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Abstract

Motivation: Minimizers are methods to sample k-mers from a string, with the guarantee that similar set of k-mers
will be chosen on similar strings. It is parameterized by the k-mer length k, a window length w and an order on the k-
mers. Minimizers are used in a large number of softwares and pipelines to improve computation efficiency and de-
crease memory usage. Despite the method’s popularity, many theoretical questions regarding its performance re-
main open. The core metric for measuring performance of a minimizer is the density, which measures the sparsity
of sampled k-mers. The theoretical optimal density for a minimizer is 1=w , provably not achievable in general. For
given k and w, little is known about asymptotically optimal minimizers, that is minimizers with density Oð1=w Þ.
Results: We derive a necessary and sufficient condition for existence of asymptotically optimal minimizers. We also
provide a randomized algorithm, called the Miniception, to design minimizers with the best theoretical guarantee to
date on density in practical scenarios. Constructing and using the Miniception is as easy as constructing and using a
random minimizer, which allows the design of efficient minimizers that scale to the values of k and w used in current
bioinformatics software programs.

Availability and implementation: Reference implementation of the Miniception and the codes for analysis can be
found at https://github.com/kingsford-group/miniception.

Contact: gmarcais@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The minimizer (Roberts et al., 2004a, b; Schleimer et al., 2003), also
known as winnowing, is a method to sample positions or k-mers
(substrings of length k) from a long string. Given two strings that
share long enough exact substrings, the minimizer selects the same
k-mers in the identical substrings, making it suitable to quickly esti-
mate how similar two strings are, and to quickly locate shared sub-
strings. The minimizers method is very versatile and is used in
various ways in many bioinformatics programs [see the reviews
(Marçais et al., 2019; Rowe, 2019) for examples] to reduce the total
computation cost or the memory usage.

A minimizer has three parameters: ðw; k;OÞ. k is the length of the
k-mers of interest while w is the length of the window: a least one k-
mer in any window of w consecutive k-mers, or equivalently in any sub-
string of length wþ k� 1, must be selected. Finally, O is a total order
(i.e. a permutation) of all the k-mers, and it determines how the k-mers
are selected: in each window the minimizer selects the minimum k-mer
according to the order O (hence the name minimizer), and in case of
multiple minimum k-mers, the leftmost one is selected. The main meas-
ure of performance for minimizer is the density: the expected number of
positions selected divided by the length of the string. In general, mini-
mizers with lower densities are desirable as fewer selected positions
imply a further reduction in the run time or memory usage of applica-
tions using minimizers, while preserving the guarantee that for similar
strings the same k-mers are selected. For given parameters w and k, the
choice of the orderO changes the expected density.

For example, a long-read aligner like Minimap2 (Li and Birol,
2018) stores the positions of every selected k-mers of a reference

genome, to find exact match anchors for seed-and-extent alignment.
The parameters k and w are constrained by the required sensitivity
of alignment. Any choice of order O provides the same guarantees,
but an order with a lower density reduces the size of the storage and
computation time by lowering the number of anchors to consider.

The density of a minimizer is lower bounded by 1=w, where
exactly one position per window is selected, and upper bounded by
1, where every position is selected. A minimizer with a density of
1=w may not exist for every choice of w and k, and how to find an
order O with the smallest possible density for any w and k efficiently
is still an open question. We are interested in constructing minimiz-
ers with density of Oð1=wÞ—that is, within constant factor of opti-
mal density—and avoid minimizers with density of Xð1Þ.

Schleimer et al. gave two results about the density of minimizers:
under some simplifying assumptions, (i) the expected density
obtained by a randomly chosen order on a random input string is
2=ðwþ 1Þ and (ii) the density is lower bounded by 1:5=ðwþ 1Þ.
Although these estimates are useful in practice, they are dependent
on some hidden assumptions and do not represent the behavior of
minimizers in all cases.

In previous publications we refined these results in multiple ways
by looking at the asymptotic behavior of minimizers, by considering
the cases where k is fixed and w� k and where w is fixed and
k� w. First, when w is fixed and k� w, we gave a construction of
a minimizers with density of 1=wþOðke�akÞ, for some a > 0
(Marçais et al., 2018). That is, density arbitrarily close to the opti-
mal 1=w is achievable for large values of k. The apparent contradic-
tion between this result and Schleimer’s lower bound stems from a
hidden assumption: k should not be too large compared to w.
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Second, we showed that when k is fixed and w� k, the density of
any minimizer is Xð1Þ. Hence, a density of 2=ðwþ 1Þ, or even
Oð1=wÞ, as proposed for a random order does not apply for large w
and fixed k (Marçais et al., 2018). In other words, this original dens-
ity estimate relies on a hidden assumption: k should not be too small
compared to w.

Examples of minimizers with density <2=ðwþ 1Þ exist in prac-
tice, but these examples are one-off construction for a particular
choice of parameters w and k (Marçais et al., 2017). Methods to
construct minimizers that have density lower than Xð1Þ and work
for any w exist: a density of Oð ffiffiffiffiw

p
=wÞ is obtained by Marçais et al.

and Zheng et al. improves the result to OðlnðwÞ=wÞ. But neither of
them reaches the desired asymptotically optimal Oð1=wÞ density.
This naturally raises the question on whether a minimizer with dens-
ity 2=ðwþ 1Þ or Oð1=wÞ is possible assuming that both parameters
k and w can be arbitrarily large.

This paper has three main contributions. First, in Section 2.2, we
prove that as w grows asymptotically, the condition that log rðwÞ �
k ¼ Oð1Þ is both a necessary and sufficient condition for the exist-
ence of minimizers with density of Oð1=wÞ. In other words, to con-
struct asymptotically optimal minimizers, it is sufficient and
necessary that the length of the k-mers grows at least as fast as the
logarithm of the window size.

Second, in Section 2.3, by slightly strengthening the constraint
on k—i.e. k � ð3þ �Þ log rðwÞ, for any fixed � > 0—we show that a
random minimizer has expected density of 2=ðwþ 1Þ þ oð1=wÞ.
This theorem is a direct extension of the result by Schleimer et al. as
it removes any hidden assumptions and gives a sufficient condition
for the result to hold.

Third, in Section 2.4, we give a construction of minimizers,
called the Miniception, with expected density on a random string of
1:67=wþ oð1=wÞ when k � w. This is an example of minimizers
with guaranteed density < 2=ðwþ 1Þ that works for infinitely
many w and k, not just an ad hoc example working for one or a
small number of parameters w and k. This is also the first example
of a family of minimizers with guaranteed expected density <
2=ðwþ 1Þ that works when k � w instead of the less practical case
of k� w. Moreover, unlike other methods with low density in prac-
tice (DeBlasio et al., 2019; Ekim et al., 2020; Orenstein et al.,
2016), the Miniception does not require the use of expensive heuris-
tics to precompute and store a large set of k-mers. Selecting k-mers
with the Miniception is as efficient as a selecting k-mers with a ran-
dom minimizer using a hash function, and does not require any add-
itional storage.

2 Materials and Methods

2.1 Preliminary
In this section, we restate several theorems from existing literature
that are useful for later sections. Most definitions follow existing lit-
eratures (Roberts et al., 2004b; Schleimer et al., 2003). In the fol-
lowing, R ¼ f0; 1; . . . ;r� 1g is an alphabet (mapped to integers) of
size r and we assume that r � 2 and is fixed. If S 2 R� is a string, we
use jSj to denote the length of S.

Definition 1 (Minimizer and Windows). A ‘minimizer’ is characterized

by ðw; k;OÞ where w and k are integers and O is a complete order of Rk.

A ‘window’ is a string of length ðwþ k� 1Þ, consisting of exactly w

overlapping k-mers. Given a window as input, the minimizer outputs the

location of the smallest k-mer according to O, breaking ties by preferring

leftmost k-mer.

When O is the dictionary order, it is called a lexicographic min-
imizer. A minimizer created by randomly choosing a permutation of
Rk uniformly over all possible permutations is called a random min-
imizer. (See Fig. 1 for an illustration of these and the following
concepts.)

Definition 2 (Density). Given a string S 2 R� and a minimizer, a position

in S is selected if the minimizer picks the k-mer at that position in any

window of w consecutive k-mers. The specific density of a minimizer on

S is the number of selected positions divided by the total number of k-

mers in S. The density of a minimizer is the expected specific density on

a sufficiently long random string.

Note that the density is calculated by expectation over random
strings and is independent from S. For the ease of comparison, we
will also use the concept of contexts and density factors:

Definition 3 (Contexts and Charged Contexts). A ‘context’ of S is a sub-

string of length ðwþ kÞ, or equivalently, two overlapping windows. The

minimizer is applied to both the first and last windows, and a context is

‘charged’ if different positions are picked.

Definition 4 (Density Factor). The density factor of a minimizer is its

density multiplied by ðwþ 1Þ. Intuitively, this is the expected number of

selected locations in a random context.

The idea for charged contexts is to attribute picked k-mers to the
window that first picked it (it is charged for picking a new k-mer).
To determine whether a window is actually picking a new k-mer, it
is sufficient to look back exactly one window due to the fact that
minimizers pick k-mers in a forward manner, and the context is the
union of the two windows necessary to determine whether this hap-
pens. This means counting picked k-mers in a string is equivalent to
counting charged contexts (in other words, only charged contexts
contribute to the density). Consequently, the (non-specific) density
of a minimizer equals the probability that a context drawn from uni-
form distribution over Rwþk is a charged one.

We denote by W ¼ Rwþk�1 the set of all possible windows and
C ¼ Rwþk the set of all contexts. The following lemma gives a slight-
ly stronger condition on the positions of selected k-mers in a charged
context. A similar lemma was proved by Schleimer et al. (2003) and
a proof is given here for clarity.

Lemma 1 (Charged Contexts of Minimizers). For a minimizer, a context

is charged if and only if the minimizer picks either the first k-mer of the

first window or last k-mer in the last window.

Proof. On one hand, if the minimizer picks either the first or the last k-

mer in the context, it cannot be picked in both windows. On the other

hand, if the minimizer does not pick either the first or the last k-mer, it

Fig. 1. The string S is broken into k-mers. In each window (w consecutive k-mers),

the position of the lowest (smallest according to O) k-mer is selected. The gray con-

text (two consecutive windows) is an example of a charged window because the first

and second windows selected different positions. There are a total of three charged

contexts in this example
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will pick the same k-mer in both windows. Assuming otherwise, both

picked k-mers are in both window so this means one of them is not min-

imal, leading to a contradiction. h

A related concept is universal hitting sets (UHS) (Orenstein
et al., 2016), which is central to the analysis of minimizers (Ekim
et al., 2020; Marçais et al., 2017, 2018).

Definition 5 (Universal Hitting Sets). Assume U � Rk. If U intersects

with every w consecutive k-mers (or equivalently, the set of k-mers in

every S 2Ww;k), it is a UHS over k-mers with path length w and relative

size jUj=rk.

Lemma 2 (Minimal Decycling Sets) (Mykkeltveit, 1972). Any UHS over

k-mers has relative size at least 1=k� oð1=kÞ.

2.2 Condition for asymptotically optimal minimizers
In this section, culminating with Theorem 2, we prove that to have
asymptotically optimal minimizers (i.e. minimizers with density of
Oð1=wÞ), the value k (for the k-mers) must be sufficiently large com-
pared to the length w of the windows, and that this condition is ne-
cessary and sufficient. To be more precise, we treat k as a function
of w, and study the density as w grows to infinity. We show that the
lexicographic minimizers are asymptotically optimal provided that k
is large enough: log rðwÞ � k ¼ Oð1Þ. This result may be surprising
as in practice the lexicographic minimizers have high density
(Marçais et al., 2017; Roberts et al., 2004a; and see Section 4). One
interpretation of Theorem 2 is that asymptotically, all minimizers
behave the same regarding density.

2.2.1 Minimizers with exceedingly small k

If k is exceedingly small, in the sense that k does not even grow as
fast as the logarithm of w—i.e. log rðwÞ � k!1 as w grows—no
minimizer will obtain density Oð1=wÞ. To see this, for any order O,
let y be the smallest of all k-mers. Any context starting with y is
charged, and the proportion of such context is r�k. The density cal-
culated from these contexts only is already > Hð1=wÞ, as
wr�k ¼ r log rðwÞ�k !1.

For this reason, in the following we are only interested in the
case where k is large enough. That is, there exists a fixed constant c
such that k � log rðwÞ � c for all sufficiently large w.

2.2.2 Lexicographic minimizers

We first prove the special case that the lexicographic minimizer
achieves Oð1=wÞ density with parameter k ¼ b log rðw=2Þc � 2.
Recall W ¼ Rkþw�1 is the set of all windows, and C ¼ Rkþw is the
set of all contexts. Let z 2W be a window, f ðzÞ : W !
f0;1; . . . ;w� 1g be the minimizer function, and C � C be the set of
charged contexts for this minimizer. Let Wþ ¼ fz 2Wjf ðzÞ ¼ 0g,
the set of windows where the minimizer picks the first k-mer, and
similarly W� ¼ fz 2Wjf ðzÞ ¼ w� 1g. By Lemma 1, we know
jCj 	 rðjWþj þ jW�jÞ.

We now use the notion to denote any non-zero character of R,
and 0d to denote d consecutive zeroes. Let Aþ� be the set of windows
whose first k-mer is 0k, and for 1 	 i 	 k, let
Aþi ¼ fz 2Wjz ¼ 0i�1 
 
 
 ; f ðzÞ ¼ 0g, that is, the set of windows that
starts with exactly i – 1 zeros and have the minimizer function pick
the first k-mer. All Aþi and Aþ are mutually disjoint. Since the min-
imizer always pick 0k at the start of the window, we have
Wþ ¼ Aþ� [ [k

i¼1Aþi .

Lemma 3 For 1 	 i 	 k; Aþi � Bþi , where Bþi ¼ fz 2Wjz ¼ 0i�1st;

jsj ¼ w� 1; jtj ¼ k� i; 0i 62 sg, that is, the set of windows that starts

with 0i�1 and does not contain 0i in the next w�1 bases.

Proof. We need to show that if a window z starts with 0i�1 and is not in

Bþi ; f ðzÞ 6¼ 0. As z 62 Bþi , there is a stretch of 0i in z before the last k�i

characters. This means that there is a k-mer of form 0i 
 
 
 in z, and since

the first k-mer is of form 0i�1 
 
 
, the minimizer will never pick the first

k-mer. h

In our previous paper (Zheng et al., 2020), we proved that.

Lemma 4 The probability that a random string of length ‘ does not con-

tain 0d anywhere is at most 3ð1� 1=rdþ1Þ‘.

Setting ‘ ¼ w� 1 and d¼ i and noting there are rk�i choices for
t in Bi, we know jBþi j 	 3rwþk�ið1� 1=riþ1Þw�1 for every i. This is
sufficient to prove the following:

Lemma 5 jWþj ¼ OðrwÞ.

Proof. Let bi ¼ 3rwþk�ið1� 1=riþ1Þw�1, combined with the fact that
jAþ� j ¼ rw�1, we know jWþj 	 rw�1 þ

Pk
i¼1 bi. It remains to bound

the summation term.
We next prove bi > 2bi�1 for 2 	 i 	 k:

bi=bi�1 ¼
3rwþk�ið1� 1=riþ1Þw�1

3rwþk�iþ1ð1� 1=riÞw�1

¼ 1

r
1þ r� 1

riþ1 � r

� �w�1

>
1

r
1þ w� 1

riþ1 � r

� �
>

w

riþ2
:

Note that we also use the fact ð1þ xÞt > 1þ xt and r� 1 � 1 in
the last line. The right-hand side is minimum when i¼k. By our
choice of k, rkþ2 < w=2, so the term is lower bounded by 2.

This implies
Pk

i¼1 bi < 2bk, and since bk ¼ OðrwÞ, we have
jWþj ¼OðrwÞ. h

The bound for jW�j is computed similarly. It is different from
Wþ as in case of ties for the minimal k-mer, the leftmost one is
picked. Hence, we define W‡ as the set of windows such that the
last k-mer is one of the minimal k-mers in the window. We have
W� �W‡, as the last k-mer needs to be the minimal, with no ties,
for the minimizer to pick it.

Similarly, we define A�� as the set of windows that ends with 0k.
For 1 	 i 	 k, we define A�i ¼ fz 2W‡jz¼ s0i�1t; jsj ¼w� 1;
jtj ¼ k� ig. This is the set of windows whose last k-mer starts with
0k�1 while satisfying the condition for W‡. Again, A�� and all A�i are
mutually disjoint, and we have W‡ ¼ A�� [[k

i¼1A�i . There is an
analogous lemma for bounding jA�i j:

Lemma 6 For 1 	 i 	 k; A�i � B�i , where B�i ¼ fz 2Wjz ¼ s0i�1t;

jsj ¼ w� 1; jtj ¼ k� i; 0i 62 sg.

Proof. We need to show that if a window ends with a k-mer of form

0i�1t and contains 0i before last k-mer, it is not in W‡. In that case the

window contains a k-mer of form 0i 
 
 
, which is strictly smaller than the

last k-mer of the form 0i�1 
 
 
, violating the condition of W‡. h

Note that Bþi and B�i have highly similar expressions. In fact, we
can simply bound the size of B�i by bi (defined in the proof of
Lemma 5) using the identical argument. This immediately means
that we have the exactly same bound for jW‡j and jWþj, as A�� also
has the same size as Aþ� .

Theorem 1 The lexicographic minimizer with k0 ¼ b log rðw=2Þc � 2

has density Oð1=wÞ.

Proof. We have jCj 	 rðjWþj þ jW�jÞ 	 rðjWþj þ jW‡jÞ ¼ OðrwÞ,
and the density is jCj=rwþk0 ¼ Oðr�k0 Þ ¼ Oð1=wÞ. h

Next, we extend this result to show that this bound holds for all
k as long as k > log rðwÞ � c for some constant c. As k0 < log rw,
the following lemmas establish our claim for small and large k:
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Lemma 7 The lexicographic minimizer with k ¼ k0 � c for constant c �
0 has density Oð1=wÞ.

Lemma 8 The lexicographic minimizer with k > k0 has density Oð1=wÞ.

We prove both lemmas in Supplementary Section S1. Combining
everything we know, we have the following theorem.

Theorem 2 For k � log rðwÞ � c with constant c, the lexicographic min-

imizer achieves density of Oð1=wÞ. Otherwise, no minimizer can achieve

density of Oð1=wÞ.

2.3 Density of random minimizers
We now study the density of random minimizers. Random minimiz-
ers are of practical and theoretical interest. In practice, implement-
ing a random minimizer is relatively easy using a hash function, and
these minimizers usually have lower density than lexicographic min-
imizers. Consequently, most software programs using minimizers
use a random minimizer. The constant hidden in the big-O notation
of Theorem 2 may also be too large for practical use, while later in
Theorem 3, we guarantee a density of 2=ðwþ 1Þ þ oð1=wÞ with a
slightly more strict constraint over k.

Schleimer et al. (2003) estimated the expected density of random
minimizers to be 2=ðwþ 1Þ with several assumptions on the string
(which do not strictly hold in practice), and our main theorem
(Theorem 3) achieves the same result up to oð1=wÞ with a single ex-
plicit hypothesis between w and k. Combined with our previous
results on connecting UHS to minimizers, we also provide an effi-
cient randomized algorithm to construct compact UHS with 2þ
oð1Þ approximation ratio.

2.3.1 Random minimizers

In the estimation of the expected density for random minimizers,
there are two sources of randomness: (i) the order O on the k-mers is
selected at random among all the permutations of Rk and (ii) the in-
put string is a very long random string with each character chosen
IID. The key tool to this part is the following lemma to control the
number of ‘bad cases’ when a window contains two or more identi-
cal k-mers. Chikhi et al. (2016) proved a similar statement with
slightly different methods.

Lemma 9 For any � > 0, if k > ð3þ �Þ log rw, the probability that a ran-

dom window of w k-mers contains two identical k-mers is oð1=wÞ.

Proof. We start with deriving the probability that two k-mers in fixed

locations i and j are identical in a random window. Without loss of gen-

erality, we assume i< j. If j� i � k, the two k-mers do not share bases,

so given they are both random k-mers independent of each other, the

probability is r�k ¼ 1=w3þ� ¼ oð1=w3Þ.

Otherwise, the two k-mers intersect. We let d ¼ j� i, and mi to
denote ith k-mer of the window. We use x to denote the substring
from the start of mi to the end of mj with length kþd (or equivalent-
ly, the union of mi and mj). If mi ¼ mj, the nth character of mi is
equal to the nth character of mj, meaning xn ¼ xnþd for all
0 	 n < k. This further means that x is a repeating sequence of
period d, so x is uniquely determined by its first d characters and
there are rd possible configurations of x. The probability a random
x satisfies mi ¼ mj is then rd=rkþd ¼ r�k ¼ oð1=w3Þ, which is also
the probability of mi ¼ mj for a random window.

The event that the window contains two identical k-mers is the
union of events of form mi ¼ mj for i< j, and each of these events
happens with probability oð1=w3Þ. Since there are Hðw2Þ events, by
the union bound, the probability that any of them happens is upper
bounded by oð1=wÞ. h

We are now ready to prove the main theorem of this section.

Theorem 3 For k > ð3þ �Þ log rðwþ 1Þ, the expected density of a ran-

dom minimizer is 2=ðwþ 1Þ þ oð1=wÞ.

Proof. Given a context c 2 Rwþk, we use I(c) to denote the event that c

has two identical k-mers. As c has ðwþ 1Þ k-mers, by Lemma 9,

PcðIðcÞÞ ¼ oð1=wÞ assuming that c is a random context.

Recall that a random minimizer means the order O is random-
ized, and C is the set of charged contexts. For any context c that
does not have duplicate k-mers, we claim POðc 2 CÞ ¼ 2=ðwþ 1Þ.
This is because given all k-mers in c are distinct, under the random-
ness of O, each k-mer has probability of exactly 1=ðwþ 1Þ to be the
minimal. By Lemma 1, c 2 C if and only if the first or the last k-mer
is the minimal, and as these two events are mutually exclusive, the
probability of either happening is 2=ðwþ 1Þ. The expected density
of the random minimizer then follows:

Pc;Oðc 2 CÞ ¼ PðIðcÞÞPðc 2 CjIðcÞÞ þ PðIðcÞÞPðc 2 CjIðcÞÞ
	 PðIðcÞÞ þ Pðc 2 CjIðcÞÞ
¼ oð1=wÞ þ 2=ðwþ 1Þ:

h

2.3.2 Approximately optimal UHS

One interesting implication of Theorem 3 is on construction and ap-
proximation of compact UHS. In our previous paper (Zheng et al.,
2020), we proved a connection between UHS and forward schemes.
We restate it with minimizers, as follows.

Theorem 4 For any minimizer ðw; k;OÞ, the set of charged contexts C
over a de Bruijn sequence of order wþ k is a UHS over ðwþ kÞ-mers

with path length w, and with relative size identical to the density of the

minimizer.

This theorem, combined with the density bound derived last sec-
tion, allows efficient construction of approximately optimal UHS.
We say that an algorithm for constructing UHS is efficient if it runs
in polyðw;kÞrwþk time, as the output length of such algorithms is al-
ready at least rwþk.

Theorem 5 For sufficiently large k and for arbitrary w, there exists an ef-

ficient randomized algorithm to generate a ð2þ oð1ÞÞ-approximation of

a minimum size UHS over k-mers with path length w.

We prove this by discussing the case with k>w and k<w separ-
ately, as shown in Supplementary Section S2. This is also the first
known efficient algorithm to achieve constant approximation ratio,
as previous algorithms (DeBlasio et al., 2019; Ekim et al., 2020;
Orenstein et al., 2016) use path cover heuristics with approximation
ratio dependent on w and k.

2.4 The Miniception
In this section, we develop a minimizer (or rather, a distribution of
minimizers) with expected density strictly below 2=ðwþ 1Þ
þoð1=wÞ. The construction works as long as w < xk for some con-
stant x. One other method exists to create minimizers with density
below 2=ðwþ 1Þ (Marçais et al., 2018), but it requires w� k, a
much more restrictive condition.

The name ‘Miniception’ is shorthand for ‘Minimizer Inception’,
a reference to its construction that uses a smaller minimizer to con-
struct a larger minimizer. In the estimation of the expected density
of Miniception minimizers, there are multiple sources of random-
ness: the choice of orders in the small and in the large minimizers,
and the chosen context. The construction and the proof of
Miniception use these sources of randomness to ensure its good per-
formance on average.
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2.4.1 A tale of two UHS

UHS are connected to minimizers in two ways. The first connection,
via the charged context set of a minimizer, is described in Theorem
4. The second and more known connection is via the idea of com-
patible minimizers. Detailed proof of the following properties are
available in Marçais et al. (2017, 2018).

Definition 6 (Compatibility). A minimizer ðw; k;OÞ is said to be compat-

ible with a UHS U, if the path length of U is at most w and for any m 2
U;m0 62 U; m < m0 under O.

Lemma 10 (Properties of Compatible Minimizers). If a minimizer is

compatible with a UHS, (i) any k-mer outside the UHS will never be

picked by the minimizer, and (ii) the relative size of the UHS is an upper

bound to the density of the minimizer.

Theorem 6 Any minimizer ðw; k;OÞ is compatible with the set of

selected k-mers over a de Bruijn sequence of order wþ k.

The Miniception is a way of constructing minimizers that uses
the UHS in both ways. Assume that we have a minimizer
ðw0; k0;O0Þ. By Theorem 4, its charged context set C0 is a UHS over
ðw0 þ k0Þ-mers with path length w0. According to Definition 6 and
Theorem 6, we can construct a minimizer ðw; k;OÞ that is compat-
ible with C0, where k ¼ w0 þ k0; w � w0 and any k-mer in C0 is less
than any k-mer outside C0 according to O.

We assume that the smaller minimizer ðw0;k0;O0Þ is a random
minimizer and that the larger minimizer ðw; k;OÞ is a random com-
patible minimizer (meaning the order of k-mers within C0 is random
in O). The Miniception is formally defined as follows:

Definition 7 (The Miniception). Given parameters w, k and k0, set

w0 ¼ k� k0. The Miniception is a minimizer with parameters w and k

constructed as follows:

• A random minimizer ðw0; k0;O0Þ called the ‘seed’ is generated.

• The set of charged contexts C0 � Rk is calculated from the seed min-

imizer (note that k ¼ w0 þ k0).

• The order O of the resulting minimizer is constructed by generating a

random order within C0, and having every other k-mer compare

larger than any k-mers in C0.

Note that by Lemma 10, the order within k-mers outside C0 does not

matter in constructing O. In the following three sections, we will prove

the following theorem:

Theorem 7 With w¼w0þ1;k¼w0þk0 and k0>ð3þ�Þlogrð2w0þ2Þ, the

expected density of the Miniception is upper bounded by

1:67=wþoð1=wÞ.

As k ¼ w0 þ k0, for large values of w0, we can take for example
k0 ¼ 4 log rw0, meaning w � k in these cases. This makes the

Miniception the only known construction with guaranteed density
< 2=ðwþ 1Þ þ oð1=wÞ and with practical parameters.

Figure 2 provides an example of the Miniception. The
Miniception can be implemented efficiently in practice. Assuming
that a random order is computed with a hash function in O(k) time
for a k-mer, determining the set of picked k-mers in a string S in
takes OðkjSjÞ time. This is as fast as a random minimizer. In particu-
lar, there is no need to precompute the set C0. We discuss the imple-
mentation in more detail in Supplementary Section S4 and provide a
reference implementation in the GitHub repository.

2.4.2 The permutation argument

We now focus on the setup outlined in Theorem 7. Our goal is to
measure the density of the Miniception, which is equivalent to meas-
uring the expected portion of charged contexts, that is, Pðc 2 CÞ.
There are three sources of randomness here: (i) the randomness of
the seed minimizer, (ii) the randomness of the order within C0

(which we will refer to as the randomness of O), and (iii) the ran-
domness of the context.

A context of the Miniception is a ðwþ kÞ ¼ ð2w0 þ k0 þ 1Þ-mer,
which contains ð2w0 þ 2Þ k0-mers. By our choice of k0 and Lemma
9, the probability that the context contains two identical k0-mers is
oð1=w0Þ ¼ oð1=wÞ (as w ¼ w0 þ 1). Similar to our reasoning in
proving Theorem 3, let I0 denote the event of duplicate k0-mers in a
Miniception context:

Pðc 2 CÞ ¼ PðI0ðcÞÞPðc 2 CjI0ðcÞÞ þ PðI0ðcÞÞPðc 2 CjI0ðcÞÞ
	 PðI0ðcÞÞ þ Pðc 2 CjI0ðcÞÞ
¼ oð1=wÞ þ Pðc 2 CjI0ðcÞÞ:

We now consider a fixed context that has no duplicate k0-mers.
Recall the way we determine whether a k-mer is in C0: we check
whether it is a charged context of the seed minimizer, which involves
only comparisons between its constituent k0-mers. This means that
given a context of the Miniception, we can determine whether each
of its k-mer is in the UHS C0 only using the order between all k0-
mers. We use OrdðcÞ to denote the order of k0-mers within c accord-
ing to O0. Conditioned on any c with I0 ðcÞ, over the randomness of
O0, the order of the k0-mers inside c now follows a random permu-
tation of ð2w0 þ 2Þ ¼ 2w, which we denote asRð2Þ.

Next, we consider fixing both c and O0 (the only randomness is
in O) and calculate probability that the context is charged. Note
that fixing c and O0 means fixed OrdðcÞ, and fixed set of k-mers in
C0. The order of the k-mers is still random due to randomness in O.
For simplicity, if a k-mer is in C0, we call it a UHS k-mer. A bound-
ary UHS k-mer is a UHS k-mer that is either the first or the last k-
mer in the context c.

Lemma 11 Assume a fixed context c with no duplicate k0-mers and a

fixed O0. Denote mboundary as the number of boundary UHS k-mers

(mboundary 2 f0; 1; 2g) and let mtotal be the number of total UHS k-mers

in the context. The probability that the context is charged, over the ran-

domness of O, is mboundary=mtotal.

Proof. We first note that mtotal � 1 for any context and any O0, due to

C0 being a UHS over k-mers with path length w0 	 w, so the expression

Fig. 2. An example of running the Miniception in a window. The k0-mers and ðw0 þ 1Þ-mers are displayed by their order in O and O0, where the minimal elements appear at

the top. We take O0 to be lexicographic order for simplicity, and O is a random order. The idea of sorting k0-mers will be important in deriving the theoretical guarantees of

the Miniception
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is always valid. Furthermore, there are also no duplicate k-mers as

k > k0. As O is random, every UHS k-mer in the window has equal

probability to be the minimal k-mer. The context is charged if one of the

boundary UHS k-mers is chosen in this process, and the probability is

1=mtotal for each boundary UHS k-mer, so the total probability is

mboundary=mtotal. h

This proof holds for every c and O0 satisfying I0 . In this case,
both mboundary and mtotal are only dependent on OrdðcÞ. This means
that we can write the probability of charged context conditioned on
I0 with a single source of randomness, as follows:

Pðc 2 CÞ 	 Pc;O0 ;Oðc 2 CjI0ðcÞÞ þ oð1=wÞ
¼ Ec;O0

ðmboundary=mtotalÞ þ oð1=wÞ
¼ EOrdðcÞ�Rð2Þðmboundary=mtotalÞ þ oð1=wÞ:

Next, we use E0 to denote the event that the first k-mer in the
context is a UHS k-mer, and E1 to denote the event for the last k-
mer. These two events are also only dependent on OrdðcÞ. We then
have mboundary ¼ 1ðE0Þ þ 1ðE1Þ. By linearity of expectation, we have
the following:

Pðc 2 CÞ ¼ EOrdðcÞ�Rð2Þðmboundary=mtotalÞ þ oð1=wÞ
¼ EOrdðcÞ�Rð2Þðð1ðE0Þ þ 1ðE1Þ=mtotalÞ þ oð1=wÞ
¼ EOrdðcÞ�Rð2Þð1=mtotaljE0ÞPðE0Þ
þ EOrdðcÞ�Rð2Þð1=mtotaljE1ÞPðE1Þ þ oð1=wÞ:

As the problem is symmetric, it suffices to solve one term. We
have PðE0Þ ¼ 2=w, because E0 is true if and only if the minimal k0-
mer in the first k-mer is either the first or the last one, and there are
w k0-mers in a k-mer. The only term left is EOrdðcÞ�Rð2Þð1=mtotaljE0Þ.

In the next two sections, we will upper bound this last term,
which in turn bounds Pðc 2 CÞ. It helps to understand why this argu-
ment achieves a bound better than a purely random minimizer, even
though the Miniception looks very randomized. The context con-
tains two UHS k-mers on average, because the relative size of C0 is
2=wþ oð1=wÞ, so it may appear that the expectation term is close to
0.5, which leads to a density bound of 2=wþ oð1=wÞ, identical to a
random minimizer. However, conditioned on E0, the context prov-
ably contains at least one other UHS k-mer, and with strictly posi-
tive chance contains two or more other UHS k-mers, which brings
the expectation down strictly below 0.5.

2.4.3 Deriving the unconditional distribution

In this section, we bound the quantity EOrdðcÞ�Rð2Þð1=mtotaljE0Þ by
deriving the distribution of mtotal, where OrdðcÞ is sampled from
Rð2Þ conditioned on E0. We emphasize that at this point the actual
k0-mers are not important and only their order matters. It is benefi-
cial to view the sequence simply as the order OrdðcÞ. To prepare for
the actual bound, we will first derive the distribution of mtotal

assuming OrdðcÞ � Rð2Þ without extra conditions.
We are interested in the asymptotic bound, meaning w!1, so

we use the following notation. Let RðxÞ denote the distribution of
random order of xw elements. This is consistent with previous defin-
ition of Rð2Þ, as a context contains 2w k0-mers. The relative length
of a sequence is defined by its number of k0-mers divided by w.
Given a sequence of relative length x, where the order of its constitu-
ent k0-mers follows RðxÞ, let PnðxÞ denote the probability that the
sequence contains exactly n UHS k-mers. As a context is a sequence
of relative length 2, we are interested in the value of PnðxÞ for
x 	 2.

We derive a recurrence for PnðxÞ. Fix x, the relative length of the
sequence. We iterate over the location of the minimal k0-mer and let
its location be tw where 0 	 t 	 x.

There are two kinds of UHS k-mers for this sequence. The first
kind contains the minimal k0-mer of the sequence, and there can be
at most two of them: one starting with that k0-mer and one ending
with that k0-mer. The second kind does not contain the minimal k0-
mer, so it is either to the left of the minimal k0-mer or to the right of

the minimal k0-mer, in the sense that it does not contain the minimal
k0-mer in full. Precisely, it is from the substring that contains exactly
the set of k0-mers left to the minimal k0-mer or from the substring
that contains exactly the set of k0-mers right to the minimal k0-mer:
these two substrings have an overlap of k0 � 2 bases but do not
share any k0-mer, and neither contain the minimal k0-mer. We refer
to these sequences as the left and right substring for conciseness.

This divides the problem of finding n UHS k-mers into two sub-
problems: finding UHS k-mers left of location tw and finding UHS
k-mers right of location tw. If we sample an order fromRðxÞ, condi-
tioned on the minimal k0-mer on location tw, the order of the k0-
mers left of the minimal k0-mer follows RðtÞ, and similarlyRðx� tÞ
for the k0-mers right of the minimal k0-mer. As we assume w!1,
we ignore that two substrings combined have one less k0-mer. We
prove in Supplementary Section S3.6 that this simplification intro-
duces a negligible error. This means that the subproblems have an
identical structure to the original problem.

We start with the boundary conditions. For x<1, corresponding
to a sequence with relative length <1, it contains no k-mer so with
probability 1 the sequence contains no UHS k-mer. This means that
P0ðxÞ ¼ 1 and PnðxÞ ¼ 0 for n � 1. We now derive the value of
P0ðxÞ, that is, the probability the sequence contains no UHS k-mer
for 1 	 x 	 2. Define the middle region as the set of k0-mer loca-
tions that are at most w� 2 k0-mers away from both the first and
the last k0-mer. The sequence contains no UHS k-mer if and only if
the minimal k0-mer falls within the middle region, as only in this
case every k-mer contains the minimal k0-mer but none has it at the
boundary. The relative length of the middle region is 2� x, as we as-
sume w!1 (see Fig. 3). As the order of k0-mers follows RðxÞ,
every k0-mer has equal probability to be the minimal and it is in the
middle region with probability ð2� xÞ=x ¼ 2=x� 1.

For 1 	 x 	 2, we next derive the recurrence for PnðxÞ with
n � 1 (as seen in Fig. 3). We define the middle region in an identi-
cal way as in last lemma, whose relative length is again 2� x. If the
minimal k0-mer is in the middle region, the sequence has exactly
zero UHS k-mers. Otherwise, by symmetry we assume that it is to
the left of the middle region (that is, at least w� 1 k0-mers away
from the last k0-mer in the sequence), with location tw where
0 	 t < x� 1. The sequence now always has one UHS k-mer,
that is the k-mer starting with the minimal k0-mer, and all other
ðn� 1Þ UHS k-mers come from the substring right to the minimal
k0-mer. The substring has relative length x – t, and as argued
above, the probability of observing exactly ðn� 1Þ UHS k-mers
from the substring is Pn�1ðx� tÞ. Averaging over t, we have the
following:

PnðxÞ ¼
2

x

ðx�1

0

Pn�1ðx� tÞdt; n � 1; 1 	 x 	 2:

Given P0ðxÞ ¼ 2=x� 1, we can solve for the next few Pn for 1 	
x 	 2 as described in Supplementary Section S3.3. Recall our goal
is to upper bound EOrdðcÞ�Rð2Þð1=mtotaljE0Þ. For this purpose, PnðxÞ
is not sufficient as the expectation is conditioned on E0.

2.4.4 Deriving the conditional distribution

We now define the events Eþ0 and E�0 . Eþ0 is the event that the first k-
mer of the Miniception context is a UHS k-mer, because inside the
first k-mer the minimal k0-mer is at the front. Similarly, E�0 is the
event where the first k-mer is a UHS k-mer, because the last k0-mer
in the first k-mer is minimal. These events are mutually exclusive
and have equal probability of 1=w, so PðEþ0 jE0Þ ¼ PðE�0 jE0Þ ¼ 1=2.

Definition 8 (Restricted Distribution). RþðxÞ for x � 1 is the distribu-

tion of random permutations of xw elements, conditioned on the event

that the first element is minimum among first w elements. Similarly,

R�ðxÞ for x � 1 is the distribution of random permutations of xw ele-

ments, conditioned on the event that the last element is minimum among

first w elements.

We now have the following:
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EOrdðcÞ�Rð2Þð1=mtotaljE0Þ
¼ Eð1=mtotaljEþ0 ÞPðEþ0 jE0Þ þ Eð1=mtotaljE�0 ÞPðE�0 jE0Þ
¼ ðEOrdðcÞ�Rþð2Þð1=mtotalÞ þ EOrdðcÞ�R�ð2Þð1=mtotalÞÞ=2:

Based on this, we define Qþn ðxÞ to be the probability that a se-
quence of relative length xw, where the order of k0-mers inside the
sequence follows RþðxÞ, contains exactly n UHS k-mers. Our goal
now is to determine Qþn ðxÞ for x 	 2, which also bounds
EOrdðcÞ�Rþð2Þð1=mtotalÞ.

The general idea of divide-and-conquer stays the same in deriv-
ing a recurrence for Qþn ðxÞ. It is, however, trickier to apply this idea
with a conditional distribution. We solve this issue by defining the
following:

Definition 9 (Restricted Sampling). With fixed x and w, the restricted

sampling process samples a permutation of length xw, then swap the

minimum element in the first w element with the first element.

Lemma 12 Denote the distribution generated by the restricted sampling

process as SþðxÞ, then SþðxÞ ¼ RþðxÞ.

We prove this in Supplementary Section S3.1. As the distribu-
tions are the same, we redefine Qþn ðxÞ with SþðxÞ. The boundary
condition for QþðxÞ is Qþ0 ðxÞ ¼ 0 for all x, because the first k-mer is
guaranteed to be a UHS k-mer (note that Qþn ðxÞ is defined only with
x � 1).

For n � 1 and x 	 2, from the process of restricted sampling,
we know with probability 1=x the minimal k0-mer in the sequence is
the first k0-mer overall. In this case, the first k-mer is the only UHS
k-mer that contains the minimal k0-mer, and all other UHS k-mers
come from the substring without the first k0-mer whose relative
length is still x as we assume w!1. We claim the following:

Lemma 13 Given an order of k0-mers sampled from SþðxÞ, conditioned

on the first k0-mer being overall minimal, the k0-mer order excluding the

first k0-mer follows the unrestricted distribution RðxÞ.

This is proved in Supplementary Section S3.1. This lemma means
that the probability of observing ðn� 1Þ UHS k-mers outside the
first k0-mer is Pn�1ðxÞ. Otherwise, we use the same argument as be-
fore by setting the location of the minimal k0-mer to be tw, where
1 	 t 	 x. Only one UHS k-mer contains the minimal k0-mer with
probability 1 (if x¼2, t¼2 happens with probability 0), and all
other UHS k-mers come from the substring to the left of the minimal
k0-mer. By a similar argument, the order of k0-mers within the left
substring follows SþðtÞ. These arguments are also shown in
Figure 4. Averaging over t, we have the following recurrence for
Qþn ðxÞ, valid for 1 < x 	 2 and n � 1:

Qþn ðxÞ ¼
1

x

�
Pn�1ðxÞ þ

ðx

1

Qþn�1ðtÞdt
�
:

Replacing RþðxÞ with R�ðxÞ, we can similarly define and derive
the recurrence for Q�n ðxÞ given 1 	 x 	 2. The process is highly
symmetric to the previous case for Qþn ðxÞ, and we leave it to
Supplementary Section S3.2. Similar to PnðxÞ, we can derive the ana-
lytical solution to these integrals (see Supplementary Section S3.3).
By definition of Qþn ðxÞ, we now bound EOrdðcÞ�Rþð2Þð1=mtotalÞ by
truncating the distribution’s tail, as follows (omitting the condition
for clarity):

Eð1=mtotalÞ ¼
X1

i¼1
Qþi ð2Þ=i

	
Xn

i¼1
Qþi ð2Þ=iþ ð1�

Xn

i¼1
Qþi ð2ÞÞ=ðnþ 1Þ:

We can derive a similar formula for the symmetric term
EOrdðcÞ�R�ð2Þð1=mtotalÞ. For both Qþ and Q-, at n¼6 the tail prob-

ability 1�
Pn

i¼1 Qið2Þ < 0:01, so we bound both terms using n¼6,
resulting in the following:

EOrdðcÞ�Rð2Þð1=mtotaljE0Þ
¼ ðEOrdðcÞ�Rþð2Þð1=mtotalÞ þ EOrdðcÞ�R�ð2Þð1=mtotalÞÞ=2
< 0:417:

Finally, we bound the density of the Miniception, now also using
the symmetry conditions (omitting the condition OrdðcÞ � Rð2Þ for
clarity):

Pðc 2 CÞ ¼ Eðmboundary=mtotalÞ þ oð1=wÞ
	 Eð1=mtotaljE0ÞPðE0Þ þ Eð1=mtotaljE1ÞPðE1Þ
þ oð1=wÞ
¼ 4Eð1=mtotaljE0Þ=wþ oð1=wÞ
< 1:67=wþ oð1=wÞ:

2.4.5 Density bounds beyond x 5 2

We can derive the recurrence for PnðxÞ; Qþn ðxÞ and Q�n ðxÞ for x>2,
corresponding to the scenario where w � ðx� 1Þk > k. By similar
techniques, with suitably chosen n, we can upper bound the
density of the Miniception from the values of Qþi ðxÞ and Q�i ðxÞ
with i 	 n. The resulting bound has form of DðxÞ=wþ oð1=wÞ,
where D(x) is the density factor bound. The detailed derivations can
be found in Supplementary Section S3.4. We then have the following
theorem:

Fig. 3. Setup for derivation of PnðxÞ with n � 1 and 1 	 x 	 2. The text denotes the relative length of the corresponding substrings. If the minimal k0-mer falls into the middle

region (left panel), there are zero UHS k-mers in the sequence. Otherwise (right panel), there is at least one UHS k-mer with possibility for more from the substring

Fig. 4. Setup for derivation of Qþn ðxÞ with n � 1 and 1 	 x 	 2. The text denotes the relative length of the corresponding substrings. If the minimal k0-mer is in the first k-

mer, it will be the first k0-mer overall. In this case, there is one guaranteed UHS k-mer and possibility more in the substring without first k0-mer. Otherwise, the analysis is simi-

lar to the derivation of PnðxÞ
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Theorem 8 With x � 2; w ¼ ðx� 1Þðw0 þ 1Þ; k ¼ w0 þ k0 and k0 >

ð3þ �Þ log rðxðw0 þ 1ÞÞ, the expected density of the Miniception is upper

bounded by DðxÞ=wþ oð1=wÞ.

3 Results

3.1 Asymptotic performance of the Miniception
We use a dynamic programming formulation (Supplementary
Section S3.5) to calculate the density factor of the Miniception given
w � ðx� 1Þk, with a large value of k¼2500. As analyzed in
Supplementary Section S3.6, this accurately approximates D(x),
which in turn approximates the density factor of the Miniception
with other values of k up to an asymptotically negligible error.
Figure 5 shows estimated D(x) for 2 	 x 	 8.

Consistent with Section 2.4, Dð2Þ � 1:67, as x¼2 corresponds
to the case w � k. There is no analytical form for D(x) with x>2,
but this experiment suggests that as x grows, D(x) increases while
staying below 2, the density factor of a random minimizer. That is,
as w gets increasingly larger than k, the Miniception performance
regresses to that of a random minimizer. We conjecture that DðxÞ ¼
2� oð1Þ as x grows.

3.2 Designing minimizers with large k
As seen in the implementation of Miniception (Supplementary
Section S4), the run time of the Miniception minimizer is the same
as a random minimizer. Therefore, it can be used even for large val-
ues of k and w. This contrasts to PASHA (Ekim et al., 2020), the
most efficient minimizer design algorithm, which only scales up to
k¼16.

We implemented the Miniception and calculated its density by
sampling 1 000 000 random contexts to estimate the probability of
a charged context (which is equivalent to estimating the density as
discussed before). The Miniception has a single tunable parameter
k0. It is important to pick an appropriate value of k0: too small value
of k0 invalidates the assumption that most k0-mers are unique in a
window, and too large value of k0 increases the value of x. In gen-
eral, we recommend setting k0 close to k - w if k is larger than w
(which corresponds roughly to x¼2 in our analysis of the
Miniception), and a constant multiple of log rw if w is larger than k
(roughly corresponding to x ¼ w=kþ 1 in our analysis).

We tune this parameter in our experiments by setting k0 ¼ k�w
if k is larger than wþ3. If this does not hold, we test the scheme
with 3 	 k0 	 7 and report the best-performing one. We show the
results for Miniception against lexicographic and random minimiz-
ers in four setups: two with fixed w and two with fixed k (Fig. 6).
These parameter ranges encompass values used by bioinformatics
software packages.

The Miniception consistently performs better than the lexico-
graphic and random minimizers in all tested scenarios. For the set-
ups with fixed w¼10, k is larger than w and the Miniception
achieves density factor of �1:72 for k � 13. Given that 1=w ¼ 0:1,
our bound on the density factor of 1:67þ oð1=wÞ holds relatively
well for these experiments. Same conclusion holds for the setup with
fixed k¼31 and 5 	 w 	 20.

For w¼100, w is larger than k and we observe the same behav-
ior as in Section 3.1: the performance degrades when k becomes
smaller than w. Same conclusion holds for the setup with fixed
k¼31 and 40 	 w 	 100. Our theory also correctly predicts this
behavior, as the decrease of x � w=kþ 1 improves the density
bound as seen in Section 2.4.

3.3 Comparison with PASHA
In Figure 6c, we compare the Miniception with PASHA. We down-
loaded the PASHA-generated UHS from the project website and
implemented the compatible minimizers according to Ekim et al.
(2020). Our test consists of two parts. For the first part, we fix
k¼13 and vary w from 20 to 200. For the second part, we fix
w¼100 and vary k from 7 to 15. This setup features some of the

largest minimizers designed by PASHA, the state of the art in large
minimizer design (we are unable to parse the UHS file for k¼16).

The Miniception still performs better than the random minimiz-
ers for these configurations, but PASHA, even though it is a heuristic
without a density guarantee, overall holds the edge. We also perform
experiments on the hg38 human reference genome sequence, where
we observe similar results with a smaller performance edge for
PASHA, as shown in Supplementary Section S5.

Although PASHA has lower density than Miniception, it is lim-
ited to k 	 16. Moreover, computing minimizers with PASHA
requires storing in memory a relatively large set of k-mers (5–10 mil-
lion mers for k¼13). Miniception does not need any to store any
set.

4 Discussion

4.1 Limitations and alternatives to minimizers
The 1=w bound is not the only density lower bound for minimizers.
Specifically, Marçais et al. (2018) proved the following lower bound:

1:5þ 1
2wþmaxð0; bk�w

w cÞ
wþ k

: (1)

As w grows compared to k, this implies that the density factor of
the minimizers is lower bounded by a constant up to 1.5. We also
observed that performance of minimizers, both the Miniception and
the PASHA compatible ones, regresses to that of a random minim-
izer when w increases. Unfortunately, this is inherent to minimizers.
With a fixed k, as the window size w grows, the k-mers become in-
creasingly decoupled from each other and the ordering O plays less
of a role in determining the density.

The minimizers are not the only class of methods to sample k-
mers from strings. Local schemes are generalizations of minimizers
that are defined by a function f : Rwþk�1 ! f0; 1; . . . ;w� 1g with
no additional constraints. They may not be limited by existing lower
bounds ((1) for example), and developing local schemes can lead to
better sampling methods with densities closer to 1=w.

4.2 Perfect schemes and beyond
This work answers positively the long-standing question on the ex-
istence of minimizers that are within a constant factor of optimal.
Even though the original papers introducing the winnowing and
minimizer methods proposed a density of 2=ðwþ 1Þ, their analysis
only applied to particular choices of k and w. Theorems 2 and 3
give the necessary and sufficient conditions for k and w to be able to
achieve Oð1=wÞ density. Theorem 2 also results in the first constant

Fig. 5. Density factor for the Miniception when w � ðx� 1Þk and k¼ 2500. The

random minimizer achieves density factor of constant 2 and is plotted for

comparison
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factor approximation algorithm for a minimum size UHS, which
improves on our previous result of a lnðwÞ factor approximation
(Zheng et al., 2020). These theorems also settle the question on ex-
istence of asymptotically perfect forward and local schemes.

In general, studies on the asymptotic behavior of minimizers
have proven very fruitful to deepen our understanding of the mini-
mizers and of the associated concepts (structure of the de Bruijn
graph, decycling sets and UHS). However, there is a sizable gap be-
tween the theory and the practice of minimizers.

One example of this gap is the way we prove Theorem 2: the
density of the lexicographic minimizers reaches Oð1=wÞ whenever it
is possible for any minimizer. This means that the lexicographic
minimizers are optimal for asymptotic density. However, in prac-
tice, they are usually considered the worst minimizers and are
avoided. Another example is the fact that heuristics such as PASHA,
while unable to scale as our proposed methods and being computa-
tionally extensive, achieves better density in practice (for the set of
parameters it is able to run on) with worse theoretical guarantee.

Now that we have mostly settled the problem of asymptotical opti-
mality for minimizers, working on bridging the theory and the prac-
tice of minimizers is an exciting future direction.

The core metric for minimizers, the density, is measured over
assumed randomness of the string. In many applications, especially
in bioinformatics, the string is usually not completely random. For
example, when working with a read aligner, the minimizers are usu-
ally computed on a reference genome, which is known to contain
various biases. Moreover, this string may be fixed (e.g. the human
genome). In these cases, a minimizer with low density on average
may not be the best choice. Instead, a minimizer which selects a
sparse set of k-mers specifically on these strings would be preferred.
The idea of ‘sequence specific minimizers’ is not new (DeBlasio et al.
2019); however, it is still largely unexplored.
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