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Abstract: Commercial unmanned aerial vehicles continue to gain popularity and their use for
collecting image data and recording new phenomena is becoming more frequent. This study presents
an effective method for measuring the concentration of fluorescent dyes (fluorescein and Rhodamine
WT) for the purpose of providing a mathematical dispersion model. Image data obtained using a
typical visible-light camera was used to measure the concentration of the dye floating on water. The
reference measurement was taken using a laboratory fluorometer. The article presents the details
of three extensive measurement sessions and presents elements of a newly developed method for
measuring fluorescent tracer concentrations. The said method provides tracer concentration maps
presented on the example of an orthophoto within a 2 × 2 m discrete grid.
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1. Introduction

Unmanned platforms (water, land, and aerial) are devices able to move within a
specific environment, without the need for an operator on-board. Their trajectory can be
remotely controlled by humans or programmed and executed automatically [1–3]. Their
essential advantage is the ability to execute a task in such regions, where a manned mission
is difficult or impossible [2,4,5]. In the case of coastal management, unmanned platforms
offer a very high spatial resolution [6–8] and flexibility [9,10]. These properties were quickly
noticed by researchers and engineers, who started to use unmanned vehicles as mobile
platforms for research equipment [11]. As a result, surveys have begun to be performed in
new locations and with unprecedented frequency.

According to sources [12,13], approximately 80% of pollution in the marine environ-
ment is land-based. The contaminations reaching seas and oceans originate mainly from
human activities conducted inland and, to a lesser extent, along the coasts [14]. The natural
source and means of transport for all harmful substances and garbage from the hinterland
to the sea are rivers [15,16]. Other sources include fishing, sea transport, and maritime
infrastructure. Therefore, since rivers supply seas with pollutants, it becomes necessary
to model the phenomena ongoing within the estuary zone and the propagation processes
involving pollutants falling into salty waters [17].

Three methods are applied for studying the dispersion of pollutants within an en-
vironment, namely, tracer tests [18–24], determination of actual pollution [25,26], and
mathematical modelling [27–30]. Tracer tests involve administering a safe substance (fluo-
rescent dye) into the environment. The dyes mimic contamination, which enables obtaining
information at the time of arrival, peak concentration, and the dimensions of the dissolved
component cloud floating in a creek or receiver. Fluorescent dye concentration distribution
is analyzed at the adopted points, which is a method of determining medium dispersion.
Mathematical modelling is based on determining dispersion parameters [31], however, it
requires feeding the model with data, its later verification, and fine-tuning. These models
also enable predicting the dispersion of a given pollutant, which in turn requires providing
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information on the substance dispersion velocity and intensity field within a given envi-
ronment. It is essential especially for some regions, where the environment is dominated
by some specific physical process and the mathematical methods produce inaccurate solu-
tions [29]. The mathematical modelling of the dispersion of pollutants cannot be separated
from the spatial context of the natural environment, therefore an integrated modelling
approach is used to understand the main environmental mechanisms governing the envi-
ronmental contamination [17]. The integrated approach combines numerical models and
spatial environmental data (i.e., bathymetry, digital terrain models).

A zone where fresh water mixes with salt water experiences water density changes,
as well as profile velocity changes from gradient to drift [32–34]. The dynamics of this
process is impacted by numerous factors, with the most important including wind, current,
water density difference, salinity, and geomorphological river mouth conditions. Under
such conditions, the dispersion process is very variable and can follow different steps.
A precise determination of these parameters, hence, studying the pollutant dispersion,
becomes a complicated task. Without a properly determined dispersion coefficient, mathe-
matical models provide inaccurate results [29,35]. Determining the parameters describing
the dispersion process is a prerequisite for obtaining the correct results of mathematical
modelling [31] and procurement of a fully functional model [27–29,36]. One of the methods
is tracer study with the use of passive and non-degradable substances as tracers.

Tracer tests are applied in various fields of science. They gained the greatest popularity
in medicine and biotechnology [37–40], which utilize various substances, even the ones
containing radioactive isotopes [41,42]. Tracers are used for studying protective clothing
tightness [43] and analyzing nutrient migration in soils [43,44]. They can also be involved
in testing water flow within an environment, or, in other words, widely understood as
hydrology [45]. In this case, it is important for the marker not to have an adverse effect on
the natural environment and that its detection is relatively simple. Fluorometry is a very
popular method of tracer testing. It is based on fluorescent dyes as marking substances.
Its main advantage is the easy detection of markers using fluorometric methods, simple
determination of concentration over a wide range of values, and the fact that it is envi-
ronmentally neutral. These studies involve two main substances, namely, Rhodamine WT
(water tracer) and uranine, although there may be more [45]. The physical and chemical
properties of these substances make them passive, nonreactive, and non-toxic in concen-
trations used for tracer testing [46]. Fluorescent dye molecules absorb electromagnetic
radiation in the visible light range with a specific wavelength and emit radiation of lower
frequency, in accordance with the Stokes law. The intensity of the emitted radiation is
proportional to the concentration. Every dye is characterized by a specific excitation and
emission spectrum. The outcome of tracer measurements is information on the change of
concentration over time, at a selected point. Moreover, detecting and marking fluorescence
is relatively simple, therefore, they have been used in hydrology since the 1960s.

Fluorometry is very popular in measuring the dispersion of various substances within
the natural environment. Classically, the tracer concentration is spot-tested by sampling
the carrier substances at a specified location. This method is useful, however, in the
case of spatially extensive measurements, simultaneous sampling at many points is very
challenging, and even impossible at times. As mentioned before, tracer dispersion in
medicine and biotechnology is successfully diagnosed using image-based methods. As a
result, it is not only possible to determine the measuring point concentration, but also to
determine the front and its shape [47] and specify the direction and speed of the dispersion
of these components. Therefore, it can be concluded that image-based methods are able
to detect the concentration and location of fluorescent markers, and hence can be used
for local tracer dispersion testing in surface waters using data obtained from unmanned
aerial vehicles.

The still-niche approach to detecting fluorescent tracers from UAVs has been presented
in several researches. The authors of [48] described a method for detecting Rhodamine
WT based on a hyperspectral imaging system with 270 spectral channels mounted on
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UAV. Clark et al. in [49], similarly to the research presented by Legleiter et al. in [48]
describes an airborne detection method using a multispectral camera fixed on an aircraft.
Some researchers combine the technologies of unmanned aerial and surface vehicles
to conduct tracer tests. Powers et al. [50] presented a combined technique of uranine
detection and testing using a visible light camera, whereas a fluorometer was located on
an unmanned surface vehicle (USV). What characterizes these tests from the previous
ones is the camera type. A visible light camera, commonly referred to as a RGB camera,
does not have precisely defined spectral channel values. Three quite wide channels are
recorded in the red (R), green (G), and blue (B) visible part of the electromagnetic spectrum.
Moreover, precise spectral characteristics are not available for such cameras, in the case
of commercial, small UAVs. Not only multispectral and visible light cameras are used for
fluorescent detection. Interesting research is the subject matter of [51], which involved
using LIDAR (light detection and ranging) for detecting the natural fluorescence of marine
corals. Baek et al. in [52] presents a tracer detection method (Rhodamine WT) based on
RGB images. As indicated, RGB images exhibited a strong correlation with Rhodamine
concentration. Furthermore, neural networks were used to convert the values recorded on
images to concentrations.

This work describes a new approach for detecting and calculating the concentration
of fluorescent tracers from a commercial UAV using a simple digital camera. The described
method independently detects two dyes, namely, Rhodamine WT and uranine. The method
were tested in real conditions, based on two different data collection approaches.

The publication is divided into four sections. The first section is the Introduction,
which presents the basic motivation behind the research. The second section, Materials and
Methods, describes the tools and methods used to process the data. Section three presents
and discusses the obtained results. The article ends with the conclusions, where the most
important aspects of the research are discussed and summarized.

2. Materials and Methods

In the following section, the image-based method for fluorescent dye concentration
measurement is described. The method was tested in three extensive measurement sessions
where two different image data acquisition plans were performed and evaluated. During
the experiments, two different fluorescent dyes were used. The research plan describes the
data processing sequence. The sections end with the measurement object description and
methodology used for in-situ measurement and procedure used for UAV flight.

2.1. Method for Image-Based Measurement of Dye Concentration

The method presented in this section has been developed for the purpose of measuring
fluorescent dye concentration based on an image obtained from a RGB camera with a CMOS
sensor, installed onboard a commercial UAV. Based on the CMOS sensor, it is already
achievable to construct a relatively accurate fluorescence measurement instrument [53].
However, in this case we do not have active reagent excitation available. Based on simple
methods and inspired by the solution proposed in [50], the authors developed a filtration
algorithm and implemented it within a geographic spatial information system, while
obtaining a geographic position measurement.

The image (I) recorded by a camera sensor is a discrete element matrix i × j for λ
spectral channels. A CMOS camera installed onboard a Mavic Pro captures the image using
three channels (R, G, and B) of unknown spectral characteristics, which can be expressed as:

I(i, j, λ) = r(i, j) + g(i, j) + b(i, j),

Based on average spectral characteristics for cameras [53–56] and a typical emission
characteristic for the used dyes, it can be concluded that the main channels where the
strongest spectral response is to be expected are g(i, j) for fluorescein (fluorometer-recorded
wavelength at 540 nm) and r(i, j) for Rhodamine WT (fluorometer-recorded wavelength
at 610 nm). The full sunlight spectrum, which naturally reaches the earth’s surface, is
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responsible for dye excitation in open waters and under daytime conditions. Therefore, by
creating a difference in the spectral responses between the primary channels and others, the
image of relevant dye can be enhanced. The differences for fluorescein can be expressed:

dgb(i, j) = g(i, j)− b(i, j), (1)

dgr(i, j) = g(i, j)− r(i, j), (2)

where dgb(i, j) represents the difference between the green (G) and blue (B) channels,
dgr(i, j) represents the difference between the green (G) and red (R) channels. The differ-
ences for Rhodamine WT can be written:

drb(i, j) = r(i, j)− b(i, j), (3)

drg(i, j) = r(i, j)− g(i, j), (4)

where drb(i, j) represents the difference between the red (R) and blue (B) channels, drg(i, j)
represents the difference between the red (R) and green (G) channels.

To avoid negative values for the sum of spectral channel differences, the sum of
spectral channel differences, which additionally emphasizes the image of the dye itself, can
be expressed (respectively, for fluorescein and rhodamine) as:

f (i, j) =

√(
dgb(i, j) + dgr(i, j)

)2
, (5)

r(i, j) =
√(

drb(i, j) + drg(i, j)
)2. (6)

Assuming the existence of a background fluorescence peak value, namely, non-zero
values for areas with no dye on the image, all results (4) and (5) below the threshold t shall
be assigned with 0, which can be respectively written as:

fnr(i, j) = { f (i, j) < t⇒ 0, f (i, j) ≥ t⇒ f(i, j)}, (7)

rnr(i, j) = {r(i, j) < t⇒ 0, r(i, j) ≥ t⇒ r(i, j)}. (8)

The last calculation stage was result filtering, which slightly averages the values:

f f (i, j) = fnr(i, j) ∗ c(m, n), (9)

r f (i, j) = rnr(i, j) ∗ c(m, n), (10)

where * is a discrete convolution and c(m, m) is a Gauss-masked kernel, which can
be written:

c(m, n) = e−
(m2+n2)

2σ2 , (11)

where σ is the standard deviation and is a variable that defines the filtration strength.
The values of matrices f f (i, j) and r f (i, j) contain a digital number corresponding to

the intensity of radiance. Therefore, the last stage of the calculations will be converting
from a radiance value to the concentration of a given dye. For this purpose, the authors
compared the values of matrices f f (i, j) and r f (i, j) at specific positions, where the values
were measured with a fluorometer. This created a matrix containing the values of f f (i, j)
and r f (i, j), such that (i, j) = (x, y), where (x, y) is the position of in-situ measurements,
which is the sampling position. The Vandermond matrix was used to calculate the values of
p1, p2 and p3, and the calibration polynomial [57]. Therefore, the radiation value expressed
by dye concentration can be written as follows:

fc(i, j) = p2
1 f f (i, j) + p2 f f (i, j) + p3, (12)

rc(i, j) = p2
1r f (i, j) + p2r f (i, j) + p3. (13)



Sensors 2021, 21, 3905 5 of 17

2.2. Research Plan

In order to verify the procedure presented above and the research assumptions of
this article, a test schedule and a computation process were developed. This process is in
graphical form, and the used tools are shown in Figure 1. Test data was acquired using a
commercial UAV with a camera and a fluorometer. The study period involved completing
three full test sessions in several week intervals. Each session comprised of several UAV
flights at regular time intervals, and simultaneous manual sampling for fluorometer testing
at strictly specified spots. The research data was processed using popular photogrammetric
software, followed by geoinformation software. Simultaneously, all collected water samples
were independently assessed in terms of dye concentration. The UAV flights within the
research were planned using two different methods, to evaluate the flight plans for these
measurements at a later time. The details of these operations are shown in the further
section of this research.
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Figure 1. Research and result elaboration flowchart (C @ Pos—Concentration at position).

2.3. Measured Object

A minor watercourse, with a catchment area of 37.2 km2, called Gizdepka, was selected
for the study [58,59]. The average annual flow rate falls within a range of 0.16 to 0.19 m3/s.
This watercourse flows directly to the Bay of Puck (Southern Baltic Sea) (Figure 2), hence
supplying the bay with pollutants and biogenic compounds. Gizdepka passes through
an agricultural area, which results in periodic increases of biogenic compound supply,
including significant concentrations of nitrogen and phosphorous compounds [60].
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2.4. Fluorometer Measurement

The tests were scheduled and conducted in the early Spring of 2019, when the chloro-
phyll concentration in the water is the lowest and water transparency is as high as possible.
Three full measuring sessions were conducted at two-week intervals. Experimental condi-
tion data, as well as dye concentrations and type are shown in Table 1. In each case, the
dye was released into the river as an impulse at a drop point, located 750 m from the river
mouth (Figure 3).

Table 1. List of measuring sessions using a fluorescent tracer.

Name Date Tracer Tracer Concentration

Day 1 17 February 2019 Uranine 500 g/10 dm3 H2O
Day 2 2 March 2019 Uranine 250 g/10 dm3 H2O
Day 3 23 March 2019 Rhodamine WT 1 dm3 @ 20%

The study involved using uranine (fluorescein sodium) and Rhodamine WT (water
tracer) marker substances. These are xanthene fluorescent dyes. The dyes absorb light
of the relevant wavelength and emit light of a longer wavelength. This means that the
fluorescence band will be in the lower frequency range than the absorption band and will
be moved towards the red band. The maximum excitation and emission wavelengths for
Rhodamine WT are 558 and 582 nm, respectively, and 419 and 512 nm for uranine. Fluo-
rescence intensity of a specific solution is proportional to its concentration. Furthermore,
the selected dyes are characterized by good solubility, low reactivity, poor absorption in a
suspension, unmodifiable medium properties and are nontoxic in concentrations used in
the research.
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After releasing the dye to water, the scientists commenced sampling the water at
specific points and times. Water samples were collected at the river mouth, with a varying
time step, selected to capture concentration changes at the time of peak concentration, in
particular. Samples in the coastal zone were collected at spots that were physically marked
with flagpoles. Marking the spots with poles allowed to precisely indicate the sampling
position and their later identification on the measurement images. After a session was
completed, the samples were transported to a laboratory, where the dye concentration in
each of the samples was thoroughly evaluated. Dye concentrations were determined using
the “Trilogy” fluorometer (Turner Designs, San Jose, CA, USA) (Table 2). This provided
information on the change in the concentration of the migrating dye over time in the river
mouth (position T0) and selected points in the bay around the Gizdepka estuary (positions
T1 to T9) (Figure 3).

Table 2. Parameters of the Trilogy fluorometer.

Parameter Rhodamine WT Uranine

Minimum detected concentration 0.01 ppb 0.01 ppb
Linear range of concentration—fluorescence relationship 0–500 ppb 0–200 ppb

Excitation electromagnetic wavelength 550 nm 485 nm
Recorded electromagnetic wavelength 610 nm 540 nm

The fluorometer measures fluorescence in relative fluorescence units (RTUs). Calibra-
tion curves for Rhodamine WT and uranine, based on the procedures of the United States
Geological Survey [61]. Each calibration curve enables converting relative fluorescence
units to concentration (C f ) expressed in µg/dm3, using a linear function c f = f (RTU) for a
range of 0 to 100 µg/dm3. Furthermore, prior to injecting the dyes, reference zero samples
from the bay and the river were collected to determine fluorescence background. Based on
known fluorescence levels, the water fluorescence in the samples collected in the course
of the measurements was determined and the results were converted using a calibration
curve. Environmental samples with a concentration beyond 100 µg/dm3 were diluted to a
range of a corresponding calibration curve in each case. Estimated calibration curves for
the fluorometer are shown in Figure 4. The curves were determined in a laboratory, based
on the reference samples.
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2.5. UAV Measurement

Photogrammetric flights were conducted using a DJI Mavic Pro (Shenzhen DJI Sci-
ences and Technologies Ltd., China) UAV. This unmanned aerial vehicle is representative
of commercial aerial vehicles, designed and intended primarily for recreational flying
and for amateur movie makers. The versatility and reliability of these devices were
quickly appreciated by the photogrammetric community. Their popularity results mainly
from their operational simplicity and very intuitive ground station software. The UAV is
equipped with an integrated digital camera with a CMOS (Complementary Metal-Oxide-
Semiconductor) sensor. The FC220 digital camera installed onboard this UAV is a compact
device with a very small 1/2.3” (6.2 × 4.6 mm) sensor and a minor maximum ISO (1600)
sensitivity. Images are recorded in the visible light band and using the JPEG or DNG
format. They are typical images, recorded in three channels, namely, RGB (red, green,
blue). Since these types of cameras are mostly used for filming and photographic activities,
full specifications are not available, as in the case of multispectral survey cameras. The
manufacturer does not provide precise spectral characteristics [62], and the individual
spectral channels record the bands over a very broad range. Furthermore, there is also
no official information on the type of used sensors (manufacturer name, type, catalogue
number), besides only the indicated execution technology, namely, CMOS. It should be
presumed that it has a specification typical for popular CMOS sensors, however, with
a clearly filtered near-infrared band above 780 nm. The application of a near-infrared
filter is a standard manufacturing practice for such cameras; therefore, this should also
be assumed in this case. The methodology presented here does not depend on accurate
spectral characteristics and enables the utilization of commercially available RGB cameras
for this type of survey.

Several UAV flights and sessions were conducted on each day of the measurements.
The flights were conducted at regular time intervals, as the coverage area contains the
tracer trail visible on water. On Days 1 and 2, the UAV conducted flights following a
programmed single-grid trajectory, as in the case of the developed orthomosaic. On Day 3,
the measurement was taken using a different technique—the drone hovered in the air and
took an image at a constant interval (up to 2 s). Simultaneously, the operator matched the
AGL altitude and hovering positions of the UAV, so that the area of a single image covered
the entire area of the visible dye. In each case, the camera was always positioned in the
nadir, with no oblique images taken.

The measurements involved developing a photogrammetric network that comprised
of eight ground control points (GCPs), arranged along the river, and their position was
measured with the GNSS RTK accurate satellite positioning method. The GCP position was
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determined relative to the PL-2000 Polish state grid coordinate system and their altitude
relative to the PL-EVRF2007-NH quasigeoid. All checkpoints were marked using special
boards. The position of the poles placed within the water section of the research area was
also measured using the GNSS RTK method.

Image data collected on Days 1 and 2 were used to develop an orthomosaic. The result
included 16 orthomosaics, mapping the dye position on Days 1 and 2. The orthophoto
taken on Days 1 and 2 for the first three sessions are shown in Figures 5 and 6. On
Day 3, A simpler, single-image photogrammetry method was used in this case. Each
image was rectified and fitted using GCPs located in the images and measured in the
field. This resulted in obtaining a satisfactory imaging accuracy, while simultaneously
enabling recording tracer dispersion at any interval. As a result, 369 images (every 2 s)
were recorded and 8 images depicting tracer dispersion were rectified on Day 3. Only the
images taken at the same time as the sampling time were rectified. The results for sessions
1, 3, and 6 are shown in Figure 7.
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3. Results

In the Results section, the main findings of the article are summarized. The relevant
graph presents concentration in the time domain, while the UAV measurements were
presented in the cartographic form. The in-situ measurements, performed using the
laboratory fluorometer, were compared with the results obtained from the RGB images.

3.1. Fluorometer

Figure 8 shows the fluorometer measurement results for individual measurement
sessions covering the river mouth (T0) and positions T1–T9.
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As seen from the graphs, collecting numerous samples from the Gizdepka river mouth
(T0) enabled accurately determining the concentration shift curve and the time of the peak.
Spot measurements conducted within the measurement field marked with poles (T1 to T9)
allowed to determine the local concentration at a given time.

Traditional sampling and measurement enabled collecting information on local con-
centration changes within a one-dimensional object, such as a river. The dye was released
to the watercourse as an impulse, at a distance of 750 m from the reference section located
at the river mouth (station T0). As a result of longitudinal dispersion, the impulse was
transformed into a long dye trail. It took approximately 1 h for the trail to pass the reference
section. The shape of the obtained concentration curves at the reference section (Fg) is asso-
ciated with the hydraulic characteristics of the watercourse, among others, heterogeneous
creek speed distribution and the natural nonuniform and transient flow occurring in natu-
ral watercourses. Traditional measurements proved to be good for capturing concentration
changes at the river mouth (station T0).

On the other hand, the dye dispersion in the bay was very dynamic. The changes were
of several orders of magnitude over a relatively short distance to the nearest position (T1–
T9). This results in much lower concentrations within the measurement field. Capturing
the spatial distribution using the traditional method is difficult, since it requires measuring
at many points simultaneously. The measurement turned out to be difficult to conduct,
even in the conditions of a shallow bay. The use of submersible fluorimetry sensors
may be impossible due to the susceptibility of wired data transmission to wave-induced
damage. This creates a potential advantage for remote sensing methods in recording
the phenomenon.

3.2. UAV Measurements

According to a previously described procedure and based on image f f and r f , re-
sults of Equations (8) and (9), respectively, pixel values in position (i, j) were collected,
in accordance with the field sampling position (x, y). These images, resulting from
Equations (8) and (9) for similar sessions presented in Figures 5 and 7 are shown in Figure
9.
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As seen in these images, the presented filtration method enables correctly extracting
the dye position. The applied difference in spectral channel radiance values allows to
minimize the impact of other channels on the image, thus emphasizing the fundamental
channel for a given dye. They are the green (G) channel for fluorescein and red (R) for
rhodamine. The presented image shows that tracer dispersion in this area forms a clear
border with a stepwise change of dye concentration in the side sections of the moving
cloud. The method used in this case shows this borderline very well. Dye cloud front
concentration changes slowly and is not as stepwise anymore. The remote sensing method
using small UAV is characterized by a rather low sensitivity of low concentration detection,
hence the dye wave front depicted on the air images can be slightly shifted backwards,
opposite to the main dispersion direction.

In the case of fluorescein, the extraction is clearer, the bottom sediments are not as
intensely visible as they are for case (b) in Figure 9. It should be added that the water
depth in the study area is low, up to 1.5 m. On a sunny day, in late winter or early spring
conditions, the water clarity is high enough to see the bottom very easily, including the
deposited sediments. The bottom image creates a distinct background for the dye and
also creates some low levels of radiance in that region, subsequently being converted to
dye concentration.
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Figure 10 shows the graphs of calibration polynomials calculated as per Equations
(11) and (12), which allowed converting the radiance values to dye concentration values.
As mentioned in [61], dye dispersion air testing is a very good method, however, the
dye must be visible to the human eye, and hence, to the digital camera sensor. Unlike
a fluorometer, which is a very sensitive device and records residual fluorescence, the
minimum concentration values are raised to an amount of approximately 10 to 20 µg/dm3.
In the case of lower concentration values, the used camera and filtration method do not
enable precise extraction of the dye cloud. As noted during the tests, the fluorometer
already recorded an increase in dye concentration, especially at the cloud front, however,
such low concentrations were not visible in the images.
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Figure 10. Calibration curves for an RGB camera. (a) Day 1, fluorescein, (b) Day 2, fluorescein, (c) Day 3, Rhodamine WT.

3.3. Final Results

The ground sampling distance (GSD) of the presented photogrammetric images is
approximately 3 cm. Therefore, it is possible to calculate the dye concentration for minimal
grid size equal GSD. Most numerical models do not require such high data resolution.
Therefore, a regular grid, 2 × 2 m was established, and a mean concentration value was
calculated for its single cells. This additionally contributed to minimizing the impact of
noise and outliers on the concentration value for a given grid cell. The final results, in the
form of a regular 2 × 2 m grid showing a mean dye concentration value for a given cell,
are listed in Figure 11. The concentration grid was projected on a layer of the orthophoto
for the case on Days 1 and 2, and on the rectified images for the case on Day 3. This allows
to clearly see the geographic context and change dynamics for a given dispersion case.

The aforementioned method enables obtaining tracer distribution in space and over
time. The verification calculations involving the transport of a passive dissolved substance
can follow several methods. One of them is to conduct statistical calculations. The second
method is to run numerical calculations aimed at solving an advection dispersion equation.
An image of a 2 × 2 m grid taken at the moment of releasing the tracer in the river mouth
can be used as a starting condition, and the calculations can be conducted over time.
In such a case, the remaining images will constitute material for comparison with the
obtained results. The calculations can also be conducted assuming each obtained image
as the starting condition and the next image as the comparative material. This leads to
obtaining several, usually slightly different, transport parameter sets (including dispersion
coefficients), and to determine the mean values. It seems that the second approach is
more rational. The first approach usually assumes a large starting concentration, followed
by running the calculations. Unfortunately, in the case of high concentrations, reading
this from the image might differ relative to the reality. Subsequent sequences can exhibit
far-reaching differences. This flaw can be corrected in the second approach. Assuming an
incorrect concentration at the beginning is corrected during subsequent sequences, and the
mean dispersion parameters are the outcome.
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Finally, Tables 3 and 4 present control values for fixed stations at certain fixed stations.
The dye concentration measured at fixed station (C (µg/dm3)) is compared to the calculated
values form the presented method. Value fc(i, j) represents calculated concentration at
certain pixel position with the specific value, resulting from Equations (8) and (9). The
mean fc(i, j) represents a mean dye concentration value for a given cell (2 × 2 m).

Table 3. Measured and calculated values for specific fixed stations (T1–T3)-Day 1.

Sesion Time T1
C (µg/dm3)

Pixel
Value fc(i,j) Meanfc(i,j) T2C (µg/dm3)

Pixel
Value fc(i,j) Meanfc(i,j) T3C (µg/dm3)

Pixel
Value fc(i,j) Meanfc(i,j)

1 09:43 715 103 718 7081 1 0 3 2,83 1 0 3 3
2 09:55 2449 180 2454 24,532 1052 121 1032 1042 1 0 3 3
3 10:07 2069 166 2062 2051 1331 135 1315 1322 584 93 568 567
4 10:28 55 30 21 201 40 46 95 84 285 69 278 270
5 10:58 12 25 7 3 12 0 3 3 70 42 72 62
6 11:26 10 0 3 3 8 0 3 3 26 28 15 21
7 12:02 7 0 3 3 7 0 3 3 1 0 3 3
8 13:03 6 0 3 3 5 0 3 3 1 0 3 3
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Table 4. Measured and calculated values for specific fixed stations (T1–T3)-Day 3.

Sesion Time T1
C (µg/dm3)

Pixel
Value fc(i,j) Mean

fc(i,j)

1 09:43 10:25 2,932,284 1176 30,002,168
2 09:55 10:28 2,758,726 1129 28,145,903
3 10:07 10:31 37,611,736 1362 37,911,632
4 10:28 10:34 35,541,976 1343 37,062,427
5 10:58 10:52 6,331,872 372 6,160,352
6 11:26 10:55 4,430,896 295 4,758,875
7 12:02 10:58 3,906,064 23 36,958
8 13:03 11:01 4,237,472 276 4,436,768

4. Conclusions

The article presents an effective method for measuring the concentration and disper-
sion of fluorescent dyes using a UAV. This method is based solely on an image obtained
from a commercial RGB camera and a calibration measurement taken with the use of a
fluorometer. It enables to quickly estimate the concentration values for the entire surface of
the tested dye, in any spatial resolution, not lower than GSD.

Two different approaches were tested within the study. The first on Days 1 and 2 and
the second on Day 3. Typical photogrammetric flights following a single grid were used
on Days 1 and 2, thus constructing an orthomosaic. Such a flight plan enables mapping a
relatively large area from a low altitude. This, in the context of legal restrictions regarding
UAV flight altitude enables covering the required area, however, it takes a little longer.
In situations where the dispersion is very quick and rather dynamic, such a flight plan
can result in incorrect mapping of the dye cloud shape. Furthermore, in the case of basins
without visible bottom, it will be impossible to find tie points on the images and develop
an orthophoto. Similar to the case of [7], a water surface orthophoto will not be possible to
develop. On the other hand, the bottom image, especially with visible sediments, forms
a clear background for the dye and, in the case of low concentrations, will hinder the
filtration and extraction of the dye cloud. The solution applied for Day 3, namely, UAV
hovering over the area and taking images at a set interval, allows to track the dynamics
very accurately, with a preset time resolution. The time resolution for Day 3 was 2 s, while
it amounted to 15–20 min for Days 1 and 2. In this case, the camera was positioned in the
nadir, therefore, the area coverage of the image had to be adjusted by the flight altitude.
The flight area for large areas of monitored dispersion can be significant, therefore, this
might constitute a certain restriction. In this case, the flight altitude for Day 3 tests changed
from 150 to 350 m AGL (above ground level). Of course, one can use a wide-angle lens,
thus reducing the flight altitude.

In the first approach, the relatively long time to acquire images for an orthomosaic
building has become a challenge. The flight takes from a few to a dozen of minutes,
depending on the size of the tracer cloud. This can cause some difficulties in the synchro-
nization of in-situ measurements, and with a very dynamic changing, even make precise
measurements impossible. In the second approach, where the UAV remains hovering over
the study area and simultaneously captures the entire tracer cloud, covering its entire area
in the image, a low interval can be set. This allows to record very dynamic changes, while
synchronizing more accurately with the in-situ measurements.

In the case of lower concentration values, the used camera and filtration method
do not enable precise extraction of the dye cloud. Ten µg/dm3 was adopted as the limit
minimum concentration value. Below this value, the dye becomes invisible to the camera
and thus, it was impossible to extract the dye image. These results confirm the thesis set
in [61], where the authors clearly indicated that tracking a tracer from air is possible in
the case of concentrations that are directly visible to the human eye, hence, to the camera
lens. For higher concentrations, which already impossible to directly measure with a
fluorometer, this method provides good results. Dye concentrations above 50 µg/dm3
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are already clearly visible, and extreme concentration even above 1000 µg/dm3 has no
significant impact on detection.

The measurement on a cloudy day (Day 1) turned out to be the most effective. The
bottom image in clear water was minimal, which enabled precisely extracting the dye
cloud shape. Water transparency turns out to be a factor hindering UAV measurements and
subsequent data extraction following the described method. Furthermore, a measurement
on a sunny day poses a risk of strong water surface reflections, which in extreme cases may
make taking an image impossible.

The described method does not require calibration based on typical tables for radio-
metric calibration. Direct dye concentration measurement with a fluorometer was used
for calibration. This method requires additional field measurement and does not enable to
objectively determine the concentration based only on the image, as in the case of typical
remote sensing. The difficulty in this case is the lack of spectral characteristics of the used
camera, which is why this approach provides results, while requiring the use of a fluorom-
eter. Furthermore, a similar approach was also presented in [50], with the difference being
the use of a USV for sampling with a fluorometer.

This data can be used to calibrate or verify dispersion models. The method for
processing an image of concentration enables obtaining spatial, time-variable concentration
distributions on a discrete grid. Dispersion parameters can be obtained by applying
stochastic methods or conducting numerical calculations. Both methods enabled obtaining
good results.
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