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Abstract
Motivation: Drug repurposing is gaining interest due to its high cost-effectiveness, low risks, and improved patient outcomes. However, most 
drug repurposing methods depend on drug-disease-target semantic connections of a single drug rather than insights from drug combination 
data. In this study, we propose SynDRep, a novel drug repurposing tool based on enriching knowledge graphs (KG) with drug combination 
effects. It predicts the synergistic drug partner with a commonly prescribed drug for the target disease, leveraging graph embedding and ma-
chine learning (ML) techniques. This partner drug is then repurposed as a single agent for this disease by exploring pathways between them in 
the KG.
Results: HolE was the best-performing embedding model (with 84.58% of true predictions for all relations), and random forest emerged as the 
best ML model with an area under the receiver operating characteristic curve (ROC-AUC) value of 0.796. Some of our selected candidates, 
such as miconazole and albendazole for Alzheimer’s disease, have been validated through literature, while others lack either a clear pathway or 
literature evidence for their use for the disease of interest. Therefore, complementing SynDRep with more specialized KGs, and additional train-
ing data, would enhance its efficacy and offer cost-effective and timely solutions for patients.
Availability and implementation: SynDRep is available as an open-source Python package at https://github.com/SynDRep/SynDRep under 
the Apache 2.0 License.

1 Introduction
Despite tremendous technological, regulatory, and scientific 
advances that increase the efficiency of drug research and devel-
opment, the resulting therapeutic outcomes need to catch up 
with the corresponding spending on these advances (Ashburn 
and Thor 2004, Scannell et al. 2012). Additionally, the rising 
cost and time required to develop new drugs have resulted in 
lower profits for the pharmaceutical sector and a longer re-
sponse time to disease outbreaks (Pushpakom et al. 2018). 
Conversely, drug repurposing, i.e. finding novel indications for 
current drugs, has advantages over de novo drug development, 
including shorter development time and lower cost risks 
(Choudhury et al. 2022, Hua et al. 2022), since compounds al-
ready investigated and approved by regulatory bodies, incorpo-
rating safety and efficacy profiles, can be reassessed critically in 
a new therapeutic context (Lage-Rupprecht et al. 2022).

In recent years, drug repurposing research has greatly 
benefited from the exploding growth of biomedical data-
bases. Therefore, plenty of computational techniques have 

been devised to analyze different biomedical data systemati-
cally to hypothesize new indications for a drug or to find new 
drugs for a specific disease (Jarada et al. 2020, Luo et al. 
2021, Pan et al. 2022). Computational drug repurposing 
approaches are mostly data-driven; they encompass the sys-
tematic analysis of data from various modalities, e.g. chemi-
cal structure, proteomic data, gene expression, genotype, or 
electronic health records, which can then drive the repurpos-
ing hypotheses (Hurle et al. 2013, Zong et al. 2022). For 
practical analysis of such vast data types, measures for appro-
priately aggregating them in an informative manner need to 
be taken. One of these measures is the organization and rep-
resentation of data into a knowledge graph (KG), which aids 
in identifying semantic connections between multiple resour-
ces and allows for knowledge reasoning (Chen et al. 2020, 
Gao et al. 2022). Extending these mechanistic KGs with 
drug-related data to form drug-target-mechanism-oriented 
data models results in so-called PHARMACOMES (Lage- 
Rupprecht et al. 2022).
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Pharmacomes with their integration of pathophysiology 
mechanisms, drug targets, and drugs/compounds offer the 
possibility to look at dual targeting strategies and combinato-
rial targeting of different pathophysiology mechanisms 
through combinations of drug repurposing candidates. Drug 
combinations offer excellent efficacy in treating multifacto-
rial diseases involving more than one genetic pathway, such 
as cancer (Zhou et al. 2023), diabetes (Dubourg et al. 2022), 
Alzheimer’s disease (AD) (Knorz and Quante 2022), and car-
diovascular diseases (Lombardi et al. 2020). In principle, they 
also offer the option to specifically target comorbidity path-
ways. Therefore, incorporating new links among drugs into 
pharmacomes, indicating drug combinations, paves the way 
for developing new synergistic drug combinations. It warns 
of potential drug–drug interactions in a more comprehensive 
way that depends on direct as well as indirect links between 
drugs. Applying some link prediction algorithms afterward 
will predict new drug relationships, gain more insights into 
drug mechanisms, and eventually repurpose drug candidates 
for various diseases.

For a long time, drug synergy studies depended on trial and 
error, which suffered from high labor and time costs and 
exposes patients to ineffective treatment or undesirable side 
effects (Pang et al. 2014, Day and Siu 2016). This was then 
replaced by high-throughput screening (HTS), where many 
measurements can be produced reasonably quickly and at a 
lower cost (He et al. 2018). During HTS, different concentra-
tions of two or more drugs are applied to a cell line. 
However, the high genomic correlation between the original 
tissues and the derived cell lines remains imperfect (Ferreira 
et al. 2013). Moreover, HTS cannot cover the whole combi-
nation space for drugs (Goswami et al. 2015). 
Computational methods such as deep learning and machine 
learning (DL/ML) models can efficiently explore the vast syn-
ergistic space using the available HTS synergy data. Recent 
methods range from systems biology (Feala et al. 2010), ki-
netic models (Sun et al. 2016), mixed integer linear program-
ming (Pang et al. 2014), computational methods based on 
drug-induced gene expression profile and dose-response 
curves (Goswami et al. 2015), to ML approaches including 
random forests and Naive Bayes methods (Li et al. 2015, 
Wildenhain et al. 2015), and DL approaches such as deep 
neural networks, graph autoencoder, and convolutional neu-
ral network (Preuer et al. 2018, Kuenzi et al. 2020, Sun et al. 
2020, Kim et al. 2021, Liu and Xie 2021, Li et al. 2023). 
However, these methods are restricted to predicting synergis-
tic combinations and do not consider drug synergy prediction 
as an intermediate step in the drug repurposing process. In 
our approach, we leverage the synergistic prediction as a 
foundation for the repurposing process.

We propose a new drug repurposing tool (SynDRep), 
which depends on enriching knowledge graphs with drug 
combination effects. Our approach selects repurposing candi-
dates, by predicting synergistic drug partners of a commonly 
prescribed drug for the target disease. This is followed by the 
selection of “safe drug partners” as a single-agent therapy for 
the disease. The drug’s candidacy for repurposing is con-
firmed by exploring the pathway within the KG between the 
drug and the target disease. Additionally, experimental evi-
dence about the beneficial effect of the candidate on target 
disease supports the repurposing profile. Therefore, this ap-
proach combines the speed and cost reduction of the compu-
tational approach with the accuracy and certainty of manual 

curation and expands the current drug repurposing landscape 
with a new concept relying not only on drug-disease-target 
semantic connections but also on the drug–drug syn-
ergy effect.

2 Methods
2.1 Overall workflow
The primary objective entailed the integration of drug–drug 
relationships into an established KG to serve as a founda-
tional framework for subsequent drug synergy prediction and 
repurposing (Fig. 1). The process begins with gathering and 
refining data from drug combination databases, where these 
combinations are categorized into synergism or antagonism 
and then input into a neo4j instance of our chosen KG. Next, 
ML methods were performed based on drug physicochemical 
properties and enriched KG topological features. Due to the 
inability to validate ML model predictions, we used embed-
ding models to predict the missing inter-drug relations in the 
enriched KG. However, the selected KG included certain am-
biguous relationships, such as “association” and “in complex 
with,” as well as hub nodes that have numerous connecting 
relationships, particularly the disease nodes. Therefore, we 
repeated embedding on another version of the same KG after 
the removal of noncausal relations and hub nodes. To over-
come the underperformance of embedding models experi-
enced in this case, we applied a combination of embedding 
followed by ML modeling of resultant embedding vectors. 
Ultimately, we identify repurposing candidates by predicting 
synergistic drug partners for commonly prescribed medica-
tions related to the target disease and considering safe part-
ners as a single agent for this condition. Candidate profiles 
are validated by investigating the pathways present within 
the KG connecting the candidate drug to the target disease. 
Moreover, experimental evidence from the literature support-
ing the candidate’s positive impact on the target disease fur-
ther reinforces the repurposing profile.

2.2 Data collection
The initial phase involved the careful selection of a compre-
hensive KG, such as the Human Brain Pharmacome (HBP) 
and appropriate sources for drug–drug combinations such as 
drug synergy databases, e.g. DrugcombDB, DrugcombPortal, 
and SYNERGxDB.

2.2.1 Human brain pharmacome
The KG selected for this study was HBP (pharmacome data-
base at https://graphstore.scai.fraunhofer.de, downloaded on 
25 September 2023). HBP combines knowledge from various 
sources with a focused drug-target-mechanism-oriented data 
model. It contains information curated from bibliographic 
databases such as PubMed, pathway databases such as 
Reactome, KEGG, and Pathway Commons, protein–protein 
interaction databases such as IntAct, BioGRID, and 
StringDB, and drug databases such as DrugBank, Clinical 
Trials, Sider, and ChEMBL. (Lage-Rupprecht et al. 2022). 
HBP is a comprehensive KG consisting of 136 838 nodes, 
which represent 27 node types, including biological and mo-
lecular entities as well as biological processes, such as 
“Gene,” “Protein,” “Drug,” “SNP,” “BiologicalProcess,” 
“Pathology,” “Complex,” “Degradation,” and “Protein 
Modification.” These nodes are interconnected through 
731 974 edges, representing the interactions or relations 
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between them. The edges have 72 types, including causal rela-
tions like “increases,” “decreases,” or “causes_no_change” 
and noncausal relations such as “association,” 
“has_variant,” or “equivalent_to.”The data of this pharma-
come has been extracted from the online source, stored lo-
cally using neo4j (version 5.22.0), and added to our GitHub 
page (https://github.com/SynDRep/SynDRep/blob/main/ 
Data/Human_Brain_Pharmacome/kg.tsv). It formed the base 
for the next step of HBP enrichment.

2.2.2 Drug synergy databases
To accommodate our expansive HBP, we selected databases 
that contain the highest number of drugs. Drug combination 
effects have been gathered from DrugcombDB (Liu et al. 2020), 
DrugcombPortal (Zagidullin et al. 2019), and SYNERGxDB 
(Seo et al. 2020). The scores for synergism models, such as the 
highest single agent (HSA) model (Berenbaum 1989), Bliss 
model (Bliss 1939), Loewe model (Loewe 1953), and the zero 
interaction potency (ZIP) model (Yadav et al. 2015), were used 
to supplement the new edges created in the next step. These 
models consider in their calculation the different effects of drug 
combinations at different drug concentrations.

2.3 KG enrichment
The KG enrichment was done over several steps. Data 
extracted from drug combination databases were dedupli-
cated. The synergism scores from the same combinations 
with different scores were averaged. Drug combinations were 
tested across different cell lines (359 cell lines in total), such 

as CBRC058, NCI-H322M, and KBM-7 cell lines. Some 
combinations of drugs produce synergism in one cell line and 
antagonism in another. Therefore, to remove the effect of dif-
ferent cell types, we selected only combinations that pro-
duced either synergism or antagonism across different cell 
types. Moreover, to go with a standardized approach, we se-
lected only one synergism score (ZIP score), as the ZIP model 
encompasses the Loewe additivity and the Bliss indepen-
dence. In addition, it is more accurate at detecting potency 
changes in drug combinations compared to HSA and Bliss in-
dependence models (Yadav et al. 2015).

2.4 Classical machine learning
In order to predict new synergistic relations between drugs, 
we started with the classical ML approaches, to assess their 
ability and efficiency for link prediction compared to KG em-
bedding. Five ML models, namely: logistic regression, elastic 
net, gradient boosting, random forest, and support vector 
machine, were selected along with the features of each pair of 
drugs to classify their combination either into synergism or 
antagonism. These features encompassed aspects related to 
the KG, as well as physicochemical attributes of the drugs as 
depicted in Table 1. KG features, which depend on the net-
work structure and topological features were extracted from 
HBP using NetworkX (version 7.1.3) (Hagberg et al. 2008), 
a Python package for the creation and study of the structure 
of complex networks. Physicochemical attributes of the drugs 
were extracted from PubChem or computed using the RDKit 
Python package (version 2024.3.2) (Landrum 2023). The 

Figure 1. The overall workflow of the study, including the Python packages and data sources used. The work starts with data collection and refinement 
from combination databases using Pandas and Requests, then the synergy data is fed into a neo4j instance of the KG. Third, ML using scikit-learn, 
embedding using PyKEEN, or embedding followed by ML was used to model and predict the synergies. Finally, the identification of repurposing 
candidates by predicting synergistic drug partners for commonly prescribed drugs for the target disease and repurposing safe partners as a single agent 
for this disease. Candidate profiles are confirmed by examining the existence of pathways within the knowledge graph between the candidate drug and 
the target disease using Pandas and NetworkX. Experimental evidence from the literature supporting the candidate’s beneficial effect on the target 
disease further validates the repurposing profile.
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features, labels, and models used are listed in Table 1. The 
classification was performed using a 10-fold nested cross- 
validation approach with a Grid Search optimizer, and the 
model performance was assessed based on the area under the 
receiver operating characteristic curve (ROC-AUC) values for 
all models. The data was initially split into a training set 
(90% of the dataset, corresponding to 20 840 drug pairs) and 
a hold-out test set (10% of the dataset, corresponding to 
2316 drug pairs). During the inner cross-validation loops, the 
training data was further split into 90% training (18 756 
drug pairs) and 10% validation (2084 drug pairs) for hyper-
parameter optimization (HPO). After completing HPO, 10 
model instances were trained with the best parameters 
obtained from the inner loops and were subsequently evalu-
ated on the held-out test set using the ROC-AUC score.

Following a comprehensive assessment of all models and 
the calculation of ROC-AUC. Since the elastic net model 
exhibited the highest ROC-AUC, we utilized it to predict the 
synergistic interactions between each pair of drugs in HBP. 
Subsequently, combinations predicted as synergistic were 
chosen to constitute the predicted synergism set. A literature 
check was conducted to validate the top five synergistic com-
binations based on their predicted probabilities during the 
initial prediction process. This validation step aimed to en-
sure the credibility and accuracy of the model’s predictions 
by cross-referencing them with existing scientific literature.

2.5 KG embedding
To embed the enriched HBP, we used PyKEEN (Python 
KnowlEdge EmbeddiNgs) (Ali et al. 2021), a Python package 
designed for training and evaluation of KG embedding mod-
els. We worked under stochastic local closed world assump-
tion (SLCWA), where a randomized subset is drawn from the 
combination of head and tail generation strategies, initially 
defined in local closed world assumption, and these selected 
triples are treated as negatives. This approach offers several 
advantages, including the lower load of computation and the 
flexibility to include new negative sampling strategies.

2.5.1 Data splitting
To prevent overfitting, the set of triples (source–relation– 
target) that make up the network structure of the enriched 
HBP was then stratified using the PyKEEN into a training set 
(80%) and a test set (20%). To prevent the dissemination of 
the test set into the training set during the HPO or training of 
the model, we isolated the test set, and the training set was fur-
ther split into training (80%) and validation (20%) sets 
(Supplementary Fig. S1). We checked that each split contained 
the corresponding percentage of triples and that the training 

set contained all the relation types in HBP to ensure that the 
test and validation sets did not contain any relation type new 
to the model after training. To further assess the model’s effi-
ciency in predicting drug–drug relations, one more test set was 
formed from the original test set, the drug–drug test set, which 
contained only the drug–drug relations from the test set. These 
two sets were used to evaluate model performance.

2.5.2 Model selection
We selected five models for embedding HBP: TransE (Bordes 
et al. 2013), TransR, RotatE (Lin et al. 2015), ComplEx 
(Trouillon et al. 2016), and HolE (Nickel et al. 2015). We after-
ward used the best-performing model to predict the new syner-
gistic or antagonistic relations. Predictions were made using the 
two entities as head and tail, and the model predicts the relation 
type between them. The output of the prediction model is a 
ranking of the possible relations between these two entities 
according to a score produced by the model. Therefore, we se-
lected the first three predictions to assess the model’s perfor-
mance by calculating the percentage of true prediction in each 
rank compared to all predictions in this rank (Equation 1): 

Percentage of true predictions

¼
Number of true predictions in a rank

Total number of prediction in the same rank
X100

(1) 

We assessed the percentage of true predictions at the first rank 
to determine its suitability for further analysis. Furthermore, 
the second and third ranks were also selected to check whether 
false predictions at rank 1 had corresponding true predictions 
at ranks 2 or 3, demonstrating the ability of the embedding 
model to enrich the true predictions in the highest ranks. This 
led us to exclude ranks beyond three, as most of the true pre-
dictions were within these three ranks. Additionally, we calcu-
lated the multi-class ROC-AUC using the highest-ranked 
prediction for each pair of drugs in the test set. This involved 
converting the actual and predicted relation types into binary 
form and then averaging the ROC-AUC values for all relation 
types, as shown in the following Equation 2: 

Multiclass ROC − AUC ¼
Σ ROC − AUC for each relation type

Total number of relation types

(2) 

Based on the values of the percentage of true predictions and 
multi-class ROC-AUC, we selected the best-performing 

Table 1. The features and labels used to train the different machine learning models.

Features and metrics Labels Models

KG-related Physicochemical

Drug node degree Molecular weight Synergism Logistic regression
Drug node clustering coefficient Log P Antagonism Elastic net
Drug node page rank Total polar surface area Gradient boosting
Shortest path length Number of hydrogen bond donors Random forest
Cosine similarity Number of hydrogen 

bond acceptors
Support vector machine

Rotatable bond count
Tanimoto coefficient
Morgan fingerprint
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model for further prediction of the drug–drug relations that 
are not in HBP.

2.6 Synergy prediction
After assessing all models and calculating the percentage of 
true prediction, we selected RotatE to predict all drug–drug 
relations further. Utilizing the trained RotatE model, we pre-
dicted the relations between each drug pair within HBP. Both 
the forward case (with drug A as a head and drug B as a tail) 
and the reverse case (with drug B as a head and drug A as a 
tail) were predicted. The predicted relationship which ranked 
as the first was then extracted for each drug pair. To refine 
our dataset, we eliminated cases where nonmutual synergism 
or antagonism was observed. Then, we segregated the pre-
dicted dataset into synergism and antagonism categories, fo-
cusing on selecting data that showed synergistic interactions 
for subsequent in-depth analysis. A comprehensive literature 
review was conducted to validate the model’s predictive 
power, particularly for the predictions with the high-
est scores.

2.7 Drug repurposing
The synergy effect frequently stems from different drugs hav-
ing influences on the same, parallel or even different path-
ways essential for an observed phenotype, and synergy is 
induced by targets aggregating at specific pathways that con-
trol the state of the disease (Cokol et al. 2011, Chen et al. 
2015). Consequently, we propose that if predicted synergy 
partners have a shared pathway in HBP related to the target 
disease, it is likely that the partner, to a commonly prescribed 
drug to the target disease, could be repurposed as a stand-
alone treatment. While the existence of a pathway alone is in-
sufficient to support this hypothesis, it does narrow the pool 
of potential repurposing candidates by focusing on drugs 
with both synergy and a shared pathway. As such, the se-
lected candidates must undergo validation through in vitro or 
in vivo studies. Since the primary focus of HBP is on molecu-
lar interactions and patho-mechanisms within the brain and 
their relation to neurodegenerative diseases (NDDs), we 
chose AD and schizophrenia as model diseases to align with 
the scope of HBP. Therefore, we evaluated predicted syner-
gistic combinations involving drugs used for AD, schizophre-
nia, and bipolar disorder to assess the feasibility of 
repurposing their synergistic partners for these conditions. 
Based on our predictions, we selected a list of drugs that 
exhibited the highest-scoring synergistic combinations for 
each drug. It is noteworthy that our selection criteria 
excluded drugs with cytotoxic or severe side effects, such as 
anticancer or carcinogenic drugs, ensuring that the chosen 
repurposing candidates prioritize safety considerations. This 
approach was initially followed by a meticulous search for a 
possible common pathway in HBP between the two drugs in 
the combination and the disease. Subsequently, we reviewed 
the literature for possible studies about using these repur-
posed candidates as single agents for the disease of interest.

2.8 Causal-only pharmacome
Due to unclear relationships between repurposing candidates 
and target diseases in the pathways explored in HBP, we re-
peated the trial using a causal-only version of HBP. In this 
version, we eliminated noncausal relationships present in the 
HBP and retained only direct causal relationships, such as 
increases, decreases, or no effect between HBP entities (e.g. 

genes, proteins, and drugs). Entities that had no connecting 
relationships after the removal of noncausal relations were 
also omitted. Moreover, we removed hub nodes, primarily 
the disease nodes to generate causal-only pharmacome 
(COP). A separate version of COP, with disease nodes 
retained, was used for pathway confirmations.

Since the embedding approach outperformed ML in the 
HBP case, we applied it to COP as well. However, because 
the embedding-only approach was less efficient for COP, we 
introduced a third approach that combined embedding with 
ML. We extracted vector embeddings of the KG and used 
them to train and test ML models (Table 2). Utilizing the 
best-performing ML model, we generated final predictions 
for drug–drug relationships, which were then applied to drug 
repurposing for AD, schizophrenia, and bipolar disorder. We 
also tested our repurposing method on COVID-19, which 
lacks a node in COP, to evaluate the model’s effectiveness as 
a rapid tool for drug repurposing during disease outbreaks.

3 Results
3.1 KG enrichment
The KG enrichment was done over several steps as described 
in Section 2. The drug combination dataset contained 23 171 
pairs from 882 unique drugs, which were used to enrich 
HBP. These combinations were further converted into edges 
to be added to the neo4j instance of HBP by converting the 
values of ZIP scores into synergistic, antagonistic, or additive 
effects. However, to avoid class imbalance and model overfit-
ting due to the extremely low number of additive effect rela-
tions, additive edges were not added to HBP. The enriched 
HBP was then completely extracted as triples of source, rela-
tion, and target and was used to train, test, and validate the 
KG embedding models.

3.2 Classical machine learning
The cross-validation and synergy prediction results from the 
four selected ML models are detailed in Supplementary 
Results Section S1. Due to the lack of virtually validating 
studies and because this classical ML approach does not take 
relation type into consideration, we conducted a graph- 
embedding-based approach, as explained in the next section.

3.3 KG embedding
Lacking a virtual validation by confirming literature, we 
turned our focus to novel combination prediction using graph 
embeddings. To do so we performed HBP embedding using 
different algorithms to model and predict novel drug-drug 
links in KG. When tested on the test set, RotatE model con-
sistently outperformed other models in producing true pre-
dictions at the first rank as demonstrated by Fig. 2 and 
explained in Supplementary Results Section S2. More 

Table 2. Embedding models trained on triplets from the causal-only 
pharmacome, and the machine learning models trained on the 
embedding vectors and used for synergism prediction.

Embedding models Machine learning models

TransE Logistic regression
TransR Elastic net
RotatE Gradient boosting
ComplEx Random forest
HolE Support vector machine
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explanation of these results is elaborated in Supplementary 
Results Section S2. Based on these results, the RotatE model 
was selected as the model of choice for predicting relation-
ships between drugs that do not have a direct link 
within HBP.

3.4 Synergy prediction
Synergy predictions were generated leveraging the trained 
RotatE model. The prediction set was further processed as 
outlined in Supplementary Results Section S3. The five 
highest-scoring synergy combinations were subjected to a 
thorough literature review to validate the reliability of the 
model’s predictions, as detailed in Supplementary Table S2. 
The findings revealed that most of these combinations either 
exhibited documented synergy or were being utilized in com-
bination for the treatment of the specific diseases for which 
they were intended.

3.5 Drug repurposing
The assessment of the plausibility of repurposing candidates 
for the target disease was done by revising the literature for 
scientific data about their use in the selected disease and de-
termining the common pathways between the synergistic 
drugs and the disease in HBP using the Python package 
NetworkX. This comprehensive approach enhances our un-
derstanding of potential therapeutic applications and facili-
tates informed decision-making regarding drug repurposing 
candidates. Detailed explanations of these candidates are 
elaborated in Supplementary Results Section S4.

Leveraging a broad and highly connected KG such as HBP, 
with both causal and noncausal relations like association and 
complexity, can lead to suboptimal model training and pre-
diction, as well as to less explainable pathways between drugs 
and diseases. In addition, the presence of nodes with high 
degrees in KG will lead to inadequate training and inaccurate 

predictions as well. We believe these factors contributed to 
the discrepancy between our model’s predictions for schizo-
phrenia repurposing candidates and existing literature evi-
dence (Supplementary Results Section S4a). To address this, 
we conducted a subsequent trial using COP, where we re-
moved noncausal relationships and hub nodes. The hub 
nodes were removed before embedding, but we retained them 
in another copy of COP used for pathway confirmations.

3.6 Causal-only pharmacome
After the removal of noncausal relations and disease nodes 
that form hubs in the HBP, the same KG embedding models 
were used to model the causal-only version of the HBP. HolE 
was the best model to produce true predictions at the lowest 
rank (74.90% for all relations), as shown in Supplementary 
Fig. S2. Although it was also the best-performing model for 
drug–drug relations, the percentage of true predictions at the 
lowest rank was low (54.65%), indicating nearly random 
predictions (Fig. 3). Therefore, we changed the design of the 
experiment to incorporate KG embeddings, followed by ML 
model training and prediction using the extracted embedding 
vectors as input features. In this approach, we utilized the 
vector embeddings of COP without enrichment with drug– 
drug relations. The synergistic data was then used as labels 
for training and testing the ML models. In this run, HolE 
again proved to be the best-performing embedding model 
(84.58% for all relations), and random forest emerged as the 
best ML model with an ROC-AUC value of 0.796 (Figs 4
and 5). We have made COP, enriched with drug–drug rela-
tions (predicted and from databases), available at: https://doi. 
org/10.5281/zenodo.12806409. Consistent with prior meth-
ods, we validated the top-scoring synergistic combinations 
through a literature review (detailed in Table 3). This analysis 
found that most combinations (three out of five) either 

Figure 2. Percentage of true drug–drug relation predictions at different ranks for selected models. Optimum models were used to predict the drug–drug 
relations in the test set from the human brain pharmacome. Then, the predicted relations were compared to the actual relations to calculate the 
percentage of true predictions.
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demonstrated synergy between drug pairs or one of the drugs 
enhanced the effect of the other.

Subsequently, we selected safe drugs predicted to be syner-
gistic partners with the previously chosen drugs for AD and 
schizophrenia, or bipolar disorder.

3.6.1 Alzheimer’s candidates
Based on our research, miconazole and albendazole have 
emerged as promising candidates for repurposing to treat 
AD. They were predicted to act synergistically with three and 
two of the selected AD drugs, respectively. By tracing their 

Figure 3. Percentage of true drug–drug relation predictions at different ranks for selected models used to embed causal-only pharmacome. Optimum 
models were used to predict drug–drug relations in the test set. Then, the predicted relations were compared to the actual relations to calculate the 
percentage of true predictions.

Figure 4. Percentage of true all relations predictions at different ranks for selected models used to embed causal-only pharmacome before machine 
learning. Optimum models were used to predict the test set, and then the predicted relations were compared to the actual relations to calculate the 
percentage of true predictions. Embedding vectors of HolE were extracted and used as input features for the training and testing of ML models.
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pathways to AD in the copy of COP, where we retained dis-
ease nodes, we found that they share pathways with their 
synergistic partners to AD.

Miconazole is a broad-spectrum antifungal with some anti-
bacterial activity (Wishart et al. 2018). On the other hand, it 
offers a potential therapeutic approach for early intervention 
in AD by promoting myelination of the medial prefrontal cor-
tex and ameliorating neuroinflammation-mediated AD pro-
gression in different mice models (Yeo et al. 2020, Wang et al. 
2022). A prominent common pathway of miconazole with 
donepezil, rivastigmine, and galantamine to AD was found in 
COP, as shown in Fig. 6. On the other hand, Albendazole is 
primarily employed as an anthelmintic to treat helminth infec-
tions (Sungkar et al. 2019). However, research on H4 neuro-
glioma cells has shown that albendazole can reduce Tau levels, 
suggesting a beneficial effect on AD (Dickey et al. 2006). In 

COP, it has a shared pathway with donepezil and rivastig-
mine, in which it intersects with them in decreasing the levels 
of phosphorylated microtubule-associated protein tau 
(MAPT), which is a hallmark of AD (Fig. 6). Comprehensive 
description of miconazole and albendazole pathways is elabo-
rated in Supplementary Results Section S5.

Other candidates, such as disulfiram, auranofin, and fina-
floxacin, were also predicted as synergistic partners with 
donepezil, with donepezil and rivastigmine, and with donepe-
zil and galantamine, respectively. Studies, in cell and animal 
models, showed their beneficial effects for the management 
of AD (Madeira et al. 2012, Roder and Thomson 2015, 
Reinhardt et al. 2018, Upīte et al. 2020, Guo et al. 2022, Jun 
and Fang 2021). However, no supporting pathway in COP 
could be detected for these drugs. Additionally, prochlorpera-
zine was consistently predicted as a synergistic partner with 

Figure 5. Benchmarking of machine learning models trained to classify between synergism and antagonism using the embedding vectors from causal- 
only pharmacome. Each boxplot shows the distribution of the ROC-AUC values over 10 repeats of the 10-fold nested cross-validation procedure.

Table 3. Validation of top scorer predictions, based on causal-only pharmacome, from published studies.

Drug A Drug B References Remarks Hit ratio

Tamsulosin Ruxolitinib (Wishart et al. 2018) Tamsulosin decreases 
Ruxolitinib excretion rate, 
which could result in a higher 
serum level.

1 (one supporting study of 
one retrieved study)

Ruxolitinib Zolpidem (Wishart et al. 2018) Zolpidem decreases the metabo-
lism of Ruxolitinib increasing 
its effect.

1 (one supporting study of 
one retrieved study)

Ruxolitinib Prednisolone (Cort�es et al. 2019) The combination of Ruxolitinib 
with Prednisolone showed 
synergistic effects.

1 (four supporting studies 
of four retrieved studies)

Ruxolitinib Cisapride – No study was found on their 
combination.

–

Deslanoside Ruxolitinib – No study was found on their 
combination.

–
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the three selected AD drugs. However, it has anticholinergic 
properties that in higher doses might worsen AD-associated 
dementia (Obara et al. 2019). Moreover, the explored path-
ways between prochlorperazine and AD were controversial, 
with some suggesting it might have a beneficial effect for the 
management of AD while others suggest it might exacerbate 
the condition (Supplementary Fig. S3).

3.6.2 Schizophrenia and bipolar disorder candidates
Upon detecting repurposing candidates for schizophrenia or 
bipolar disorder, we found no connecting pathways between 
any drug in the COP and these diseases, even for the drugs 
that are typically prescribed for these conditions. Therefore, 
we couldn’t identify any repurposing candidates for schizo-
phrenia or bipolar disorder based on COP.

3.6.3 COVID-19 candidates
We wanted to challenge our model further by checking its 
ability to predict synergistic drug combinations for diseases, 
which the KG was not built for, to test its ability to be used 
as a fast tool for repurposing drugs to new disease outbreaks. 
We selected a drug, baricitinib, used for COVID-19 and 
extracted the synergistic combinations from those predicted 
by our model. From these combinations, Prochlorperazine 
and disulfiram were selected as repurposing candidates based 
on their predicted synergy with baricitinib (they ranked as 
8th and 10th out of 142 synergistic drug combinations, 
where the first seven ranks and 9th rank was for anticancer 
or unsafe drugs) and their beneficial effects in COVID-19 
management. These effects include the inhibition of SARS- 
CoV-2 entry by targeting the spike protein and ACE2, which 
were confirmed computationally by molecular docking and 

experimentally in VeroE6 and HEK293T-hACE2 cell cultures 
(Chen et al. 2022, Liang et al. 2023).

4 Discussion
Pursuing a new drug candidate for a disease has been exhaus-
tively overwhelming. Therefore, drug repurposing has re-
cently gained significant interest. Here, we present this study 
of enriching existing KGs with drug synergy data to achieve a 
primary goal: repurposing predicted drug synergy partners as 
single agents for the disease of interest. Although the concept 
of KG-based drug repurposing has been previously studied 
(Al-Saleem et al. 2021, Ratajczak et al. 2022, Feng et al. 
2023), we further enhanced KG with drug–drug relations, 
fostering more knowledge about synergistic drugs as a basis 
for the selection of repurposing candidates. This approach 
will have a significant influence on diseases with limited 
available therapeutic options, such as pandemics and neuro-
degenerative diseases. The alignment between the model’s 
predictions and the real-world literature highlights the mod-
el’s effectiveness in identifying clinically relevant and poten-
tially impactful drug candidates. Although synergy 
predictions followed by safe drug selection, and pathway in 
pharmacome tracing, have reduced the number of selected 
drug candidates, they form a strong foundation for further re-
search on these candidates.

As demonstrated from the results of drug repurposing can-
didates based on COP (Section 3.6) and HBP (Supplementary 
Results Section S4), some of our selected candidates such as 
albendazole and miconazole, mefloquine, ciprofloxacin, and 
moxifloxacin for AD, have a robust profile of clear pathways 
in COP with the disease of interest as well as experimental (in 

Figure 6. The shared pathways of miconazole, albendazole, donepezil, rivastigmine, and galantamine to Alzheimer’s disease. Disease nodes were 
retained in a copy of the causal-only pharmacome used for pathway confirmations (ACHE: acetylcholinesterase; NOS2: nitric oxide synthase 2; APP: 
amyloid-beta precursor protein; MAPT: microtubule-associated protein tau; TUBA1A: tubulin alpha-1A protein; CDC42: cell division control protein 42 
homolog; MAPK1 and MAPK3: mitogen-activated protein kinase 1 and 3).
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cell and animal models) and clinical studies that support their 
willingness to be repurposed for that disease. On the other 
hand, another portion of selected drugs, including disulfiram, 
auranofin, finafloxacin, taribavirin, and ivermectin for AD, 
has strong literature evidence but unclear pathways in COP, 
which require further analysis and understanding of the rela-
tion encompassed in their pathway in COP. Finally, drugs 
that have no literature evidence or clear pathways were 
marked as the least suitable for repurposing including atova-
quone for AD and pyrimethamine for Schizophrenia. In addi-
tion to these groups exists a controversial group in which 
literature supports their harmful effect on the selected dis-
ease; however, they appear many times in our predictions as 
a valuable agent for controlling that disease. This group 
includes mefloquine, chloroquine, and albendazole for 
schizophrenia. We highly recommend further clinical and ex-
perimental investigation of these drugs for that disease before 
the commencement of their repurposing procedures.

To challenge our model’s applicability, we selected a drug 
for COVID-19 even knowing that there is no disease node for 
COVID-19 in COP. The results showed its ability to predict 
synergy and repurposing candidates, which a strong literature 
profile confirmed (Section 3.6.3). This vast ability under-
scores that the model does not rely on a single node or rela-
tion but on the overall interaction within the network. The 
potential of this approach to repurposing drugs for diseases 
that are out of the scope of the used pharmacome gives 
insights into comorbidity pathways that exist between these 
diseases. Specifically, we refer to the possible comorbidity be-
tween COVID-19 and neurodegenerative diseases (NDD). 
The ability of SynDRep to find repurposing candidates for 
COVID-19 may be attributed to these underlying comorbid-
ity pathways. Therefore, this work paves the way for further 
research already being conducted for detecting such comor-
bidities (COMMUTE. Comorbidity Mechanisms Utilized in 
Healthcare2024).

We first took a broad approach that relied on graph topol-
ogy metrics as well as the physicochemical properties of the 
drugs. ML models were then used to classify combinations 
into synergistic or antagonistic categories. However, this ap-
proach primarily neglected the “relationship type” factor 
within KG and relied solely on the data associated with the 
drug nodes. In contrast, KG embedding models take these 
relations into account when embedding all the nodes of the 
KG into vectors. This consideration improves the perfor-
mance and predictions of KG embedding compared to ML 
modeling. Therefore, this approach emphasizes the beneficial 
effect of organizing data into KGs and the further extraction 
of this data using graph embedding techniques over the classi-
cal ML approaches. Moreover, analyzing biomedical data us-
ing network structures requires a thorough understanding of 
network topology. Therefore, we used the topological fea-
tures along with the physicochemical features of the drugs for 
the training and prediction in the classical ML approach. 
However, these methods often demand high computational 
and space costs (Su et al. 2020) and result in lower perfor-
mance than the graph embedding method as evidenced by the 
lack of literature studies for predicted top scorer partners 
(Supplementary Results Section S1). On the contrary, orga-
nizing the data into a graph that can describe the complex 
structure of data and enables the characterization of high- 
order geometric patterns for the networks, improves the per-
formance of various data analysis tasks (Xu 2021). Graph 

embedding techniques are able to convert sparse high- 
dimensional graphs into continuous low-dimensional vectors 
that maximally preserve the graph structure properties (Cai 
et al. 2018). The generated highly informative and nonlinear 
embeddings can be subsequently used for different down-
stream analytic tasks such as node classification and link pre-
diction. We applied these graph embedding techniques for 
the prediction of the link between pairs of drugs. RotatE 
excels at modeling symmetry, antisymmetry, inversion, and 
composition (Sun et al. 2019), which explains its superior 
performance in embedding HBP (Section 3.3). This was fur-
ther evidenced when noncausal relations were removed to 
create COP, simplifying the structure. HolE and TransR per-
formed even better than RotatE in COP due to its reduced 
complexity (Section 3.6). Unlike the ML approach, RotatE 
predictions were confirmed by published scientific studies as 
exploited in Supplementary Table S2. Consequently, utilizing 
data represented as graphs and incorporating their embed-
dings represents the future direction for pharmacome 
data mining.

In the context of drug repurposing, maintaining a clear 
chain of causality from drugs to disease targets is critical. 
Using a broad and highly connected KG such as HBP, which 
contains both cause-and-effect relations and less explicit rela-
tions such as association and complexity, can lead to subopti-
mal model training and prediction. Although selecting a 
cause-and-effect subgraph is optimal, the extensive relations 
pool in the pharmacome captures complex protein interac-
tions that may not be strictly cause-and-effect. Additionally, 
the graph needs to be large enough for effective link predic-
tion; otherwise, performance may be compromised, which 
was observed with the COP trial, hence pathway reviews and 
post-prediction literature validation were essential steps to 
compensate for the lack of a pure cause-and-effect subgraph 
by focusing on promising candidates. Another important 
consideration in the use of HBP is the presence of so-called 
“super-hubs”, which are nodes with extremely high node 
degrees, whose presence in the KG dilutes information and 
hinders learning (Sardina et al. 2024). The topological imbal-
ance in KGs has negative effects on learning using KG embed-
ding models, where low-degree nodes embed at a much lower 
quality relative to high-degree nodes (Bonner et al. 2022). 
Moreover, high-degree nodes are mostly predicted as answers 
simply due to their higher degree, not their domain relevance 
(Bonner et al. 2022, Ratajczak et al. 2022). Based on these 
considerations, we performed a pruning of the HBP to re-
move noncausal relations between entities and super-hub 
nodes, which were mainly disease nodes. The disease nodes 
were removed before embedding, but we retained them in an-
other copy of COP used for pathway confirmations. The 
results showed more promising repurposing candidates for 
AD. However, some candidates lacked pathways in COP. 
Additionally, we couldn’t find any connections between 
schizophrenia or bipolar disorder and any drugs in COP, in-
cluding those usually prescribed for these diseases. Their con-
necting relations might have been removed during the causal 
relation selection step (Section 3.6). This indicates the incom-
pleteness of COP, which significantly impacts the repurpos-
ing approach we undertook in this study. Consequently, we 
recommend more manual curation of certain relation types in 
HBP to enhance and update their causality comprehension. 
This could help maintain the relation pool present in HBP, 
which is crucial for effective embedding and repurposing.
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In contrast to our approach’s advantages, it exhibits some 
challenges. Firstly, several sources of bias exist, including syn-
ergy score difference, cell type difference, and class imbal-
ance. The data on drug–drug combinations were extracted 
from three databases: DrugcombPortal, DrugcombDB, and 
SYNERGxDB, which provide information on drug combina-
tions along with their HSA, Bliss, Loewe, and ZIP scores. The 
subtle differences between synergy model scores may intro-
duce bias in the evaluation of drug combinations. Therefore, 
we opted for the ZIP score as it is more reliable than the HSA 
and Bliss scores in detecting potency changes, and it combines 
the principles of Loewe additivity and Bliss independence. In 
addition, since some combinations may have a synergistic ef-
fect in one cell type and additive or antagonistic effects in an-
other, we selected combinations that demonstrated pure 
antagonism or synergism across all cell types. Furthermore, 
most databases and studies focus on synergistic or antagonis-
tic combinations, while scarce data about additive effect com-
binations are available. For instance, our work had only 
three additive combinations compared to tens of thousands 
of antagonistic or synergistic ones. Therefore, after many tri-
als, we decided to omit these additive relations to avoid the 
class imbalance problem. Secondly, unlike the ML models 
which can classify drug combinations into synergism or an-
tagonism, the embedding model’s prediction for drug combi-
nations is not, in all cases, a drug–drug relation but may 
predict any other relation available in the pharmacome. 
Consequently, some of the input data might get neither syner-
gistic nor antagonistic prediction, resulting in the loss of 
some combinations. Thirdly, the controversy between some 
predictions and the published data about these drugs and dis-
eases necessitates thorough investigations. Lastly, the diver-
sity of drugs in the combination databases is limited; most 
are cancer-related and measure only cytotoxicity. Therefore, 
our approach must be extended to more specialized and 
highly curated KGs, such as cause-and-effect subgraphs, 
along with more balanced and versatile drug combina-
tion data.

This methodology would hold monumental potential as a 
robust tool for the pharmaceutical sector by broadening our 
search landscape and the production of more guided synergis-
tic predictions. It leverages the certainty of manual curation 
from scientific literature by using a KG curated from various 
resources, including published scientific studies and data-
bases. This KG-based approach is enhanced with a new con-
cept that not only incorporates traditional drug repurposing 
methods—relying on semantic connections between drugs, 
diseases, and targets—but also utilizes reasoning derived 
from drug–drug synergy effects. The tool has been made 
available as an open-source Python package at https://github. 
com/SynDRep/SynDRep. We developed SynDRep with a fo-
cus on user-friendliness and provided a command-line inter-
face to facilitate its use by scientists with biological or 
medical backgrounds who possess moderate knowledge of 
command-line prompts or python experience. The tool 
requires only four input files (KG.tsv, KG_labels.tsv, Drugs. 
csv, Drug_combinations.csv) and generates outputs that are 
saved with a single command. Clear documentation, includ-
ing the required file types, is available in the README file of 
SynDRep. Therefore, this tool highlights the hugely beneficial 
effect of computational methods not only in reducing the 
chemical, energy, and resource waste required to conduct 
thousands of wet-lab investigations but also by helping in 

sustainability through re-using the same drugs for more dis-
eases and the reduction of the capital required to set up new 
production plans. Therefore, tons of hours, labor, and costs 
have been spared, which can foster further projects and speed 
up the pace by which treatment plans can be exploited.
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