
1. Introduction
In late December 2019, an acute respiratory disease was discovered in a cluster of humans in the indoor Huanan 
seafood wholesale market in Wuhan, Hubei province, China (Li et al., 2020). Symptoms of the disease include 
fever, fatigue, cough, and acute dyspnea (Fu et al., 2020; Rodriguez-Morales et al., 2020; Spychalski et al., 2020). 
The disease, later linked to the family of coronaviruses, was named COVID-19 by the World Health Organization 
(WHO). COVID-19 was declared a Public Health Emergency of International Concern on 30 January 2020 and 
a pandemic on 11 March 2020 (Eurosurveillance Editorial Team, 2020; Ntoumi & Velavan, 2021; Schwartz & 
Graham, 2020). Movement of people, especially tourists, during the Chinese New Year celebration in December 
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to impose strict restrictions on human activities and vehicular movements. With anthropogenic emissions, 
especially waste management (domestic and municipal), traffic, and industrial activities, said to be a 
significant contributor to ambient air pollution, this study assessed the impacts of the imposed restrictions 
on the concentrations and size distribution of atmospheric aerosols and concentration of gaseous pollutants 
over West African subregion and seven major COVID-19 epicenters in the subregion. Satellite retrievals 
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Plain Language Summary The emergence of COVID-19 in December 2020 caused national and 
regional governments to introduce lockdown and restrict the movement of vehicles and human. There was also 
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calculate the anomalies. The level of aerosol aerosol optical depth, SO2, and NO2 reduced substantially in 2020 
compared to the reference years. However, the atmospheric levels of ozone and CO increased slightly in 2020 
as against the reference years. The slight increase in CO levels could be attributed to local burning of domestic 
waste and biomass burning. There was a shift in the size distribution of atmospheric aerosols cluster toward the 
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Key Points:
•  There were marked decreases in the 

level of aerosols, SO2, and NO2 over 
COVID epicenters and subregion 
during the periods of lockdown

•  During the same period, there was a 
slight increase in ozone and CO over 
most of the COVID epicenters and the 
subregion

•  There was a shift in the size 
distribution of prevailing aerosol 
cluster toward the coarse fractions
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2019 was partly responsible for the fast spread of the disease within and outside China (Bogoch et al., 2020; Chen 
& Yu, 2020; Yu & Chen, 2020).

Despite its widespread in Europe and Asia, prompting the restriction of movements (human and vehicular) and 
the imposition of local, national, and regional lockdowns and border controls by government at various levels, the 
epidemic did not become prevalent in Africa until mid-March 2020. While Egypt recorded the first case of  the 
virus on 14 February, twenty-seven (27) other African countries recorded their first cases between 13 and 20 
March, 2020, about 30 days after Egypt recorded its first case of the virus on the continent. The first case of the 
disease was recorded in the seven (7) West African countries covered in this study—Nigeria, Senegal, Burkina 
Faso, Ghana, Côte D’Ivoire, Cameroon, and Mali—between 28 February and 26 March 2020. On the African 
continent, with 54 countries, it took 90 days for the number of confirmed cases to reach 100 000 but just 19 days 
to double the number of confirmed cases and another 12 days to reach 300 000 (Wadvalla,  2020). As of 12 
October 2021, the cumulative number of cases and fatalities on the continent has risen to 6,087,812 and 121,597, 
respectively (data accessed from https://covid19.who.int on 12 October 2021). The first official COVID-19 death 
in Africa was announced on 8 March 2020, in Egypt.

From the aforementioned, it is clear that the spread of the pandemic to Africa started much later than other parts 
of the globe. In addition, the rate of infection and fatality on the African continent is much lower than projections 
made by international bodies such as the WHO and the Bill and Melinda Gates Foundation (Njenga et al., 2020). 
The lower incidences and fatalities of COVID-19 experienced in Africa have been attributed to a number of 
factors including younger population, fewer percentage of the population living with comorbidities, and life 
expectancy (Lawal, 2021). Despite the relatively low incidences and fatalities in Africa, to curb the spread and 
resulting deaths, the governments in most African countries were forced to resort to national or regional lock-
downs and restricted human and vehicular movement. These were done so as not to put the already strained and 
underfunded healthcare systems in most African countries under pressure, which could result in increased fatal-
ities. During the first and second waves of the pandemic in 2020, the periods of the lockdown run for weeks and 
even months at a stretch in many African countries and occurred at different times and with overlaps. Some West 
African countries eased the restrictions briefly but had to reimpose them after experiencing significant spikes in 
the number of incidences and fatalities. There were also occasions when the restrictions were temporarily eased 
for a day or two to allow people to restock their food and other essentials. Table 1 gives a breakdown of the peri-
ods of restriction in the seven West African countries considered in this study.

In most developing economies around the world, especially in low- and middle-income countries (LMICs), air 
quality (AQ) is at its lowest ebb because of the rapid economic and population growth and industrialization efforts 
experienced in most cities in LMICs are not backed up with sustainable management of the environment. The 
source of air pollutants in most West African cities is a combination of anthropogenic and natural, with pollut-
ants from anthropogenic sources being the most dominant in urban airsheds (Dominutti et al., 2019; Liousse 
et al., 2014; Marticorena et al., 2010; Naidja et al., 2018). In the West African subregion, most emissions from 
natural sources, for example, desert dust and biomass burning, are often seasonal or episodic (Bauer et al., 2019). 
Anthropogenic sources of emissions include industrial processes, traffic, power generation, construction works, 
road dust resuspension, domestic cooking, and waste burning (Fayiga et al., 2018; Hoesly et al., 2018). Human 
activities and traffic are ubiquitous and often times uncontrolled and unmonitored in most cities in the subregion 
where more than 80% of automobiles on the roads are secondhand used vehicles imported from Europe and the 
United States and waste (domestic and municipal) burning is carried out indiscriminately.

Globally, COVID-19 pandemic led to unprecedented restriction of movements that brought about a drastic reduc-
tion of global and local travels due to border closures and closure of schools and businesses, including stop-
page or massive reduction of industrial activities. As a result of these restrictions, many countries observed 
clear blue skies for the very first time in decades. Several studies in different regions of the world—Srivastava 
et al. (2021) (India), Menut et al. (2020) (western Europe), Filonchyk et al. (2021) (Poland), Matthias et al. (2021) 
(central Europe), Stratoulias and Nuthammachot (2020) (Thailand), Fuwape et al. (2021) (Nigeria), and Archer 
et al. (2020) (USA), just to mention a few—have reported various levels of improvement in AQ during the various 
lockdown periods, which lasted for months in some countries, especially in epicenters and neighboring cities.

Using AQ and meteorological data from ground-based and satellite platforms, studies from several countries and 
regions of the world have reported varying degrees of reduction in air pollution and improved Air Quality Indices, 
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especially in COVID-19 epicenters. Serious dearth of long-term AQ data from ground-based stations has greatly 
impacted AQ studies in most African countries. As such, studies on long-term trends and variability of atmos-
pheric pollutants in this region have resorted to the use of data from remote sensing (e.g., AERONET, (Boiyo 
et al., 2017; Fawole et al., 2016; Yusuf et al., 2021)), reanalysis (e.g., MERRA-2, (Diop et al., 2018; Veselovskii 
et al., 2018)), and satellite platforms (e.g., OMI; (Lourens et al., 2012; Marais et al., 2012)).

Using aerosol optical depth (AOD), Angstrom Exponent (AE), and single scattering albedo (SSA), the study 
investigates the anomalies in the loading, size distribution, and optical properties of dominant aerosols during the 
pandemic. The anomalies were estimated as the atmospheric concentrations of the pollutants in 2020 relative to 
the mean of the three preceding years (2017–2019), herein referred to as the “reference years.” To the best of  the 
authors' knowledge, this is the first study to attempt an assessment of the anomalies of gaseous pollutant and 
aerosol loading as well as size distribution in the subregion during the pandemic. This study brings into context 
the possible impact of mitigation strategies and other government policies to improve AQ in the study regions. 
It also shows the possible limitations that could impede the use of satellite retrievals for AQ monitoring in the 
subregion, especially for the analyses of daily mean AQ levels.

In this study, perceived anomalies in the atmospheric concentrations of four gaseous pollutants (NO2, SO2, O3, 
and CO) and loading of atmospheric aerosol in 2020 were assessed and quantified in relation to historical mean 
(2017–2019). The authors hypothesized that (a) there is a marked reduction in gaseous air pollutants in the West 
African subregion brought about by months of limited human activities and restrictions of human and vehicular 
movements due to the COVID-19 pandemic and (b) there is a reduction in the loading of atmospheric aerosol and 
a shift in the pattern of the size distribution of aerosol toward coarser aerosol cluster. The latter part of the second 
hypothesis is premised on the fact that most human activities such as traffic and industrial processes which were 
brought almost to a halt during the lockdown are the predominant sources of fine aerosol clusters in the atmos-
phere in most cities of the world, the epicenters not an exception. The study area covers seven (7) West African 
countries with higher COVID-19 incidences and fatalities during the first and second waves.

2. Material and Methods
2.1. Study Area

The study area covers the seven epicenters and lies between 0°S—22°N and 16°W—12°E. The epicenters were 
selected because of the relatively high number of COVID incidences and fatalities, level of compliance/effectiveness, 

Country Epicenter Land area (km 2) Coordinate Period of restrictions in 2020 (approx.) a

Nigeria Lagos 3,577 6.3–7°N March 30 -mid May

2.7–4.3°E Mid July -September

Senegal Touba 97.2 14.6–14.8°N March—June

17.5–17.3°W August—October

Ghana Accra & Ashanti region 24,389 5.9–7.6°N March—July

2.5–0.2°W August—September

Mali Bamako 245 12.5–12.7°N March—May

8.1–7.9°W July—September

Côte D’Ivoire Abidjan 2,119 5.3–5.5°N March—June

4.1–3.9°W August—September

Burkina Faso Kadiogo province 2,805 12–12.7°N March—April

1.8–1.1°W August

Cameroun Center region 68,953 3.2–6.2°N March—June

10.2–13.2°E July—August

 aThe periods of restrictions were estimated from https://graphics.reuters.com/world-coronavirustracker-and-maps/.

Table 1 
Breakdown of the Location of Epicenters and Restriction Periods

https://graphics.reuters.com/world-coronavirustracker-and-maps/
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and length of restrictions and lockdown periods. Table 1 shows, among other information, the coordinates of the 
epicenter in the selected countries and periods of restrictions. See Figure 1 for a map of the subregion and the 
selected epicenters.

2.2. Government Policies, Lockdowns, and Restrictions

The seven (7) countries considered in this study implemented various closures and restrictions of movement at 
different periods during the first and second waves of the pandemic between March and December 2020. The 
period of restrictions overlapped in most of the countries and the level of compliance varied. There were periods 
when the restrictions were relaxed in some part of the regions for a couple of days to a week before being reim-
posed. Table 1 gives a breakdown of the periods of restrictions and lockdowns. Only essential services (health 
care and security outfits) were allowed to run unhindered during the period of restrictions. These restrictions 
brought almost a halt to human activities and traffic flow, especially in the epicenters where the restrictions on 
travels and workplaces were more effective and prolonged. As such, the comparisons intended in this study will 
be at the finer level of the epicenters in addition to the regional levels.

2.3. Air Quality Data

The unavailability of reliable long-term ground-based AQ and meteorology data in the study area is a well-known 
fact to the scientific community worldwide. As such, all the data acquired and processed for the intended analy-
ses undertaken in this study are from satellite retrievals, models, and remotely sensed data sources. All the data, 
aerosol and gaseous pollutant, were averaged to monthly values for ease of comparison of the data sets included 
in the analyses.

2.3.1. Aerosol Parameters

Three aerosol parameters—AOD, AE, and SSA—were analyzed to investigate the impact of the periods of 
restrictions and lockdowns during the COVID-19 pandemic on the loading, size distribution, and absorption 
property of prevailing atmospheric aerosol over West Africa. See Table 2 for details of the aerosol parameters 
included in these analyses.

2.3.1.1. Aerosol Optical Depth (AOD)

AOD is a measure of the extinction of incoming solar radiation by atmospheric aerosol. It quantifies the fraction 
of light prevented from reaching the Earth's surface by atmospheric aerosols. AOD is one of the fundamental 
optical parameters and a key parameter for the evaluation of aerosol content in atmosphere and air pollution 

Figure 1. Map showing the subregion and location of the seven (7) epicenters.
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level. While an AOD value of <0.1 indicates a clean atmosphere, a value >0.5 indicates a hazy and aerosol 
laden atmosphere. AOD data at 550  nm from both MERRA-2 reanalysis and Moderate Resolution Imaging 
Spectroradiometer (MODIS)-Terra (combined dark target and deep blue) were used to assess the variation in 
aerosol loading.

MERRA data sets are managed by NASA's Global Modeling and Assimilation Office (GMAO). GMAO aimed to 
place historical observations from NASA's Earth Observing System satellites into the Goddard Earth Observing 
System (GEOS) atmospheric modeling and data assimilation system (Rienecker et al., 2011). MERRA-2, the 2nd 
version of MERRA, is the latest generation of the reanalysis, which addresses the limitations of the 1st version 
with the updated Earth system model of GEOS, version 5. MERRA-2 is the first long-term global reanalysis to 
assimilate space-based observations of aerosols and represent their interactions with other physical processes in 
the climate system.

Although the analyses of the variability of AOD over the subregion and epicenters were done with MERRA-2 
reanalysis AOD parameter, MODIS AOD was used to validate MERRA-2 AOD. MODIS AOD (550  nm) 
obtained fromMODIS (Terra) Collection 6.1 aerosol products with the use of combined dark target and deep 
blue algorithm was used for the validation. Spatial resolution of the radiometer at this wavelength is 1 × 1 for 
the investigation of large areas and a spatial resolution of 3 km for the investigation of aerosols within urban 
agglomerations.

2.3.1.2. Single Scattering Albedo (SSA)

SSA relates the ratio of scattering to the extinction coefficient. It depends on particle compositions and volume 
size distribution in the atmosphere. Although, it is an aerosol optical parameter that is more significant in deter-
mining the aerosol radiative effect, SSA is also an important parameter in AQ studies. As the size distribution 
and composition of the aerosol cluster play significant roles in the determination of SSA values, SSA values can 
be used to infer the nature, type, and sources of aerosol particles. In the Gangetic-Himalayan region, Manoharan 
et al. (2014) found that coarser particle matter (PM) are about 30% more absorbing than finer PM. The study 
also show that under clear-sky conditions, coarser PM account for >40% of total aerosol forcing. Values of SSA 
range from 0 for a purely absorbing aerosol to 1 for a purely scattering aerosol. And, the major absorbing aerosol 
species are black carbon (BC) (Bond et al., 2013), mineral dust (Claquin et al., 1999), and organic aerosols such 
as brown carbon (Andreae & Gelencsér, 2006).

SSA retrieved by the near-UV two-channel algorithm (OMAERUV) applied to the Aura/Ozone Monitoring 
Instrument (OMI) measurements was analyzed to assess the impact of restrictions occasioned by the pandemic 
on optical properties of atmospheric aerosols. SSA data were obtained as time series, area-averaged at wave-
length 500 nm, level 3, version 3 data with 1° × 1° spatial resolution (OMAERUVd) from similar satellite OMI 
but at daily scales and then averaged into monthly mean. Complete SSA data are available for only three of the 
seven epicenters. The analyses of the SSA data were carried out over the West African subregion alone because 
SSA data were available for only three of the seven epicenters. The anomalies in SSA between 2017 and 2019 
and 2020 were computed to assess the changes in absorption properties of aerosol due to restrictions during the 

Pollutant Source Temporal resolution Spatial resolution Unit

SO2 (surface mass concentration) MERRA-2 Hourly 0.5° × 0.625° kg/m 3

Ozone (total column) OMI Daily 0.25° × 0.25° Dobson

CO (column burden) MERRA-2 Monthly 0.5° × 0.625° kg/m 2

NO2 (total column) 30% cloud screened OMI Daily 0.25° × 0.25° 1/cm 2

Aerosol (AOD) 550 nm MERRA-2 Monthly 0.5° × 0.625° -

Aerosol (AOD) 550 nm MODIS-Terra (combined dark target and deep blue) Daily 1° × 1° -

Total angstrom aerosol parameter MERRA-2 Hourly 0.5° × 0.625° -

Aerosol single scattering albedo (500 nm) OMI Daily 1° × 1° -

Table 2 
Source and Specifications of Pollutants' Data Sets Included in This Study
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COVID-19 pandemic. Understanding the optical property on dominant aerosol clusters is of great importance as 
these properties determine their interaction with incoming shortwave and outgoing longwave radiation.

2.3.1.3. Angstrom Exponent (AE)

AE is an operationally robust optical parameter that contains information on the size distribution of all optically 
active aerosols in the field of view of a sun photometer (O’Neill et al., 2001). Analysis of the AE over the epicenters 
is important as the characterization of the particle size distribution will enhance the drawing of inferences about 
the impact of restrictions due to the COVID-19 pandemic on dominant aerosol particles in the atmosphere in  
2020. Thirty-minute averages of AE are clustered into bins based on the aerosol modes. One constant value of AE 
is not a good threshold to classify the aerosol types. However, AE ≤ 1.0 and AE > 1.0 are typically representative 
of coarse-mode and fine-mode-dominated aerosol clusters, respectively (Kaufman, 1993). The closer the value of 
AE is to zero, the coarser the aerosol particle.

2.3.2. Gaseous Air Pollutant

Anthropogenic pollution is estimated using the atmospheric loading of NO2, CO, SO2, and O3 averaged over 
the region and on a finer scale, the epicenters. Details of the sources, units, and spatial resolution of the data are 
given in Table 2. OMI is an ultraviolet/visible nadir solar backscatter spectrometer that makes daily measurement 
of Earth radiance and solar irradiance from 270 to 500 nm with spectral resolution of 0.5 nm. It provides nearly 
global coverage in one day, with a spatial resolution of 13 × 24 km. Atmospheric gases measured are O3, NO2, 
SO2, HCHO, BrO, and OClO. In addition, OMI measures aerosol characteristics, cloud top heights, and cloud 
coverage (Jethva et al., 2014; Levelt et al., 2006). With its high spatial resolution and daily global coverage, OMI 
promises highly interesting scientific results that could enhance our understanding of stratospheric and tropo-
spheric chemistry and climate change (Balis et al., 2007).

2.3.2.1. Nitrogen Dioxide (NO2)

NO2 is an important chemical species in both the stratosphere, where it plays a key role in ozone chemistry, 
and the troposphere, where it is a precursor to ozone production. NO2 is an anthropogenic pollutant emitted 
from combustion processes, traffic, and industrial activities. We use level-3 daily global gridded (0.25° × 0.25°) 
nitrogen dioxide product (OMNO2d). OMNO2d is produced for all atmospheric conditions in the total column 
NO2 and the total tropospheric column NO2, and for sky conditions where cloud fraction is <30% (Lamsal 
et al., 2021).

2.3.2.2. Ozone (O3)

Ozone is a secondary pollutant as such its atmospheric concentration relies on prevailing meteorology and 
concentration of its precursors—NOX (NO + NO2), volatile organic compounds (VOCs), and CO. Majority of 
tropospheric ozone is formed when NOX, VOCs, and CO react in the presence of sunlight. The prominent sources 
of these precursors are biomass burning, traffic emission, industrial activities, lightening NOX, and stratospheric 
injection (Levelt et al., 2006).

Two satellite data products are available for total column ozone—TOMS and differential optical absorption 
spectroscopy (DOAS). OMI total column ozone data are retrieved using both the TOMS V8 retrieval algorithm 
developed by NASA (Balis et al., 2007) and a DOAS technique developed by Royal Netherlands Meteorological 
Institute (KNMI) (Veefkind et al., 2006). Both algorithms provide OMI ozone data of the same quality as TOMS 
ozone data in order to ensure continuity of ozone trends detected to date. Comparing total ozone products from 
TOMS V7 retrieval with thirty ground-based station, McPeters and Labow (1996) found that the TOMS ozone 
data compare within ±1% of ground-based measurements.

2.3.2.3. Carbon Monoxide (CO)

The atmospheric sources of CO, an odorless, tasteless, and colorless gas, are combustion of fossil fuel, biomass 
burning, and oxidation of methane and biogenic hydrocarbons (Holloway et al., 2000). Monthly mean column 
burden of CO from MERRA-2 was used to assess the atmospheric levels of CO in this study. MERRA project 
focuses on historical climate analyses for both weather and climate timescales. This reanalysis covers the period 
from 1980 to present, continuing as an ongoing climate analysis as resources allow. Several studies, (Cao 
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et al. (2021); Shikwambana (2019); Shikwambana and Kganyago (2021)), have used MERRA2 products such as 
SO2, BC, and CO to investigate the atmospheric concentrations of pollutants both on local and regional scales.

2.3.2.4. Sulfur Dioxide (SO2)

SO2 is the predominant anthropogenic sulfur-containing air pollutant emitted from the combustion of fossil fuels, 
which generates mainly SO2 together with some fraction of other sulfur compounds like SO3, H2SO4, and H2S. 
The amount of SO2 emitted from the combustion of a fossil fuel type depends on the sulfur content of the fuel. 
Mixing ratios in continental background air range from 20 ppt to 1 ppb. The lifetime of SO2 is around 1 week on 
average (Seinfeld & Pandis, 2016).

Hourly averaged SO2 surface mass concentration (M2T1NXAERV5.12.4) data were used in the analyses under-
taken in this study. These were averaged to monthly values to estimate the monthly anomaly of SO2 over the 
subregion and the seven epicenters.

2.4. Statistical Analyses

2.4.1. Anomalies

The monthly anomalies of the parameters are computed as the difference between the monthly values for year 
2020 and monthly average of the reference years (2017–2019). The mean annual anomaly is taken as the mean of 
the monthly anomalies. Percentage monthly anomaly is calculated as follows:

Monthly anomaly (%) =

(

monthly values for 2020 − averagemonthly values of ref . years

monthly value for 2020

)

× 100 (1)

Anomalies for the months of January and February were excluded from the computation of the mean annual 
anomalies for all the pollutants because the various restrictions in all the epicenters considered started in March. 
Anomalies for particulates (AOD) and gaseous pollutants were first assessed and discussed over the subregion 
and then on the finer level of the epicenters.

2.4.2. Binning of Angstrom Exponent

To examine and classify the size distribution of atmospheric aerosol in the year 2020 in relation to the reference 
years, bins of the 30 min averages of AE, AE470-870, were created. The binning was created for 2020 and the aver-
age of the reference years. For each data sets, thirty (30) bins were created for values of AE470-870 between 0 and 2.

2.4.3. Correlation, Mean Bias Error, and Standard Deviation

Apart from anomaly, other statistical indicators used in these analyses are defined as follows:

𝑟𝑟 =

∑𝑛𝑛

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
) (

𝑦𝑦𝑖𝑖 − 𝑦𝑦
)

√

(

∑𝑛𝑛

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
)2
)(

∑𝑛𝑛

𝑖𝑖=1

(

𝑦𝑦𝑖𝑖 − 𝑦𝑦
)2
) (2)

SD =

√

∑

(𝑥𝑥 − 𝑥𝑥)
2

𝑛𝑛 − 1
 (3)

MBE = 1
�
∑�

�=1
(�� − ��) (4)

where r is the correlation coefficient, SD is the standard deviation, MBE is the mean bias error, n is the number 
of terms, x and y are the two pairs of data, and 𝐴𝐴 𝑥𝑥 and 𝐴𝐴 𝑦𝑦 are the mean of x and y.

3. Results and Discussion
The comparison of the various pollutants in 2020 relative to the average of reference years was done at both the 
regional (West Africa) and epicenter levels. The impact of the lockdowns and restrictions on the atmospheric 
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concentration of each pollutant at both local and regional levels was subse-
quently discussed on the background that the restrictions were more effective 
in some epicenters than others.

3.1. Aerosol Parameters

3.1.1. AOD

Due to paucity of ground-based measurement, MODIS AOD data were 
used to validate and assess the representativeness, relative consistency, and 
accuracy of the MERRA2 AOD parameter used in this study. Area-averaged 
daily values of combined dark target and deep blue AOD (550 nm) for land 
and sea are used for the validation. MERRA2 AOD parameters are used for 
the intended analyses in this study because MODIS aerosol parameter is not 
available for Center Region (Cameroon), one of the seven epicenters included 
in this study.

Table  3 gives the statistical description of the comparison of the two AOD data sets over the West Africa 
region and at the epicenters. Monthly average AOD for the four years, 2017–2020, considered in this study are 
included in the statistical analyses of the comparison. The comparison of AOD (550 nm) from MODIS Terra 
and MERRA-2 shows high correlation (r) levels (0.76 ≤ r ≤ 0.98) of the two data sets at the epicenters and over 
the subregion. The biases in the two data sets in all the epicenters but one and over the subregion fall within 
the range of expected bias set by MODIS over the land (0.05 ± 0.15 × AOD). The MBEand absolute bias were 
calculated to assess and quantify the difference between the two data sets. The two parameters which are from two 
different sources with very different methodologies give data sets that are highly comparable. AOD estimation 
by MODIS is slightly higher than that from MERRA2 reanalysis across all the epicenters and over the region 
except at Bamako. However, the two data are highly correlated across the epicenters and over the region. As such, 
MERRA2 AOD data set used in these analyses is a good representation of the aerosol loading in the study sites.

3.1.1.1. Regional AOD Anomaly

Figure 2 shows the spatial and temporal variation of the AOD anomalies over the West African subregion. The 
spatial plot in Figure 2a, the annual average of the anomaly over the region, shows a contrasting distribution of the 
anomalies over the subregion. The monthly variation of the anomaly presented in Figure 2b shows a decrease of 
10%–18% in aerosol loading (AOD) during the periods of lockdown and restrictions indicated by the red boxes. 
These two boxes indicate the first and second waves of the pandemic in the region. The average annual anomaly 
of AOD in the region is −10.1% ± 15.4%. This implies that relative to the reference years, there was a marked 
reduction in aerosol loading in the year 2020, especially during the lockdown periods which could be attributed 

Location r MBE Abs. bias (%)

Abidjan 0.94 0.093 21.2

Accra and Ashanti region 0.91 0.002 2.7

Bamako 0.76 −0.025 28.0

Center region - -

Kadiogo 0.87 0.019 3.5

Lagos 0.96 0.090 18.0

Touba 0.98 0.038 14.1

Regional (West Africa) 0.91 0.063 13.2

Table 3 
Statistical Analyses of the Comparison of Moderate Resolution Imaging 
Spectroradiometer (MODIS) and MERRA2 Aerosol Optical Depth Products

Figure 2. Variation of aerosol optical depth (AOD) anomaly over the West African sub–region (a) spatial variation and (b) temporal (monthly) variation. The red boxes 
show the period of restrictions during the first and second waves across the subregion. The spatial plot shows the annual average AOD over the study region containing 
the epicenters.
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to reduced anthropogenic activities in 2020. In Section 3.1.1.2, the anomalies in AOD will be examined at a high 
resolution over the epicenters.

3.1.1.2. AOD Anomalies Over Epicenters

As presented in Table 1, there are overlaps in the period of restrictions and lockdowns across the epicenters. The 
effectiveness and level of compliance with the restrictions vary from one epicenter to the other. As such, varying 
degrees of impacts on the atmospheric aerosol loadings were quantified over the epicenters. Across the seven 
epicenters, there were marked consequential reductions in aerosol loading (AOD) with the most and least annual 
mean percentage AOD anomaly of −19.2% ± 27.9% and −5.5% ± 24.1% over Bamako and Abidjan, respectively. 
The percentage annual mean (±SD) anomalies in AOD over Lagos, Touba, Ashanti region, Kadiogo, and Center 
Region are −6.7% ± 21.0%, −8.2% ± 9.8%, −8.7% ± 28.3%, −10.4% ± 29.2%, and −10.0% ± 15.7%, respec-
tively. The high reduction in AOD level in the month of December over the subregion and the epicenters could be 
attributable to the very low-key celebrations of Christmas and New Year in 2020 as the celebrations were without 
the usual pomp and pageantry. Figure 3 presents the temporal (monthly) variation of the percentage anomalies in 
AOD at the seven (7) epicenters.

3.1.2. Angstrom Exponent

The binning of 30 min averages of AE470-870, an aerosol parameter to infer the size distribution of aerosols in a 
cluster, in the year 2020 and average for the reference years over the seven epicenters is presented in Figure 4. 
Considering the count of the coarsest particle cluster (AE470-870 < 0.6), a comparison of the two sets of data was 
carried out. Although at varying degrees, during the lockdown, there were more days of coarse particle domi-
nated aerosol clusters over the epicenters. This could be attributed to the significant reduction of human activities 
during the period of restrictions and lockdowns. As presented in Figures 4a–4g, the total count in the red boxes 
representing the coarsest particle cluster are more in year 2020 compared to the average of the reference years. 
Table 4 presents a quantitative description of the statistics of the counts and anomalies in the bins of the coars-
est aerosol cluster (AE ≤ 0.6) shown in Figure 4. These analyses show that there were more coarse particles in 
the atmosphere in year 2020 than in the reference years which could invariably impact the nature of interaction 
between aerosol and incoming shortwave radiation, thereby affecting the Earth's energy budget. Studies have 
found that the radiative parameters of aerosols are strongly dependent on the size of the particles with coarse 
particles suggested to absorb more radiation causing more warming (Tegen & Lacis, 1996).

As hypothesized, across all the epicenters except Kadiogo (Burkina Faso), mean percentage anomaly in AE 
(AE ≤ 0.6) ranges between 3% and 28% (see Table 4), indicating a dominance of coarse aerosol particles in the 
atmosphere in 2020 compared to the reference years. The level of compliance with the lockdown and various 
restrictions could be responsible for the peculiarity of the AE anomaly observed in Kadiogo.

Figure 3. Temporal variation of percentage monthly anomalies of aerosol optical depth over the epicenters. The anomalies for January and February have been 
excluded from the estimation of the average anomalies for the subregion and the epicenters.
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Figure 4. Histogram of the binned angstrom exponent at the epicenters with the red boxes showing the coarsest aerosol 
bins; (h) monthly anomaly of single scattering albedo over West Africa. a(i)–g(i) shows bins for the subregions (average of 
2017–2019) and a (ii)–g(ii) shows bins for 2020.
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Figure 4. (Continued)
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3.1.3. Single Scattering Albedo

The monthly anomaly of SSA (500 nm) was computed to quantify the variation in the absorption properties 
of dominant aerosol cluster in year 2020 relative to the reference years over the subregion. For each bin, 
a positive anomaly indicates that more coarse particles were in the atmosphere in 2020 than there were in 
the reference years. The values in the last column are the means of the anomalies of the six bins. SSA is an 
aerosol optical property that could be influenced to a large extent by the size distribution, nature, and source 
of the aerosols.

The percentage anomalies in SSA are negative in all the months except July, lying between −0.1% and −0.8%, 
which implies the dominance of a slightly more absorbing aerosol cluster (see Figure 4h). A small anomaly in 
SSA could cause significant change in aerosol radiative forcing potential depending on the amount and position 
of cloud cover (above or below aerosol) and surface albedo (Choi & Chung, 2014; Chung, 2012). The slightly 
enhanced absorbing tendency of dominant aerosol clusters in 2020 compared to the reference years could be 
attributed to the dominance of coarse particles in the atmosphere in 2020.

3.2. Gaseous Pollutants

Similar to the analyses of anomalies carried out for aerosols, atmospheric concentrations of four gaseous pollut-
ants were assessed for 2020 against the reference years (2017–2019). See Section 2.3.2 for details and sources of 
the gaseous pollutants included in these analyses.

AE bins 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6

Abidjan 2017–19 0 6 1,006 857 1,073 1,181

2020 0 207 987 1,305 607 1,200

Anomaly (%) 0 97.1 −1.9 34.3 −76.8 1.6 10.9

Lagos 2017–19 0 171 718 1,203 1,077 907

2020 0 258 1,143 1,079 1,156 995

Anomaly (%) 0 33.7 37.2 −11.5 6.8 8.8 15.0

Accra 2017–19 0 22 534 1,477 971 1,221

2020 8 294 399 1,348 1,444 1,090

100 92.5 −33.8 −9.6 32.8 −12.0 28.3

Bamako 2017–19 14 2,025 2,951 1,377 873 682

2020 229 2,734 1,694 1,275 954 810

93.9 25.9 −74.2 −8.0 8.5 15.8 10.3

Center Region 2017–19 0 3 161 561 782 861

2020 0 114 247 306 876 821

0 97.4 34.8 −83.3 10.7 −4.9 10.9

Kadiogo 2017–19 406 2,225 2,423 1,513 779 517

2020 664 2,514 1,740 957 458 899

38.9 11.5 −39.3 −58.1 −70.1 42.5 −12.4

Touba 2017–19 539 2,144 2,763 1,977 896 283

2020 606 3,379 2,076 1,213 965 670

11.1 36.5 −33.1 −63.0 7.2 57.8 2.7

Note. The bold values are AE bins (bins of Angstrom Exponent).

Table 4 
Statistics of the Angstrom Exponent (AE) Count in the Bins and Percentage Anomaly
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3.2.1. Nitrogen Dioxide (NO2)

3.2.1.1. Anomalies in NO2 Levels Over the Sub–Region

As presented in the spatial plot in Figure  5a, there was marked reduction in the level of atmospheric nitro-
gen dioxide over the subregion. Area-averaged annual anomaly shown in Figure 5a is between 0.5 × 10 14 and 
−3 × 10 14 cm −2 and the mean (±SD) percentage annual anomaly is −4.9% ± 4.9%. The monthly averaged anom-
alies in NO2 levels are negative from January through September, which coincides with the periods of several 
restrictions and lockdown in the subregion (see Table 1). The monthly anomalies during the 9-month period lie 
between 2% and 11% (Figure 5b). With road traffic and other fossil fuel combustion processes being the primary 
source of atmospheric NO2, this reduction could be attributed to drastic reduction or total stoppage, in some areas, 
of traffic flow and industrial activities.

3.2.1.2. Anomalies in NO2 Levels Over Epicenters

The nature and level of anomalies over the epicenters varies from one center to the other which is arguably due 
to the extent, level, and compliance with the restriction and lockdowns. There were also periods of intermittent 
relaxation of restrictions in some cities that could have influenced the variation of the anomalies. The mean annual 
anomaly is negative in four of the seven epicenters and ranges between −1.7% ± 13.0% and −13.9% ± 14.0% (see 
Figure 6). Although the mean annual anomalies are positive in Ashanti Region, Touba, and Abidjan (Figures 6b, 
6c, and 6d), there were at least three months with negative anomaly during the period of restrictions in the three 
epicenters which are indicative of particular times within the several periods of restrictions and lockdowns when 

Figure 5. Variation of anomaly in NO2 levels over the West African subregion (a) spatial variation and (b) temporal (monthly) variation.

Figure 6. Temporal anomalies of atmospheric NO2 levels over the epicenters. The anomalies for January and February have been excluded from the estimation of the 
average anomalies for the subregion and the epicenters.
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there was the most compliance among the populace. In Touba, for instance, the mean anomaly for the four (4) 
months with negative anomaly is −8.3% ± 5.4% (Figure 6c).

3.2.2. Carbon Monoxide (CO)

3.2.2.1. Anomalies in CO Levels Over the Subregion

There is a positive annual mean anomaly (1.0 ± 3.2%) in the level of atmospheric CO over the subregion in 
2020 relative to the reference years. However, as shown in the spatial plot of the anomaly in level of CO over the 
subregion (Figure 7a), there is a slight decrease in the annual mean anomaly around the coastal countries in the 
subregion—Lagos, Abidjan, and Accra which could be attributed to a decrease in the intrusion of transboundary 
emissions from biomass burning and reduced traffic of vessels and ships at the ports. As presented in Figure 7b, 
there are some months with negative anomalies in CO levels in the atmosphere in 2020 relative to the reference 
years. These negative anomalies would be observed on a higher resolution over the epicenters in Section 3.2.2.2. 
Overall, the restrictions and lockdown did not bring about a decrease in CO levels in the cities but rather an 
increase that could be due to increased biomass burning, waste/refuse burning, and more domestic cooking using 
solid fuels rather than eating out during the period of restrictions.

3.2.2.2. Anomalies in CO Levels Over Epicenters

Annual mean anomalies are positive in the epicenters except Abidjan where it is −0.5% ± 6.6% (Figure 8) which 
implies an increase in atmospheric levels of CO in 2020 relative to the reference years. Even in Abidjan where 
the anomaly is negative, between the months of March and December while the restriction lasted, there were 
seven months of positive anomaly (Figure 8d). This shows that there were months of elevated concentrations of 
atmospheric CO in all the epicenters, including Abidjan during the lockdown period.

3.2.3. Sulfur Dioxide (SO2)

3.2.3.1. Anomalies in SO2 Levels Over the Subregion

But for the area around the Sahelian belt, there is a marked reduction in the level of atmospheric SO2 in the 
subregion, especially over the cities and urban dwellings (Figure 9a). The decrease in atmospheric levels of SO2 
around the cities is similar to the trend observed for NO2, which is expected as both pollutants are majorly from 
traffic and industrial processes. As shown in Figure 8b, the anomalies are negative in March, April, July, August, 
September, and December, six of the ten months of restrictions and lockdowns in the region. During these six 
months, the mean anomaly in atmospheric SO2 level over the subregion is −7.6% ± 10.5%.

3.2.3.2. Anomalies in SO2 Levels Over Epicenters

Across all the epicenters, there is an unequivocal reduction in the levels of atmospheric SO2 between March and 
December 2020 compared to the reference years. The highest (−17.3% ± 13.9%) and lowest (−2.2% ± 12.8%) 

Figure 7. Variation of CO anomaly over the West African subregion (a) spatial variation and (b) temporal (monthly) variation.
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Figure 8. Temporal anomalies of atmospheric CO over the epicenters. The anomalies for January and February have been excluded from the estimation of the average 
anomalies for the subregion and the epicenters.
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reduction were observed in Center Region and Touba, respectively (see Figure 10). The reduction in SO2 levels 
are more pronounced during the second waves of the pandemic in all the seven epicenters. This could be due 
to the fact that there was more compliance with the restriction and lockdown during the second wave of the 
pandemic. The average anomaly over the seven epicenters during the lockdown periods is −10.4% ± 4.6%. This 
notable and similar trend in the reduction of SO2 levels over the cities and dwelling areas is attributable to drastic 
reduction in traffic movement and industrial activities occasioned by the restrictions because SO2 is a primary 
pollutant from the combustion of sulfur-containing fossil fuels (Sun et al., 2016).

3.2.4. Ozone (O3)

Ozone is a secondary pollutant whose level in the atmosphere is significantly impacted by nonlinear chemical 
interactions between VOCs and NOX (NO + NO2), a reaction controlled to a large extent by prevailing mesos-
cale and urban canopy circulation patterns (Marlier et al., 2016; Venter et al., 2020). Ozone titration effect and 
photochemical ozone formation could significantly affect the level of atmospheric ozone depending on the level 
of NO2 and NO available in the atmosphere (Seinfeld & Pandis, 2016).

3.2.4.1. Anomalies in Ozone Levels Over the Subregion

As shown in Figure 11a, across the subregion and over the epicenters, there is a slight increase in the levels of 
atmospheric ozone. The anomaly in area-averaged ozone levels over the subregion is 1.2% ± 1.2% and the trend 
shows a possible impact of prevailing meteorology on the behavior of atmospheric ozone. The warming caused 
by the dominance of coarse aerosol cluster (See Section 3.1.2) could have influenced the observed increase in 
atmospheric ozone. The bimodal peak of the anomaly coincides with the onset and peak of the dry season when 
ambient temperature is always at the highest annually (see Figure 11b). The anomaly in ozone level over the 

Figure 9. Variation of SO2 anomaly over the West African subregion (a) spatial variation and (b) temporal (monthly) variation.

Figure 10. Temporal anomalies of atmospheric SO2 over the epicenters. The anomalies for January and February have been excluded from the estimation of the 
average anomalies for the subregion and the epicenters.
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subregion is low during the West African Monsoon, a period characterized by high precipitation and relatively 
low ambient temperature.

3.2.4.2. Anomalies in Ozone Levels Over Epicenters

For most of the months of the year, the anomaly is positive in all the seven epicenters indicating an increase in the 
mean monthlylevels of atmospheric ozone in 2020 relative to the reference years (see Figure 12). The magnitude 
of increase is more for cities further north of the sub-regionas against more coastal cities. All of these variations 
including the bi-modalanomaly discussed in section 3.2.4.1 underpin the possible influence of prevailing mete-
orology on the anomalies in atmospheric concentration of ozone in 2020 relative to the reference years over the 
sub-region.

4. Conclusions
The aim of the study was to examine the impact of government restrictions on human and vehicular movement 
during the COVID-19 pandemic in 2020 on the AQ in selected epicenters in the West African subregion over 
the subregion. The study resorted to using satellite retrievals and reanalysis due to the nonavailability of reliable 
long-term ground-based AQ data. Findings from the study reveal that there was significant reduction in atmos-
pheric aerosol (AOD), nitrogen dioxide (NO2), and sulfur dioxide (SO2) over the subregion and almost all the 
epicenters in 2020 compared to the reference years. A remarkable shift in the size distribution of aerosol toward 
the coarser cluster was also observed. There were slight increases in the atmospheric levels of carbon monoxide 
and ozone in the same period. The increase in CO levels could be due to increased agricultural burning, waste 
(domestic and municipal) burning, and increased domestic cooking using solid fuels during the lockdown period 

Figure 11. Variation of Ozone anomaly over the West African subregion (a) spatial variation and (b) temporal (monthly) variation.

Figure 12. Temporal anomalies of atmospheric ozone over the epicenters. The anomalies for January and February have been excluded from the estimation of the 
average anomalies for the subregion and the epicenters.
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when people were confined to their local residential areas. The anomalies in ozone could be due to a number 
of factors including meteorology, especially temperature and atmospheric photochemistry. These suggested that 
although traffic and industrial activities could be the prominent sources of air pollution in the major cities in the 
subregion, there are other sources that could also contribute significantly to AQ problems. As such, policy makers 
should realize that a robust AQ management program is needed to significantly improve AQ in these urban areas.

Although most of the findings from this study are in agreement with those obtained in similar studies carried 
out across most European and US cities, the elevated level of CO observed over the subregion and most of the 
epicenters is a departure from most of these studies. Although ground-based measurement would be the best 
approach to assess these unique local CO levels, knowledge of the local terrain suggests that these elevated level 
of CO could be from domestic waste burning, domestic cooking using solid fuels, and biomass burning from 
agricultural practices.
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