cog score Not significant effect on ADAS-

cog score

[389]

Naproxen sodium or

rofecoxib 220 mg

naproxen bid or

rofecoxib 25 mg od vs.

PL

Phase III,

randomized

1:1, 1 year

351 pts with

mild-to-

moderate AD

ADAS-cog score Not significant effect on ADAS-

cog score

[390]

Nimesulide 100 mg bid vs.

PL

Pilot study,

randomized 1:1

and open-label,

3 months

40 AD dementia

pts

Tolerability and short-

term cognitive/

behavioral effects

Not apparent effect on a

composite of cognitive,

behavioral and functional

outcomes

[391]

Rofecoxib 25 mg od vs. PL Phase III,

randomized

1:1, 4 years

1457 MCI pts Annual AD diagnosis Lower annual AD diagnosis but

no significant effect on

ADAS-cog score

[392, 393]

Celecoxib or naproxen

sodium 100 mg bid or

naproxen sodium 220 mg

bid vs. PL

Phase III,

randomized

1:1:1.5,

1–3 years

2528 healthy

individuals

with family

history of AD

Seven tests of cognitive

function and a global

summary score

measured annually

Not significant effect on a

battery of neuropsychological

tests

[394]

ADAPT

study

Celecoxib or naproxen

sodium, follow-up

ADAPT study

2–4 years

follow-up after

termination of

treatment

2071

participants

randomized in

ADAPT

Incidence of AD Not significant effect for

celecoxib. Reduced AD onset

and CSF tau to Ab1-42 ratio

for naproxen

[358]

Celecoxib or naproxen

sodium follow-up

5–7 years

follow-up after

termination of

treatment

1537

participants

randomized in

ADAPT

Cognitive evaluation test

scores

Not significant delay on onset of

AD

[395]

AD Alzheimer’s disease, ADAPT Alzheimer’s Disease Anti-inflammatory, ADAS-cog Alzheimer Disease Assessment Scale-cognitive portion,

BADLs basic activities of daily living, bid twice daily, CSF cerebrospinal fluid, MCI mild cognitive impairment, MMSE Mini-Mental State

Examination, od once daily, PL placebo, pt(s) patient(s)

Adapted from Heneka et al. [396]
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amount of inflammatory mediators and free radicals,

causing neurotoxicity and cognitive/behavioral deficits

[132, 182]. Interestingly, during ageing, neurons decrease

expression of CX3CL1 [183], which likely would result in

a general downregulation of the CX3C axis and pro-in-

flammatory skewing of microglia [184, 185]. Pro-inflam-

matory microglial priming has been suggested as a possible

mechanism leading to the dysregulated microglial function

and the ensuing stepwise decline of neurogenesis (and

potentially neurodegeneration) during senility [186–192].

In contrast, several lines of evidence point towards the pro-

neurogenic function of microglia, especially during the

period of early brain development. These indications sug-

gest that microglia play an important role during brain

development, axonal guidance, and formation of neuronal

networks.

6.4 Astrocytes and Glutamate Reuptake

In the CNS, extracellular levels of glutamate are tightly

regulated by astrocytes in order to modulate GluR activity

and prevent potential excitotoxicity [193]. Once in the

synaptic cleft, excess glutamate is promptly scavenged by

the excitatory amino acid transporters (EAATs) expressed

on both neurons and astrocytes [194]. The astrocytic

EAAT2 is thought to be responsible for about 90% of all

glutamate uptake in the brain [195, 196]. There are no

synaptic enzymes that otherwise would degrade glutamate.

Therefore, astrocyte-mediated glutamate uptake represents

the primary mechanism for the homeostatic regulation of

glutamate bioavailability [197]. Impairment of glutamate

uptake causes excitotoxicity characterized by overload of

cellular calcium, generation of free radicals, and protein/

lipid oxidation. Notably, astrocyte glutamate transporters

(EAAT1 and EAAT2) were shown to be reduced in the

cortex and hippocampus of patients with AD [46, 198].

Moreover, Ab-induced neurotoxicity in vivo has been

associated with NMDA receptor-dependent excitotoxicity

[199]. In conclusion, pharmaceutical compounds aiming to

modulate glutamate excitotoxicity have revealed a certain

therapeutic potential for neurodegenerative diseases

(Table 2).

6.5 Function and Dysfunction of the Blood–Brain

Barrier

Dysfunction of the blood–brain barrier (BBB) is a rela-

tively new frontier in AD research [200–202]. The fully

functional BBB is a highly specialized monolayer of

endothelial cells lining the cerebrovasculature and sepa-

rating the circulating blood from the brain parenchyma.

The integrity of the BBB depends critically on the func-

tional state of the associated pericytes, astrocytes, and

microglia and is compromised during neuroinflammation

[203]. Ab binds to low-density lipoprotein receptor-related

protein-1 (LPR1) on the endothelial cells of the brain

capillaries and is then released into the bloodstream

[204, 205]. Vice versa, in the BBB, RAGE are upregulated

with aging and facilitate the influx of Ab from the blood

into the brain [206]. Deficient Ab clearance from the brain

parenchyma is thus proposed to be, at least in part, the

result of its faulty transport across the BBB [207–209].

7 Modifiable Risk Factors for AD

A plethora of exogenous factors exert both beneficial and

detrimental modulating effects on the inflammatory state of

an organism. This, in turn, has direct and important con-

sequences for the risk of developing AD. As these factors

are amenable to non-pharmacological interventions and

can be mitigated (or promoted) by preventive measures or

lifestyle choices, they deserve special attention.

7.1 Infections

The evidence pointing to infections as risk factors for AD

stems from epidemiological and neuropathological studies.

Prospective cohort studies show that infection represents an

important risk factor in the progression of dementia and

AD [210, 211]. A case–control study suggested that mul-

tiple infections double the risk of developing dementia

[212]. In studies of a large AD patient cohort, peripheral

infection was associated with accelerated cognitive decline

[213, 214]. Conversely, the frequency of various infections,

including urinary and respiratory tract infections is higher

among individuals with AD than among healthy, age-

matched controls [215]. Indeed, pneumonia is one of the

most common causes of death in AD [204, 205, 216–218].

In contrast, vaccination against influenza and other infec-

tious conditions is associated with a significantly lower risk

of developing AD [219, 220].

A number of specific viral, bacterial, and fungal infec-

tions has been detected by polymerase chain reaction

(PCR) in human AD brain tissue and have been implicated

in AD development. One example is herpes simplex virus

type 1 (HSV-1) [221–223], which is an AD risk factor in

people carrying the APOE4 allele [224, 225]. Chlamydia

pneumonia, a Gram-negative bacteria, has been detected

via PCR in the brain tissue of patients with AD [226, 227],

where it was found to have infected microglia, astrocytes,

and neurons [227]. Interestingly, fungal proteins and DNA

have been identified in the brain tissue and CSF of patients

with AD [228, 229]. In postmortem AD brains, co-infec-

tion with many fungi has also been reported, with fungal

material identified inside neuronal cells and in many
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Table 2 Clinical trials of non-non-steroidal anti-inflammatory drugs in patients with Alzheimer’s disease

Drug and dosage

regimen

Trial details

(phase, design,

duration of

treatment)

Participants Primary endpoint (s) Main effect Reference

PPARc antagonists

RSG 2, 4, or

8 mg od vs. PL

Phase III, ran 1:1,

24 wk

511 pts mild-to-

moderate AD

ADAS-Cog and CIBIC ? in

ITT population

Significant interaction

between APOEe4 allele

status and ADAS-cog.

Significant improvement in

ADAS-cog in APOEe4-

negative pts on RSG 8 mg

[371]

PIO 15–30 mg

od

Pilot study, ran, ol,

6 mo

42 pts mild AD rCBF and plasma levels of

Ab40 and Ab42

Improved cognition and rCBF

in parietal lobe

[367]

PIO 45 mg od

vs. PL, and Vit.

E 200 IU od

Pilot study, ran

1:1, 18 mo

25 pts probable AD Frequency of reported AEs Principal AE was peripheral

edema (28.6% PIO vs. 0%

PL)

[369]

PIO Pro cohort study, 6

y

145,928 subjects

aged C 60 y

Long-term use of PIO

reduced dementia risk by

47%

[368]

RSG od PL, 2 or

8 mg RSG XR

or DON 10 mg

(control)

Phase III, ran 1:1,

24 wk

639 pts probable AD Change in ADAS-Cog score

and CIBIC?

Significant difference

CIBIC?. Peripheral edema

was the most common AE

for RSG XR 8 mg (15%)

[397]

RSG 4 mg od

vs. PL

Pilot study, ran

1:1, 6 mo

30 subjects mild AD or

amnestic MCI

Cognitive performance and

plasma Ab levels

Better delayed recall (at 4 and

6 mo) and selective

attention (6 mo)

[370]

RSG 2 or 8 mg

od

Phase III, ran 1:1

48 wk

2981 pts mild-to-

moderate AD

Change from baseline in

ADAS-cog and CDR-SB

scores

Relevant differences between

treatment groups

[398]

TNFa inhibitors

Perispinal ETA

25–50 mg ow

pro, single-center,

ol, pilot (proof-

of-concept)

study, 6 mo

15 pts mild-to-severe

AD

MMSE, ADAS-cog, SIB Significant improvement by

all primary efficacy

variables

[373]

Perispinal ETA

25–50 mg ow

pro, single-center,

ol, pilot study, 6

mo

12 pts mild-to-severe

AD

California Verbal Learning

Test-Second Edition, Adult

Version; WMS-LM-II,

TMT; Boston Naming Test

FAS, and category verbal

fluency

Significant improvement by

all primary efficacy

variables except Boston

Naming Test

[372]

SC ETA 50 mg

ow

Pilot study, ran

1:1, 24 wk

41 pts mild to moderate

AD

Cognition, global function,

behavior, systemic cytokine

levels

Trends but no statistically

significant changes in

cognition, behavior, or

global function

[399]

Microglia inhibitor

ITA (CHF5074;

CSP1103) 200,

400 or 600 mg

od or PL

Pilot study, ran

1:1, pg,

ascending dose,

12 wk

96 pts MCI Vital signs, cardiac safety,

neuropsychological

performance, safety clinical

laboratory parameters

sCD40L and TNFa in CSF

inversely related to

CHF5074 dose. Plasma

levels of sCD40L with

600 mg/day significantly

lower. Positive dose–

response trend was found on

executive function in

APOE4

[400]
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Table 2 continued

Drug and dosage

regimen

Trial details

(phase, design,

duration of

treatment)

Participants Primary endpoint (s) Main effect Reference

MAPKa

Neflamapimod

(VX745)

NA https://

clinicaltrials.

gov/

(NCT02423122;

NCT02423200)

Cytokines, Ab,

phospho-tau,

neurofilament light

chain and

butyrylcholinesterase

in CFS, and

fludeoxyglucose PET

Treatment effects on

immediate and delayed

recall aspects of episodic

memory

Other agents

PRE 20 mg od

for 4 wk,

maintenance

dose 10 mg od

vs. PL

Phase II, ran 1:1,

1 year

138 pts AD ADAS-cog No change in ADAS-cog

score

[374]

HYD

200–400 mg od

by body weight

vs. PL

Phase II, ran 1:1,

18 mo

168 pts mild AD ADL, cognitive function,

behavioral abnormalities

Any specific subgroup

benefited from

hydroxychloroquine

[378]

SIM up to

80 mg as

tolerated vs. PL

Pilot study, ran

1:1, 26 wk

44 pts AD CSF biomarkers Ab1–40 and

Ab1–42

Significantly decreased

Ab1–40 in mild AD

[376]

ATO 80 mg od

vs. PL

Pilot study, ran

1:1, 1 y

67 pts mild AD ADAS-cog, CGI LOCF

analysis

Significant change in the

scales

[377]

ATO 80 mg od

vs. PL

Phase III, ran 1:1,

72 wk

640 pts mild-to

moderate AD (MMSE

13–25)

ADAS-cog, CGI (co-

primaries)

Not associated with

significant clinical benefit

[375]

IV Ig 0.2 or

0.4 g/kg q2w

vs. PL

Phase III, ran 1:1,

18 mo

390 subjects mild to

moderate AD

ADCS-AD No beneficial effects [401]

TRI 900 mg od

vs. PL

Phase II, ran 1:1,

18 mo

257 amnestic MCI ADAS-cog, conversion to

dementia

Significantly lower rate of

conversion to dementia

[402]

OFA 2.3 g Pilot study, ran

1:1, 6 mo

35 pts mild AD sIL-1RII and Ab1–42 in CSF Influence on inflammatory or

biomarkers in CSF or

plasma

[403]

CIL 100 mg od

vs. control

(ASA 100 mg

or CLO

50–75 mg od)

Pilot study, ran

1:1, 6 mo

20 pts AD and CVD ADAS-cog, Wechsler

Memory Scale, TMT-A

Preventive effect on cognitive

decline

[404]

HG-CSF 5-day

schedule vs. PL

Pilot (proof-of-

concept) study,

ran 1:1, cross-

over design

8 pts mild to moderate

AD

CANTAB computerized

system

Positive change in

hippocampal-dependent

task of cognitive

performance

[405]
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regions [230, 231]. The significance of these findings

remains uncertain because several factors, including post-

mortem time and handling, must be considered before

conclusions are drawn. In addition, causality is notoriously

difficult to ascertain in these scenarios. Systemic inflam-

mation certainly has an impact on the brain, which is not at

all ‘‘immune privileged,’’ as textbooks still suggest. Thus,

higher rates of cognitive decline have been observed in

patients with AD with acute systemic inflammation [214].

Leaky gut may be one of the drivers of systemic inflam-

mation and is directly related to an imbalance of gut

microbiota [232].

7.2 Traumatic Brain Injury

Traumatic brain injury (TBI) leads to damaged blood

vessels, axons, nerve cells, and glia of the brain in a focal,

multifocal, or diffuse pattern, resulting in impaired brain

function [233, 234]. A single moderate or severe TBI may

increase the risk of developing late-onset AD, whereas

repetitive mild TBI (e.g., through contact sport) is associ-

ated with an elevated risk of chronic traumatic

encephalopathy [235, 236]. Two key meta-analyses of

case–control studies found a significant association

between moderate-severe TBI and AD [237, 238]. Fur-

thermore, human pathological studies evince abnormal

accumulation of AD-related pathological proteins, includ-

ing soluble and insoluble Ab and hyperphosphorylated tau

aggregates, following TBI. This, in turn, is supported by

studies in large animals [239, 240]. Aggregation and

deposition of Ab is accelerated after an acute TBI event,

with changes within a mere 24 h up to 2 months after

injury in animal studies [240–244]. Further, aggregation

and deposition of Ab have been associated with memory

impairments in 3xTg-AD mice [244]. Aberrant tau phos-

phorylation has also been described in several models after

TBI [245–248]. The formation of misfolded Ab and tau

oligomeric seeds triggered by TBI may lead to spreading of

the pathology in a prion-like manner, causing a faster and

more severe onset of the disease [249].

7.3 Smoking

The role of smoking as a modifiable risk factor in AD is

controversial. Some early case–control studies reported

smoking had a beneficial effect on AD [250, 251]. In

contrast, more recent cohort studies without affiliation to

the tobacco industry clearly point towards a deleterious

impact [252, 253]. Meta-analyses of these studies showed

that smoking during a lifetime is associated with at least a

1.7 times higher risk of AD [254]. Although this increase

obviously correlates with smoking intensity and duration

[255], the findings regarding former smoking status are

more heterogeneous. Reitz et al. [252] observed no asso-

ciation between past smoking and AD, whereas Aggarwal

et al. [253] reported a lower risk for former smokers car-

rying the ApoEe4 allele than for those who never smoked.

It is estimated that, today, smoking accounts for 4.7

million AD cases worldwide [256]. Evidence from various

in vitro and in vivo studies suggests that sustained cigarette

Table 2 continued

Drug and dosage

regimen

Trial details

(phase, design,

duration of

treatment)

Participants Primary endpoint (s) Main effect Reference

RES 500 mg od

(escalation by

500 mg

increments

q13w, ending

with 1000 mg

bid)

Phase II, ran 1:1

52-wk

119 pts mild-to

moderate AD

Ab1–40 biomarkers in CSF

and serum, brain volume

CSF Ab40 and plasma Ab40

levels declined more with

PL; brain volume loss

increased

[406]

Aß amyloid beta, AD Alzheimer’s disease, ADAPT Alzheimer’s Disease Anti-inflammatory, ADAS-cog Alzheimer Disease Assessment Scale-

cognitive portion, ADCS-AD Alzheimer’s Disease Cooperative Study-Activities of Daily Living Inventory, ADL activities of daily living, AE

adverse effect, ASA acetylsalicylic acid (aspirin), ATO atorvastatin, bid twice daily, CDR Clinical Dementia Rating, CGI Clinical Global

Impression, CIBIC-? Clinician’s Interview-Based Impression of Change Plus Caregiver Input, CIL cilostazol, CLO clopidogrel, CVD cardio-

vascular, DON donepezil, ETA etanercept, HG-CSF human granulocyte colony-stimulating-factor, HYD hydroxychloroquine, Ig immunoglob-

ulin, ITA itanapraced, ITT intention-to-treat, IV intravenous, LOCF last observation carried forward, MAPK mitogen-activated protein kinase,

MCI mild cognitive impairment, MMSE Mini-Mental State Examination, mo months, od once daily, OFA omega-3 fatty acids, ol open-label, ow

once weekly, pg parallel-group, PIO pioglitazone, PL placebo, PPAR peroxisome proliferator-activated receptor, PRE prednisone, pro

prospective, pt(s) patient(s), qxw every x weeks, ran randomized, rCBF regional cerebral blood flow, RES resveratrol, RSG XR rosiglitazone

extended release, SC subcutaneous, SIB Severe Impairment Battery, SIM simvastatin, TMT Trail Making Test, TNF tumor necrosis factor, TRI

triflusal, Vit. vitamin, wk weeks, WMS-LM-II Logical Memory I and II from the Wechsler Memory Scale-Abbreviated, y year

Adapted from Heneka et al [396] with permission
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smoke exposure facilitates the emergence of regional Ab
and tau pathology [257, 258]. Several possible pathways

are likely to contribute to the development of pathological

AD features in smokers. These include cerebrovascular

dysfunction [259], neuroinflammation [258], and protein

misfolding and aggregation [260, 261], which all may be

triggered by an increase in oxidative stress [262–264].

However, human postmortem studies yielded contradictory

results concerning the link between smoking and AD

neuropathology, as Ab levels were reduced in the brains of

active smoker AD cases compared with never-smoking

patients [265]. Remarkably, nicotine and some related

compounds exert neuroprotective effects in a variety of

model systems [266–268], for example via activation of

nicotinic acetylcholine receptors [269] or direct binding to

Ab fibrils [270].

7.4 Physical Activity

A case–control study showed patients with AD were less

active in midlife [271]. Physical inactivity is accompanied

by several secondary effects, including obesity, metabolic

syndrome, type 2 diabetes mellitus (T2DM), and cardio-

vascular disease [272]. In contrast, regular physical exer-

cise positively influences neurogenesis, brain plasticity,

and metabolic function, reduces levels of pro-inflammatory

cytokines and oxidative stress [273–275], and can alter

disease-related biomarkers in patients with dementia [276].

Thus, it is not surprising that cognitive function and mental

processing speed in elderly people could be significantly

improved with leisure time activities and exercise pro-

grams [256, 277–279]. However, Küster et al. [280]

showed that a (self-reported) active lifestyle rather than the

exercise itself is associated with a decreased risk of AD.

Whether physical exercise benefits all patient populations

equally remains controversial [276, 281]. Some studies

report a stronger effect of physical activity among APOE4

carriers compared with non-carriers [282–284], whereas

others could not replicate these results [285–287]. Analysis

of different animal models suggests positive effects of

physical exercise on BDNF levels, oxidative stress and

even Ab and tau pathology, resulting in delayed disease

onset and progression [288–291].

7.5 Diet and Obesity

Many specific dietary components have been studied in

relation to AD. In clinical studies, a higher intake of

unsaturated fatty acids, antioxidants, and vitamins B12 and

folate have been associated with a lower risk for AD and

cognitive decline [292–294]. However, the opposite or

even no effect has also been found for these factors

[295–297]. Instead of focusing on individual dietary

components, the effect of overall dietary patterns (which

incorporates nutrient interaction) has been examined,

including the Mediterranean Diet (MeDi) [298], Dietary

Approaches to Stop Hypertension (DASH) [299], and the

Mediterranean-DASH Intervention for Neurodegenerative

Delay (MIND) [300]. These studies point towards diet as

having a protective effect against cognitive decline and

development of AD [299, 301–307].

In contrast, overnutrition can lead to obesity, which in

turn has been associated with AD development. Obesity is

characterized by leptin and insulin resistance, leading to

impaired energy metabolism and chronic inflammation

[308]. This chronic inflammatory status can cause cellular

stress and neurodegeneration and is thought to be the link

between obesity and its adverse effects on cognitive per-

formance and AD development [309–313]. Most impor-

tantly, some of these effects may occur as early as midlife.

Thus, increased body mass index and sagittal abdominal

diameter in men aged 40–45 years has been associated

with an increased risk of AD in later life [314].

7.6 Lifetime Distress

Lifetime frequency of stress exposure is consistently

associated with the incidence of mild cognitive impairment

(MCI) and may increase the risk of late-onset AD

[315–317]. In particular, higher levels of the stress hor-

mone cortisol are associated with an accelerated age-re-

lated decline in cognition [318, 319]. The hypothalamic–

pituitary–adrenal (HPA) axis regulates the release of cor-

tisol in humans or the corresponding corticosterone in

rodents. This system is dysregulated in patients with AD,

with higher cortisol levels found in the blood plasma and

CSF of subjects with AD than in age-matched controls

[318, 320].

Interestingly, exposing rodents to stressful experiences

increases corticosterone levels and glucocorticoid receptor

activation, resulting in aggravation of AD-related neu-

ropathology in various transgenic models [321–326].

Microglia are highly responsive to glucocorticoids, with

abundant glucocorticoid receptor expression levels [327].

Furthermore, glucocorticoids can induce a pro-inflamma-

tory microglial phenotype upon stress, especially following

a secondary inflammatory challenge [328–330].

7.7 Diabetes Mellitus

T2DM affects approximately 370 million people world-

wide, accounting for 90–95% of all patients with diabetes

[331]. The disease is characterized by hyperglycemia,

insulin resistance, and relative lack of insulin [332]. People

with T2DM have a 73% greater risk of developing

dementia [333] and decreased white and grey matter
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volume of the temporal and frontal lobes [334, 335].

Cortical and hippocampal atrophies have also been

observed in diabetic mice (db/db) [336].

Importantly, insulin resistance leads to the generation of

NFTs: decreased activation of protein kinase B in T2DM

results in ineffective inhibition of glycogen synthase kinase

3, thus mediating tau phosphorylation and formation of

NFTs [337, 338]. In addition, insulin levels in patients with

diabetes mean the insulin-degrading enzyme is sequestered

away from Ab, which fosters the accumulation of Ab in the

brain [339, 340]. Patients with T2DM have impaired

immunological defense mechanisms, resulting in frequent

infections, which may contribute to the development of AD

[341]. The concentration of pro-inflammatory cytokines in

the CSF is increased in patients with T2DM [342]; indeed,

chronic sub-acute inflammation can also induce insulin

resistance and cause T2DM [343].

8 Protection by Anti-inflammatory Strategies

8.1 Past and Present Strategies

Various anti-inflammatory therapeutic approaches have

been taken to modify AD progression over the past 2

decades, ranging from non-steroidal anti-inflammatory

drugs (NSAIDs) to TNFa inhibition.

8.1.1 Non-steroidal Anti-inflammatory Drugs (NSAIDs)

One of those approaches was ADAPT (Alzheimer’s Dis-

ease Anti-inflammatory Prevention Trial). This trial was

constructed to examine whether NSAIDs could prevent or

delay the onset of AD and whether such treatment could

impact cognitive decline associated with aging [344].

Early epidemiological studies had suggested that long-

term treatment with NSAIDs decreased the risk of AD

development [345–348]. Additionally, strong experimental

evidence has emerged supporting the positive effect of

NSAIDs in AD animal models [80, 349]. NSAIDs have

been shown to reduce Ab secretion and accumulation, both

in vitro and in vivo, to modulate c-secretase activity, to

exert an anti-inflammatory effect, and to improve cognitive

function in AD mouse models [350–355].

However, most NSAIDs have not convincingly shown

any beneficial effects during clinical trials in patients with

AD [356]. Only a small, early study using indomethacin in

patients with AD [357], which has not been replicated, and

a follow-up analysis from the ADAPT research group using

naproxen [358] have shown positive effects. Aspirin also

did not prove effective against AD but increased the risk of

serious bleeds (AD2000 trial).

8.1.2 Non-NSAIDs

Peroxisome proliferator-activated receptor (PPAR)-c ago-

nism has consistently been shown to reduce the production

of inflammatory cytokines and amyloid accumulation in

AD mouse models [351, 359–362]. Rosiglitazone induces

activation of the ERK pathway, leading to cognitive

enhancement in AD models [363–366]. Pioglitazone has

been found to improve cognition and cerebral blood flow in

mild AD [367]. Additionally, pioglitazone treatment

reduced dementia risk in patients with initially non-insulin-

dependent diabetes mellitus in a case–control study [368].

However, a pilot randomized clinical trial for the safety of

this drug in patients with AD found no significant effect

[369]. Rosiglitazone has been found to delay cognitive

decline in patients with early AD and MCI [370]. Another

study showed improvement in cognitive function using

pioglitazone, which was restricted to APOEe4 non-carriers

[371]. The TOMORRW study is ongoing and will evaluate

the efficacy of pioglitazone versus placebo in delaying the

onset of MCI-AD in cognitively normal participants who

are at high risk for developing MCI within the next 5 years

(NCT01931566).

8.1.3 Tumor Necrosis Factor-a Inhibitors

Inhibiting TNFa signaling has also become an interesting

and promising approach to the treatment of AD. A clinical

case report found that intrathecal administration of inflix-

imab (an antibody against TNFa already approved for

other indications) reduced Ab plaques and tau pathology in

APP/PS1 mice and enhanced cognitive function. Addi-

tionally, two small pilot clinical studies using a different

TNFa inhibitor, etanercept, showed cognitive improvement

in patients with AD [372, 373]. However, these studies

used small sample sizes and an open-label design and

lacked a placebo group. Thus, a larger well-designed pla-

cebo-controlled study would be necessary to assess the

possible utility of TNFa in AD [349].

8.1.4 Other Anti-inflammatory Drugs

Trials have examined other anti-inflammatory drugs, such

as prednisone, hydroxychloroquine, simvastatin, and ator-

vastatin, but have shown no significant positive cognitive

effects in patients with AD [368, 374–378].

8.2 Future Strategies

Recently, fenamate NSAIDs including mefenamic acid

were found to selectively inhibit NLRP3 through the

inhibition of volume-regulated ion channels (VRACs),

thereby preventing cognitive impairments in rodent models
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of AD. Mefenamic acid is already on the market and is

used for abdominal pain in premenstrual syndrome.

MCC950, a new potent NLRP3-selective inhibitor has been

developed but is not yet available for clinical use [379].

Anakinra, an IL-1 receptor antagonist, and a neutralizing

antibody, canakinumab, have been proposed to work by

inhibiting this NLRP3 axis, but the cost benefit and

bioavailability in the brain remains a concern [380].

CSP-1103 (also known as CHF 5074 or Itanapraced) is

now in phase III clinical trials as a microglia modulator. It

may inhibit Ab plaque deposition, reduce tau pathology,

restore normal microglial function by increasing phago-

cytosis, and decrease production of pro-inflammatory

cytokines [381].

Some other new therapeutic targets have been proposed.

MAPKa inhibitors (e.g., Neflamapimod [VX-745]) could

reduce IL-1b levels [382] (NCT02423200). Administration

of low-dose IL-2 could increase plaque-associated micro-

glia and improve cognitive performance [383]. C3aR

antagonist SB290157 could decrease amyloid load and

microgliosis [384]. PD-1 inhibitors could reduce plaque

load and improve cognition [385]. Blocking the p40

common subunit of IL-12 and IL-23 could decrease amy-

loid burden [122, 359, 386]. A CD33 inhibitor might pro-

mote microglial phagocytosis of Ab [387].

9 Summary and Conclusions

Neuroinflammation in AD is likely to arise from the

recognition of Ab by PRRs on the surface of innate

immune cells in the brain. Once initiated, sustained

inflammation and neurodegeneration may unleash further

factors, which, in turn, act as DAMPs and thereby con-

tribute to the persisting and chronic sterile immune reaction

in the brain. Several mechanisms of interaction by which

inflammatory processes contribute to disease progression

have been identified. Given that deposition of Ab occurs

decades prior to the first amnestic and cognitive deficits,

such mechanisms may represent promising therapeutic

targets. Identification of suitable mode and site of inter-

vention models, which better target the human cerebral

innate immune system, and associated biomarkers, is

urgently required.
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