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Abstract

The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in
poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human
pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of
influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend
but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI
outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal
autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of
HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological
variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a
significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The
variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a
predictor when moving average (MA) order at lag 1 month is considered.
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Introduction

The circulation of highly pathogenic avian influenza A virus

subtype H5N1 (hereafter, HPAI H5N1) in several countries has

been a serious global public health threat since 2003 because of its

potential to mutate to initiate a human pandemic [1–3]. Apart

from this, the subtype is zoonotic, already caused 377 deaths in

633 human clinical cases recorded in 15 countries, a case fatality

rate of ,60% [4]. To protect the public from the virus, and to stop

a future human pandemic attributable to an HPAI H5N1

progenitor virus, the ideal is to eradicate the virus from poultry

irrespective of geographical boundaries.

HPAI H5N1 has been detected in poultry and/or wild birds in

63 countries since 2003 when its international spread gained

momentum [5], although the virus was first detected in diseased

geese in the Guangdong province of China in 1996 [6]. It was

reported in Bangladesh in 2007 [7,8]. Most infected countries

have eradicated it, but some resource-limited ones, particularly in

South-East and South Asia [9] which have similar poultry rearing

and geo-climatic factors, have not succeeded in doing so. HPAI

outbreaks were predominantly clustered in three Asian countries -

Bangladesh, Indonesia and Vietnam and in Egypt in the Middle

East [9,10]. Seasonal peaks have occurred in these and other

countries [8,10–14]. Factors contributing to such peaks need to be

analyzed in order to forecast future events and to suggest

interventions. Unnoticed reservoirs [15] and wild birds and their

migrations [14,16] have been blamed, but the roles of meteoro-

logical factors have never been studied. Modeling of climatological

parameters on human influenza revealed some key meteorological

factors contributing to temporal intensification and spread [17–

19]. Here, for the first time, we illustrate the models and describe

the roles of major meteorological factors in the occurrence of

HPAI outbreaks in Bangladesh.

Materials and Methods

Climate and Seasons of Bangladesh
Bangladesh is between latitude 20u349N and 26u389N and

between longitude 88u019E and 92u419E (http://www.

banglapedia.org/HT/C_0288.HTM). It has a tropical monsoon

climate. Except the hilly southeast, most of the country is a low-

lying plain with a network of rivers and canals. Three distinct

seasons can be recognized - the cool dry winter from November

through February with January the coolest month, the pre-

monsoon hot summer from March through May with April the

hottest month, and the rainy monsoon, from June through

October. March may also be considered as spring, and mid-

October through mid-November may be called autumn (http://

www.banglapedia.org/HT/C_0288.HTM).

HPAI Outbreak Data
Bangladesh predominantly relies on passive reporting of HPAI

outbreaks, based on farmers’ complaints of high mortalities in their

flocks to the department of livestock services (DLS). Recently

active surveillance has been introduced in 306 (62%) of the 482
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upazilas (sub-districts) with support from Food and Agriculture

Organization (FAO) of the United Nations, by its Avian Influenza

Technical Unit (AITU). AITU has been working in close

conjunction with the Epidemiology Unit of DLS. Based on the

passive surveillance via DLS, and active surveillance via AITU,

550 HPAI outbreaks were confirmed from 2007 to April 2012.

Their detailed data including dates of confirmation were available

at AITU. Confirmation of HPAI was made by the National

Reference Laboratory for Avian Influenza (NRL-AI), Dhaka,

Bangladesh, by identifying M and H5 genes of the virus either by

conventional or real-time reverse transcription polymerase chain

reaction (RT-PCR) with extracted RNA from tracheal samples of

dead birds referred to the laboratory. The confirmation of a HPAI

outbreak was not based on the numbers of dead or sick chickens

on a particular farm or from a defined area. When tracheal

samples from dead chickens of any poultry farm sent to NRL-AI

were diagnosed positive for the presence of H5 gene of the virus it

was considered an outbreak. We collected epidemiological data of

the 550 HPAI outbreaks in Bangladesh by April 2012, which are

stored at AITU. The dates of confirmation of 529 HPAI outbreaks

from 2007 through 2011 were the temporal records of interest for

this study. Not having consistent information of all the meteoro-

logical variables for 2012 we excluded 21 outbreaks recorded in

the first four months of 2012. Monthly numbers of HPAI

outbreaks were aggregated for 60 months, from January 2007 to

December 2011.

Meteorological Data
Meteorological data were supplied from the Bangladesh

Meteorological Department (Abhawa Bhaban, Agargaon, Dhaka,

Bangladesh). Daily averages of the following were used: air

temperature (uC) (TE), relative humidity (%) (RH), cloud cover

(hour) (CC), rainfall (mm) (RF) and wind speed (knots) (WS) from

2007 to 2011. There are 35 meteorological observatory stations

across the country to record daily data of different meteorological

variables. Our meteorological data set contained separate daily

average (not minimum and maximum ranges) records of the

mentioned variables from each of these 35 stations. Daily solar

radiation (Cal/cm2/min) is also recorded from these stations. The

meteorological data that were provided from the Meteorological

Department had missing records of daily solar radiation for the

months August through December, 2007. Because of these missing

data we finally dropped this variable from the analysis.

Analysis
Daily average records of all the meteorological variables from

each of the 35 observatory stations were entered into a spread

sheet program (Microsoft Excel, 2007). A particular day’s

arithmetic mean of a variable was calculated from the values of

the day from all the 35 observatory stations. Aggregated daily

means of a variable for a particular month was calculated. The

number of outbreaks for a month was based on the date of

confirmation of each outbreak.

A 3-month rolling mean of HPAI outbreaks was calculated from

January 2007, and plotted as a bar chart to show the HPAI

dynamics.

The HPAI time series analyzed in this study is characterized by

autocorrelation. In order to account for the autocorrelation, a time

series technique called Auto Regressive Integrated Moving

Average (ARIMA) was employed [17,20]. An ARIMA model is

notated as ARIMA (p,d,q), where p indicates the autoregressive

(AR) order, d the differencing order and q the moving average

(MA) order. To compare seasonality of HPAI outbreaks we ran

multiplicative seasonal auto-regressive integrated moving average

(SARIMA) models with the same meteorological variables. A

multiplicative seasonal SARIMA model is designated as SARIMA

(p, d, q) (P,D,Q)S, where p and P indicate the autoregressive and

seasonal autoregressive order, d and D the non-seasonal differences

and seasonal differences and q and Q the moving average

parameters and seasonal moving average parameters, respectively,

and s represents the seasonal period. In this study the seasonal

period was 12.

Cross-correlation function (CCF) between a meteorological

variable series and the HPAI outbreak series was calculated to

identify the lags to be included in the model. The significance of

the cross-correlations was estimated on the basis of P,0.05, by

Figure 1. Three-monthly rolling average of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh in 2007–2011.
doi:10.1371/journal.pone.0098471.g001
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Figure 2. (a–e). Time series of monthly outbreaks of highly pathogenic avian influenza (HPAI) H5N1 and monthly mean average meteorological
variables: (a) Temperature (uC), (b) Relative humidity (%), (c) Rainfall (in mm), (d) Cloud cover (in hour), and (e) Wind speed (knots), 2007–2011,
Bangladesh.
doi:10.1371/journal.pone.0098471.g002
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Fisher’s transformation (Zr) of the cross correlation-coefficients

and standard errors of Zr [21].

ARIMA is based on the assumption that the outcome series is

stationary, which means that the mean and variances of the series

are independent of time. To reduce the variances of the HPAI

time series we took the log-transformed values. Autocorrelation

(AC) and partial autocorrelation (PAC) functions were then

examined to determine the initial AR order and MA order. First,

we developed a univariable ARIMA model, where the response

series depends only on its past values, followed by multivariable

ARIMA models with the meteorological variables as covariates.

Similarly, multiplicative univariable SARIMA model was devel-

oped, with only the outcome series at first, followed by the

multivariable ones incorporating the meteorological parameters.

For both kinds of multivariable models, meteorological parameters

were first included one at a time, then two, three and so on. In this

study, ARIMA and SARIMA models that included the meteoro-

logical variables were referred to as ARIMAX and SARIMAX,

respectively. Lags in months were considered in both ARIMAX

and SARIMAX models. Models with regression coefficients (b)

with P,0.05 were included in this study to compare their

performances. The performances of the models were compared

based on Akaike’s Information Criterion (AIC) and error % of b.

All modeling and their statistical tests were performed using

STATA software, version 11.0 (Stata Corporation, College

Station, Texas, USA).

Results

Based on 3-month rolling averages, the temporal trend of HPAI

outbreaks from 2007 to 2011 is displayed in Figure 1. The

numbers of outbreaks reported in 2007, 2008, 2009, 2010 and

2011 were 69, 226, 32, 31 and 171, respectively. The highest

monthly number of outbreaks was 91, in February 2008, and the

second highest was 79 in March 2011. There was a peak of

outbreaks each year in the cooler months, December to February,

extending to April in 2008 and 2011, and May in 2007.

Bangladesh has 64 administrative districts. Spatially, 21 (32.8%),

46 (71.9%), 16 (25%), 13 (20.3%) and 37 (57.8%) districts,

respectively, were recorded with HPAI outbreaks in the year 2007,

2008, 2009, 2010 and 2011 having the median numbers of

outbreaks 2 (range 1–14), 3 (range 1–20), 1 (range 1–7), 1 (range

1–10) and 3 (range 1–28).

Monthly means of average values of different meteorological

factors and corresponding monthly numbers of HPAI outbreaks

are displayed in Figure 2 (a–e).

There were significant correlations (p,0.05) between the

outcome series and cloud cover (in hour), relative humidity (%),

rainfall (in mm) and temperature (uC) at lag 0, 1 and 2 and wind

speed (knots) at lag 2 (Table 1).

For the first-order differenced series and the seasonally

differenced series the AC and PAC approached to cutoff at lag

2. The ARIMA, ARIMAX, SARIMA and SARIMX models

resulted as per the set criteria and the estimated coefficients are

summarized in Table 2. Of the two univariable ARIMA models

that resulted, ARIMA (1,0,1) had the best fit because of the lowest

AIC (159.16) and error % (29.7%). Among the four SARIMA

models resulted with the past seasonal inputs SARIMA (1,0,0)

(0,1,1,12) has the best AIC. Inclusion of one or more meteoro-

logical variables as inputs did not improve the performance of any

ARIMAX or SARIMAX models compared with the baseline

univariable ARIMA and SARIMA models. However, there are

ARIMAX and SARIMAX models of different orders with P,

0.05. Among them ARIMAX (1,0,1) with RH and ARIMAX

(1,0,1) with CC have the best fit and closest performances because

of a similar AIC (,150) and error % (36.5%). The model

ARIMAX (1,0,1) with TE input series also fitted with the set P

value, but had AIC of 154.41. Only one ARIMAX model,

ARIMA (1,0,1) with two covariates – TE and RH fitted with the

set p value while considering the MA order, but none of the

ARIMAX models fitted with .2 covariates. None of the

SARIMAX models with two or more meteorological inputs fitted.

Noticeably, five SARIMAX models of different orders fitted with

the RH input series. Of them SARIMAX (2,0,0) (1,0,0,12) and

SARIMAX (1,0,1) (1,0,0,12) had a similar AIC. However, the

latter has the best error %; consequently, we consider it the best

SARIMAX model with RH. Two SARIMAX models - SAR-

IMAX (1,0,0)(1,0,0,12) and SARIMAX (1,0,1) (1,0,0,12) also fitted

with seasonal inputs of CC. On the basis of AIC the latter has a

slightly better performance, although the error % was higher.

Discussion

The relationship between the meteorological factors and the

occurrence of HPAI outbreaks was assessed using 5 yearly data

from Bangladesh, which is severely affected by HPAI. Initially,

ARIMA and SARIMA models of different orders with first-order

series were tested. ARIMA (1,0,1) was the best non-seasonal

univariable model, where HPAI outbreaks depend on the

outbreaks in the previous month. The best two multiplicative

seasonal univariable models, where the past outcome series are the

inputs, were SARIMA (1,0,0) (0,1,1,12) and SARIMA (1,0,0)

(1,0,0,12), indicating non-dependency and dependency on the

outbreaks in the previous season (i.e. 1 year). Because these

SARIMA models have a better AIC (Table 2) compared with

Table 1. Cross-correlation between meteorological variables and outbreaks of highly pathogenic avian influenza (HPAI) H5N1 in
Bangladesh, 2007–2011.

Variable Lag (in month)

0 1 2

Cloud cover (in hour) 20.5758* 20.6358* 20.5544*

Relative humidity (%) 20.5161* 20.2528* 20.0278*

Rainfall (in mm) 20.4514* 20.4549* 20.4095*

Temperature (uC) 20.5146* 20.7646* 20.7315*

Wind speed (knots) 0.1691 20.1479 20.4277*

*indicates significant at P,0.05.
doi:10.1371/journal.pone.0098471.t001

Modeling Meteorological Factors on HPAI H5N1

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e98471



T
a

b
le

2
.

Su
m

m
ar

y
o

f
m

o
d

e
l

p
e

rf
o

rm
an

ce
s

w
it

h
th

e
e

st
im

at
e

d
co

e
ff

ic
ie

n
ts

fo
r

o
u

tb
re

ak
s

o
f

h
ig

h
ly

p
at

h
o

g
e

n
ic

av
ia

n
in

fl
u

e
n

za
(H

P
A

I)
H

5
N

1
as

so
ci

at
e

d
w

it
h

d
if

fe
re

n
t

m
e

te
o

ro
lo

g
ic

al
va

ri
ab

le
s,

2
0

0
7

–
2

0
1

1
,

B
an

g
la

d
e

sh
.

M
o

d
e

l
F

it
A

R
(b

)
P

M
A

(b
)

P
M

e
te

o
ro

lo
g

ic
a

l
V

a
rs

A
IC

E
rr

o
r%

V
a

r
b

P

A
R

IM
A

(1
,1

,2
)

1
5

9
.1

8
3

5
.3

0
.5

1
8

2
0

.0
0

5
0

.5
0

4
5

0
.0

6
3

A
R

IM
A

(1
,0

,1
)

1
5

9
.1

6
2

9
.7

0
.5

0
4

2
0

.0
0

1
0

.5
0

5
4

0
.0

0
1

SA
R

IM
A

(1
,0

,0
)(

0
,1

,0
,1

2
)

1
3

8
.5

6
1

0
.2

0
.7

4
4

2
,

0
.0

0
1

–
–

SA
R

IM
A

(1
,0

,0
)

(0
,1

,1
,1

2
)

1
3

1
.3

6
1

0
.6

0
.6

8
8

3
,

0
.0

0
1

2
0

.6
1

1
2

0
.0

0
4

SA
R

IM
A

(1
,0

,0
)

(1
,0

,0
,1

2
)

1
6

1
.2

5
1

8
.7

0
.4

6
0

9
0

.0
0

1
–

–

SA
R

IM
A

(2
,0

,0
)

(1
,0

,0
,1

2
)

1
5

2
.0

5
4

4
.6

0
.3

1
8

0
0

.0
2

5
–

–

A
R

IM
A

X
(1

,0
,1

)
w

it
h

T
E

1
5

4
.4

1
4

0
.8

0
.3

9
4

7
0

.0
1

0
5

0
.5

2
8

8
,

0
.0

0
1

T
E

2
0

.1
6

1
6

0
.0

1
4

A
R

IM
A

X
(2

,1
,0

)
w

it
h

R
H

1
6

4
.2

8
4

5
.5

0
.2

9
9

0
0

.0
2

8
–

–
R

H
2

0
.0

6
9

1
0

.0
0

3

2
0

.3
4

6
7

0
.0

3
4

A
R

IM
A

X
(1

,0
,1

)
W

it
h

R
H

1
5

2
.3

8
3

6
.5

0
.3

9
8

0
0

.0
0

6
0

.5
8

1
4

,
0

.0
0

1
R

H
2

0
.0

7
3

9
,

0
.0

0
1

A
R

IM
A

X
(1

,0
,1

)
W

it
h

C
C

1
4

9
.2

9
3

7
.0

0
.3

8
4

1
0

.0
0

7
0

.5
5

6
6

,
0

.0
0

1
C

C
2

0
.2

6
4

5
0

.0
0

2

A
R

IM
A

X
(1

,0
,1

)
W

it
h

T
E

an
d

R
H

1
4

7
.2

1
3

5
.2

3
0

.3
1

2
4

0
.0

6
6

0
.5

7
7

0
,

0
.0

0
1

T
E

2
0

.1
4

8
1

0
.0

0
7

R
H

2
0

.0
7

1
4

0
.0

0
2

SA
R

IM
A

X
(S

)
(2

,0
,0

)
(1

,0
,0

,1
2

)
w

it
h

R
H

1
4

8
.2

1
4

7
.1

0
.2

9
8

6
0

.0
3

4
–

–
R

H
2

0
.0

6
1

3
0

.0
0

5

SA
R

IM
A

X
(S

)
(1

,0
,0

)
(1

,0
,0

,1
2

)
w

it
h

R
H

1
5

7
.3

5
3

3
.1

0
.4

2
3

5
0

.0
0

3
–

–
R

H
2

0
.0

7
1

6
0

.0
0

8

SA
R

IM
A

X
(S

)
(1

,0
,0

)
(0

,0
,1

,1
2

)
w

it
h

R
H

1
5

8
.9

8
2

1
.0

0
.6

5
5

7
,

0
.0

0
1

0
.3

8
7

2
0

.0
0

5
R

H
2

0
.0

7
8

4
0

.0
0

4

SA
R

IM
A

X
(S

)
(1

,0
,1

)
(1

,0
,0

,1
2

)
w

it
h

R
H

1
4

9
.4

7
3

9
.5

0
.3

2
2

5
0

.0
1

1
0

.5
6

3
9

,
0

.0
0

1
R

H
2

0
.0

6
9

7
0

.0
0

2

SA
R

IM
A

X
(S

)
(1

,0
,1

)
(0

,0
,1

,1
2

)
w

it
h

R
H

1
5

0
.3

7
3

9
.6

0
.3

8
0

6
0

.0
1

2
0

.2
7

6
9

0
.0

5
1

R
H

2
0

.0
7

3
8

0
.0

0
1

SA
R

IM
A

X
(S

)
(1

,0
,0

)(
1

,0
,0

,1
2

)
w

it
h

C
C

1
5

7
.4

6
4

4
.8

0
.3

4
0

4
0

.0
2

5
–

–
C

C
2

0
.0

2
2

9
0

.0
4

3

SA
R

IM
A

X
(S

)
(1

,0
,1

)
(1

,0
,0

,1
2

)
w

it
h

C
C

1
4

9
.0

9
5

1
.0

0
.2

4
2

9
0

.0
5

0
–

–
C

C
2

0
.2

2
6

3
0

.0
1

1

A
b

b
re

vi
at

io
n

s:
A

R
IM

A
=

A
u

to
re

g
re

ss
iv

e
In

te
g

ra
te

d
M

o
vi

n
g

A
ve

ra
g

e
;

S
=

Se
as

o
n

al
(M

u
lt

ip
lic

at
iv

e
);

X
=

w
it

h
M

e
te

o
ro

lo
g

ic
al

In
p

u
t

Se
ri

e
s;

A
IC

=
A

ka
ik

e
’s

In
fo

rm
at

io
n

C
ri

te
ri

o
n

;
A

R
=

A
u

to
re

g
re

ss
iv

e
;
b

=
Es

ti
m

at
e

d
co

e
ff

ic
ie

n
t;

M
A

=
M

o
vi

n
g

A
ve

ra
g

e
;

V
ar

=
V

ar
ia

b
le

;
T

E
=

A
ve

ra
g

e
A

ir
T

e
m

p
e

ra
tu

re
(u

C
);

R
H

=
R

e
la

ti
ve

H
u

m
id

it
y

(%
);

C
C

=
A

ve
ra

g
e

C
lo

u
d

C
o

ve
r

(i
n

h
o

u
r)

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
8

4
7

1
.t

0
0

2

Modeling Meteorological Factors on HPAI H5N1

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e98471



ARIMA (1,0,1), it can be assumed that HPAI outbreaks are

modeled best when multiplicative seasonality is incorporated.

Yearly temporal patterns of HPAI outbreaks in Bangladesh

varied in magnitude and spatial distributions, although there was a

peak of outbreaks each year in the cooler months. Because 32.8%,

71.9%, 25%, 20.3% and 57.8% of the total districts across the

country were recorded with HPAI outbreaks, respectively, in the

year 2007, 2008, 2009, 2010 and 2011 we used the aggregated

data of the climatological variables recorded from all the 35

observatory stations located in the country.

The evolutionary history of the virus based on phylogenetic

analysis of the HA gene of representative isolates from HPAI

outbreaks in Bangladesh revealed that only the clade 2.2 of the

virus subtype H5N1 caused the outbreaks from 2007 to 2010 [22].

This was also the predominant clade identified from the outbreaks

in 2011. However, two new clades: 2.3.2 and 2.3.4 were also

associated with some outbreaks, suggesting their new introductions

to the country in the year 2011 along with the existing circulation

of clade 2.2 since 2007 [23].

The incorporation of one or any combination of the meteoro-

logical parameters as inputs in the SARIMAX models did not

improve the performance of any model compared with the

corresponding univariable model. There is only one multivariable

model: ARIMAX (1,0,1) with inputs of two meteorological

variables: RH and TE has p,0.05 for the estimated coefficients

of MA, suggesting evidence against the null hypothesis [21] that no

association exists between the occurrence of HPAI and RH along

with TE. In single inclusion of RH with different AR and MA

orders, there are 2 ARIMAX and 5 SARIMAX models where RH

shows significant association with the outcome series (P,0.05).

Among these are three very closely performing SARIMAX models

because of similar AIC, ranging from 148 to 150; two of which:

SARIMAX (S) (2,0,0) (1,0,0,12) and SARIMAX (S) (1,0,1)

(1,0,0,12) depend on the outbreaks in the previous 12 months,

but the third one, SARIMAX (S) (1,0,1) (0,0,1,12) does not. Two

SARIMAX models where estimated CC coefficient is significant

(p,0.05) also depend on the HPAI outbreaks in the past 12

months. The best SARIMAX models, especially those with RH

covariate, indicate that RH is probably the most important

meteorological predictor of the seasonal trend of HPAI outbreaks

in Bangladesh. The estimated coefficients for the outcome and RH

of these models illustrate that monthly decreasing in RH is

associated with monthly increasing numbers of HPAI outbreaks:

this association has been observed over the last five years in

Bangladesh since 2007.

The contributory role of TE on seasonal HPAI outbreaks in

Bangladesh is difficult to explain from this study because no

SARIMAX model has it as a significant covariate. But in a

particular year TE alone or with RH might have some influence,

as evidenced in ARIMAX (1,0,1) with TE and ARIMAX (1,0,1)

with TE and RH (Table 2), where monthly decreasing in TE is

associated with monthly increasing number of HPAI outbreaks.

However, decreasing monthly CC might be associated with

decreasing HPAI outbreaks in a year and the previous one. The

models wherein RH is a significant predictor are more diverse in

AR and MA orders than those with CC as a significant covariate.

To our knowledge, this is the first report on the roles of RH in

seasonal occurrence of HPAI outbreaks. However, RH along with

rainfall and land surface temperature was a significant predictor

for human influenza in Hong Kong [17]. RH and TE are often

associated with human influenza in Tokyo and in temperate

regions [19]. Mahamat et al [24] reported that an increase of 1 g/

kg of specific humidity (SH) resulted in a decrease of 11% in

influenza-like illness incidence in French Guiana. To calculate SH,

daily average of surface pressure is also required along with daily

records of TE and RH. Because we had no daily surface pressure

data we used RH, instead of SH in our analysis, as applied by

many similar time-series studies [17,25]. Dry air with low RH and

low temperature during the winter months seems to increase the

transmission of HPAI H5N1 virus among poultry. Dry air might

favor the transmission of HPAI H5N1 through aerosol, and its

longer survival in dry air, although the present study has no

evidence to verify this. However, Lowen et al [26] found that at

low RH and temperature, transmission of human influenza virus is

most efficient. The lowest monthly mean average RH was ,70%

in the driest months, in winter, and might reach as high as , 88%

in the monsoon in Bangladesh, as seen in the 5 years’ data used in

this study. What triggers the first outbreak in a year is unknown,

but the virus introduction by migratory birds is plausible [16,27].

However, the outbreaks peak in the dry months when the RH is

,70%, and almost cease when the monsoon gradually takes over

with RH as high as 88%. Thus moist heat might play an important

role in inactivating the virus in the air, resulting in a reduced rate

of virus transmission. RH (not rainfall) seems to be an important

parameter used in predicting HPAI trend in Bangladesh.

Decreasing CC is linked to decreasing RH, and possibly to

decreasing TE, because radiation of heat from earth surface is

greater when the sky is cloud-free. There were no models where all

these three could be fit as significant covariates.

Bangladesh still predominantly relies on passive surveillance for

HPAI. This passive reporting depends very much on monetary

compensation. In its absence, farmers can sell birds incubating the

virus in live markets, helping spread the virus. Stopping of

providing monetary compensation could be the reason why HPAI

reported cases are surprisingly very low from 2013 onwards in

Bangladesh. The virus is still very active in Bangladesh. In

response to farmers’ demand, the country has introduced

vaccination against the virus in two districts [28]. Controlling

HPAI by vaccination is a debated issue, and the importance of

vaccination must not substitute for good biosecurity.

The best models from this study might also be applicable for

predicting HPAI in other countries, particularly in South- and

South-East Asia, because of similar climate.

In conclusion, SARIMA (1,0,0) (0,1,1,12) and SARIMA (1,0,0)

(1,0,0,12) are the two best models and their performances are

better than any ARIMA, ARIMAX or SARIMAX models,

indicating a seasonal trend of HPAI outbreaks in Bangladesh.

RH is a significant predictor in two ARIMAX and five SARIMAX

models with different AR and MA orders, and the estimated

coefficients reveal that decreasing monthly RH alone or along with

decreasing monthly TE might be associated with increasing

monthly number of HPAI outbreaks. On its own, CC is also a

significant covariate in two SARIMAX models.
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