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Parasitic Cuscuta factor(s) and the detection by tomato initiates plant defense
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ABSTRACT
Dodders (Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate
those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta
spp infect nearly all dicot plants – only cultivated tomato as one exception is mounting an active
defense specifically against C. reflexa. In a recent work we identified a pattern recognition receptor
of tomato, “Cuscuta Receptor 1“ (CuRe1), which is critical to detect a “Cuscuta factor” (CuF) and
initiate defense responses such as the production of ethylene or the generation of reactive oxygen
species. CuRe1 also contributes to the tomato resistance against C. reflexa. Here we point to the fact
that CuRe1 is not the only relevant component for full tomato resistance but it requires additional
defense mechanisms, or receptors, respectively, to totally fend off the parasite.
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Metazoans and plants possess an innate immune system
to mount active defense against pathogen attacks. Most
plant pathogens are microbes or herbivorous arthropods
that the immune systems of plants are able to detect by
sensing microbe- or herbivore-associated molecular pat-
terns (MAMPs/HAMPs).1,2 These molecular patterns,
indicative for “non-self,” serve as molecular signals that
trigger specific plant pattern recognition receptors
(PRRs) and initiate plant defense signaling to fend off
the pathogen.3,4 Besides the pathogens mentioned, there
exist »4,500 plant species that live parasitic on other
plants and genera such as Striga, Orobanche or Cuscuta
are known to cause tremendous crop loss.

The plant genus Cuscuta (dodder) comprises about
200 species distributed in all moderate climate zones.
All Cuscuta species live as stem holoparasites with a
broad host spectrum, preferentially for dicotyledonous
plants. The different Cuscuta species grow as yellowish,
orange or slightly greenish vines that wind around the
stems of their host plants.5 Most dodder species have
no or only marginal amounts of chlorophyll and their
photosynthesis is insufficient for surviving.6-9 All Cus-
cuta species possess neither roots nor expanded leaves
and penetrate host plants with haustoria that directly
connect to the vascular bundles. Right after germina-
tion, Cuscuta seedlings sense host plant volatiles which
support the finding of an appropriate host.10 In the par-
asite, initial physical contact induces the formation of

haustoria,11 specific organs which are generally impor-
tant for parasitic plants to penetrate the host tissue.12

The penetration phase is accompanied by the expres-
sion of cell-wall modifying enzymes leading to struc-
tural rearrangements within the cell-walls of the
parasite13 and the loosening of the host tissues.14,15

After reaching the vascular bundles, the parasitic haus-
torium connects to the host xylem and phloem. This
allows the parasite to withdraw water, nutrients, and
carbohydrates to grow and complete its lifecycle.8,16,17

Cuscuta parasites also take up macromolecules such as
proteins, viruses or RNAs.18-22 Recently, RNAs were
shown to move between host plant and parasite in a
bidirectional manner and to a much higher extent than
previously expected.23

Not much is known about how host plants can sense
parasitic Cuscuta spp. and how they initiate cellular pro-
grams to fend off plant parasites. In our recent study,24

we made use of the special case Cuscuta reflexa and its
resistant host plant Solanum lycopersicum (cultivated
tomato) to get insights in the early steps occurring in the
plant-plant dialog. Tomato displays an active and clearly
visible resistance reaction directly at the penetration sites
of the parasitic haustoria a few days after the initial
contact with the parasite and successfully fends off
C. reflexa.25-27

In this study we show that extracts of C. reflexa induce
the production of reactive oxygen species (ROS) and the
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biosynthesis of the stress related phytohormone ethylene,
plant defense responses usually known to occur during
plant–microbe interaction and typically induced by
pathogen-associated molecular patterns (PAMPs).2,28

We could isolate and characterize the trigger of these
responses from C. reflexa, a 2 kDa peptide with an
o-esterified modification, and we further screened an
introgression library of S. lycopersicum x S. pennellii29 to
map responsiveness to this parasitic factor, since S.
pennellii is insensitive to parasitic extracts and suscepti-
ble for a C. reflexa infestation.13 We identified a gene
encoding a plasma membrane-bound receptor, the
Leucine-rich repeat receptor like protein (LRR-RLP)
“Cuscuta receptor 10 (CuRe1) which senses the parasitic
“Cuscuta factor” (CuF). CuF initiates defense responses
in the formerly insensitive host plant Nicotiana
benthamiana after transient expression of CuRe1. Stable
transformation of a CuRe1 construct into N. benthami-
ana lead to a drastically reduced C. reflexa growth and to
an increased resistance.

Besides CuRe1, there are 3 genes encoding for CuRe1
homologs (CuRe1-likes; Solyc04g0014400; Sol-
yc08g016210; Solyc08g016310) within the tomato
genome, sharing 64 – 81 % amino acid sequence identity
(Fig. 1A). Receptors with up to 80 % aa-sequence identity
to CuRe1 seem exclusively present in Solanaceaus plants.
Only receptors with less than 45 % aa-sequence can be
found outside the Solanaceae. We cloned all CuRe1-like
genes from tomato24 and expressed them heterologously
in N. benthamiana. However, in contrast to CuRe1 none
of these receptors was able to trigger defense-related
responses like ethylene induction when treated with the
CuF or crude C. reflexa extract (Fig. 1B).

The recognition of the parasitic cell wall associated
CuF or related other Cuscuta factors by these receptors
could be supposable. Nonetheless, the initiated cellular
signaling program must be distinct from the defense
related responses induced by CuRe1 as we could not
measure the emission of ethylene (Fig. 1) after treatment
with CuF.

During a susceptible interaction the parasite has to
hook up the host plant’s developmental processes to
establish a connection to the vascular system. Therefore,
the parasite has to (ab-)use existing host mechanisms
including the signals and perception systems to succeed
in infecting other plants. If the CuRe1-like receptors are
critical to recognize and process any molecular cues of
Cuscuta spp is possible but remains to be demonstrated.
The roles of CuRe1-likes for the harbouring host plant
e.g. as receptors for endogenous signals involved in
developmental processes or as receptors to detect
MAMPs is still unclear and up to date no function could
be assigned to any receptor of this clade.

In fact, the specific recognition of the Cuscuta factor
by tomato CuRe124 and the induction of the plant
defense system seems unique and has probably evolved
by incident exclusively in tomato. As far as tested, the
Cuscuta factor seems present in other Cuscuta species as
well but seems absent from plant species outside this
genus.24 The full resistance toward parasitic C. reflexa,
however, seems not to depend on CuRe1 alone but
requires additional mechanisms maybe related to those
known for Effector triggered immunity (ETI) occurring
during plant–microbe interaction (overview in
Fig. 2).24,30,31 An nucleotide binding site leucine-
rich repeat (NBS-LRR) protein, as part of a second layer
of immunity and as a potential element of ETI, has been
found to be relevant for resistance during the plant-plant
interaction of cowpea against witch-weed (Striga spp.).32

In case of the C. reflexa interaction with tomato

Figure 1. Functionality of CuRe1-like receptors. (A) Tree shows rela-
tionship of CuRe1 and CuRe1-like genes; Eix2: receptor for fungal
Xylanase33 served as reference. (B) Ethylene response of N. ben-
thamiana leaves expressing receptor CuRe1-like constructs and
treated with C. reflexa extract or controls (mock D 0.01 mg/ml
BSA in water; Penicillium extract D positive control); values repre-
sent means of n D 3 replicates plus stdv.
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additional components of resistance still have to be iden-
tified. If the CuRe1-like or other receptors are involved
in such tomato-specific defense—maybe in a long term
process—has to be further studied.
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