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INTRODUCTION
In late 2019, the coronavirus disease (COVID-19) was 
discovered in China. The World Health Organization 
(WHO) declared COVID-19 a global pandemic in March 
2020.1 As of October 2020, the reported number of 
COVID-19 cases surpassed 40 million, leaving more than 
1.1 million deaths worldwide.2

This paper introduces a new method for the detection of 
COVID-19 cases employing support vector machines 
(SVMs) and the discrete Wavelet transform (DWT). The 
DWT is well-known for its energy compression power.3 A 
SVM is a commonly used machine learning (ML) program 
that has been extensively employed in classification tasks.4 
To extract only high-energy Wavelet approximation coef-
ficients, the proposed system introduces a new coefficient 
selection method that employs thresholding, run-length 
encoding (RLE), and zero-padding. The generated code 
vector is employed as the feature vector symbolizing the 
input chest X-ray (CXR) image. It is demonstrated through 
experiments that exploiting and reshaping the Wavelet 
approximation coefficients, can produce highly discrimina-
tive features symbolizing the input image.

Using the DWT, the proposed system decomposes the 
chest X-ray image into a set of approximation coefficients 
that contain a few high-energy coefficients. The proposed 
system extracts these high-energy coefficients through a 
new coefficient selection technique that employs hard-
thresholding with a non-negative threshold. The thresh-
olded vector contains the wanted coefficients with many 
undesired zeros. The proposed coefficient selection method 
eliminates the unwanted zeros in the thresholded vector by 
employing the RLE scheme. The generated code vector is 
employed as the feature vector symbolizing the input chest 
X-ray image. After applying zero-padding to unify their 
lengths, the feature vectors are passed to a SVM for classifi-
cation (COVID-19 or normal).

Also presented in this paper are the advantages and disad-
vantages of common testing techniques for COVID-19. 
The discussed methods include genomic sequencing, anti-
body tests, and nucleic acid tests. This paper also presents 
a comparison review of accuracies and dataset sizes for 
different image-based methods proposed for diagnosing 
COVID-19.

https://​doi.​org/​10.​1259/​bjro.​20200028

Objectives: Introduced in his paper is a novel approach 
for the recognition of COVID-19 cases in chest X-rays.
Methods: The discrete Wavelet transform (DWT) is 
employed in the proposed system to obtain highly 
discriminative features from the input chest X-ray image. 
The selected features are then classified by a support 
vector machine (SVM) classifier as either normal or 
COVID-19 cases. The DWT is well-known for its energy 
compression power. The proposed system uses the DWT 
to decompose the chest X-ray image into a group of 
approximation coefficients that contain a small number 
of high-energy (high-magnitude) coefficients. The 
proposed system introduces a novel coefficient selection 
scheme that employs hard thresholding combined with 
run-length encoding to extract only high-magnitude 
Wavelet approximation coefficients. These coefficients 

are utilized as features symbolizing the chest X-ray input 
image. After applying zero-padding to unify their lengths, 
the feature vectors are introduced to a SVM which classi-
fies them as either normal or COVID-19 cases.
Results: The proposed system yields promising results 
in terms of classification accuracy, which justifies further 
work in this direction.
Conclusion: The DWT can produce a few features that 
are highly discriminative. By reducing the dimension-
ality of the feature space, the proposed system is able 
to reduce the number of required training images and 
diminish the space and time complexities of the system.
Advances in knowledge: Exploiting and reshaping the 
approximation coefficients can produce discriminative 
features representing the input image.
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Among RNA viruses, the genome of the coronavirus is consid-
ered the longest known genome.5 The most common symptom of 
COVID-19 is fever. Other symptoms may include loss of smell, 
shortness of breath, cough, and fatigue. Pneumonia and acute 
respiratory distress syndrome are common complications.6 The 
period from COVID-19 exposure to the occurrence of symp-
toms is typically about 5 days but may vary from 2 to 14 days.7 
Asymptomatic people, or people who do not show symptoms, 
can also spread the virus. Specifically, the first 3 days after the 
symptoms onset, the virus is most contagious.8

The virus spreads mostly to people gathered in the same area. 
Small respiratory particles (droplets) developed primarily by 
sneezing, talking, and coughing, can cause the spread of the 
COVID-19 virus. There is no evidence that the droplets travel 
through air over long distances. They rather come down to the 
ground or fall onto surfaces.9 Touching the face after touching 
a contaminated object or surface may cause a person to get 
infected by COVID-19.10,11

A measure of how easily a disease spreads, is given by the repro-
ductive number R0, pronounced “R-naught”. The reproductive 
number of COVID-19 is in the range between 2 and 3.12 The 
number is not fixed and may vary with time. A lower R0 implies 
that fewer people will be infected during the outbreak. A higher 
number means more people will be infected over time. The 
following examples illustrate the meaning of R0:

•	 If R0 is bigger than 1, each sick person will infect, on average, 
more than one person. As a result, the outbreak will continue 
to grow and lockdown measures should not be alleviated.

•	 If R0 is 1, each infected person infects, on average, just one 
more person. Over time, the number of infected people will 
not vary.

•	 If R0 is less than 1, each infected person will infect, on average, 
fewer than one person. Therefore, the number of infected 
individuals will decrease over time. In this case, lockdown 
measures may be alleviated.

Some countries like Sweden resorted to the herd immunity 
approach to seek protection from COVID-19. Herd immunity 
is achieved when a large part of a community become immune 
to a specific infectious disease.13,14 Consequently, the disease has 
nowhere to go and stops spreading. Two scenarios may lead to 
herd immunity:

1.	 Many people get infected with the disease. Those who 
do not die from the disease, develop natural immunity 
to it. When the body is exposed to a virus or bacteria, it 
normally makes antibodies to fight the infection. When 
the body recovers, it keeps these antibodies, which will be 
used to defend against another infection.

2.	 Many people are vaccinated against the disease in order to 
build immunity against it. Vaccines make the body thinks 
that a bacteria or virus has attacked it; and therefore, the 
immune system develops antibodies. When the body 
encounters that virus or bacteria again, it can defeat it.

The spread of COVID-19 is normally controlled by quaran-
tine in combination with other control strategies.15 The aim of 

quarantine is to confine people who might have been infected 
by the virus. People in quarantine should stay home, keep them-
selves away from others, and follow guidance from their local 
health authorities. A major benefit of quarantine is to prevent 
spread of the virus that may occur from symptomatically and 
asymptomatically infected individuals.16 Many countries require 
passengers to quarantine themselves for 14 days. The recom-
mended 14-day rule is a commonly accepted practice by most 
countries in the world.17

Just as with other infectious diseases, correct sample accumu-
lation is a very important step in the laboratory detection of 
COVID-19. Appropriate samples include lower respiratory tract 
samples, upper respiratory tract samples, whole blood samples, 
serum, and stool samples. The most commonly used samples are 
the respiratory secretions.18,19

As of October 2020, there are no antiviral treatment, vaccines, 
or recommended medicines for COVID-19. A rapid diagnosis 
of COVID-19 with high accuracy is still unavailable.20 The 
currently available COVID-19 diagnostic tests are broadly based 
on the following six different approaches:

1.	 RT-PCR (reverse transcription polymerase chain 
reaction): a viral test based on reverse transcription of 
RNA into DNA. It immediately tests for the presence of 
the virus RNA. RT-PCR test detects the presence of the 
virus itself.21 RT-PCR is considered the standard method 
for detecting COVID-19.22

2.	 LAMP (loop-mediated isothermal amplification): a gene 
amplification technique that discovers whether or not 
viral RNA is present in the patient’s samples.23

3.	 Lateral flow (antibody tests): handheld single-use assays 
providing very fast results for an individual patient (in 
less than 15 min).24 Antibody (serology) tests checks 
if a person had COVID-19 in the past by looking for 
antibodies, which are normally produced in response to 
infection.25

4.	 Enzyme-linked immunosorbent assay (ELISA): simple 
and quick assays that are easily read.26 ELISAs use enzymes 
linked to antibodies that can adhere to the tested molecule 
and cause a change in color, which can subsequently be 
measured by a device.

5.	 Genomic sequencing: investigates the genetic information 
found within the DNA or RNA of a virus. It enables 
scientists to compare the virus sample taken from a 
patient, with other people.27,28

6.	 Chest imaging: new reports from China indicate that 
chest images produced by CT, X-ray, and ultrasound can 
help diagnose the COVID-19 disease.29–32 Chest imaging 
is not normally used as a first choice tool to diagnose or 
screen for COVID-19. The advantages and disadvantages 
of the COVID-19 tests are summarized in Table 1.

MACHINE LEARNING TECHNIQUES FOR IMAGE 
BASED DETECTION OF COVID-19
Most of the automatic COVID-19 diagnosis techniques that are 
based on chest imaging, employed artificial intelligence (AI) and 
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ML methods. These systems are also known as computer-aided 
diagnosis (CAD) methods.

Ozturk et al33 worked on COVID-19 detection in X-rays by 
employing the You only look once (YOLO) convolutional neural 
network (CNN). YOLO, used for target detection, is a real-time 
network configured based on the Darknet model. They reported 
an 87% classification accuracy for multiclass cases. For the two-
class cases (normal or COVID-19), they achieved an accuracy 
of 98%.

Barstugan et al34 worked on the detection of COVID-19 in CT 
images. Using a data set composed of 150 CT scans, they gener-
ated four different data sets by taking patches whose sizes are 
16 × 16, 32 × 32, 48 × 48, and 64 × 64. For feature extraction, 
they used the following techniques: Grey-Level Size Zone Matrix 
(GLSZM), DWT, Grey Level Co-occurrence Matrix (GLCM), 
Local Directional Pattern (LDP), and Grey Level Run Length 
Matrix (GLRLM). SVM was used to classify the obtained 
features. A 10-fold cross-validation was employed and produced 
a maximum detection accuracy of 99%.

Wang et al35 proposed the COVID-Net, a deep learning method 
to detect COVID-19. They used 13,870 COVID-19 patients to 
build a very large database that consisted of 13,975 chest X-ray 

images. They reported a 93% detection accuracy and a sensitivity 
of 91%. They compared the performance of COVID-Net to the 
performances of the following deep neural networks: ResNet 
(Residual Network)−50 and VGG-19.

Hemdan et al36 worked on the classification of COVID-19 cases in 
X-rays by proposing a COVIDX-Net model, which is composed 
of the following seven CNN architectures: Xception, VGG19, 
InceptionV3, InceptionResNetV2, ResNetV2, DenseNet201, and 
MobileNetV2. Their experiments were validated on a small data 
set that contained 50 chest X-ray images (25 COVID-19 cases 
and 25 normal cases). They used 80% of the images for training 
and 20% for testing.

Sethy et al37 employed SVM combined with the ResNet50 
model to detect COVID-19 cases in chest X-rays. Their data set 
consisted of 25 normal images and 25 COVID-19 images. The 
images were obtained from Kaggle, GitHub, and Open-I repos-
itories. They reported an accuracy of 95%. They also obtained a 
sensitivity of 97% and a specificity of 93%. Their false positive 
rate (FPR) was 65%. They employed a 60:20:20 testing, training, 
and validation ratios.

Ioannis et al38 used the transfer learning procedure with a deep 
learning model, for the automatic diagnosis of COVID-19. Their 

Table 1. Advantages and disadvantages of COVID-19 diagnosis tests

Approach Advantages Disadvantages
RT-PCR Sensitive, reliable, and fast. Expensive, complex, efficiency depends on the 

adequate amount of the viral RNA sample.

LAMP Simple, reliable and sensitive if the samples are 
acquired while an infection is going on.

· LAMP tests determine if an active virus is present; 
and therefore, cannot find out if a person had the 

disease.
· New technology which does not have much 

background behind it.

Antibody tests · Simple and rapid.
· Can check the immunity of people to the virus 

by revealing if they have already encountered the 
virus without their own knowledge.

· Cannot determine if the person is currently 
infected with COVID-19 as infected persons do not 

have antibodies.
· These tests can yield a false negative result if 

the test is conducted before the development of 
antibodies.

· The antibody test can generate a false positive result 
if antibodies to other coronaviruses are present.

ELISA · More specific than Lateral flow tests.
· Simpler than other procedures and uses less 

expensive equipment.
· Allows collection of samples from different 

spots in the body (not restricted to nasal swabs).

· Time consuming.
· Low sensitivity.

Chest Imaging · Can utilize ML algorithms, which are available 
for imaging applications, for accurate and 

automatic detection of COVID-19.
· Can provide radiologists with visual 

information related to the viral infection. · Chest 
imaging systems are widely available.

· Cannot correctly discriminate between COVID-19 
and other respiratory infections, such as Influenza.

· Can generate false negative results since a 
substantial portion of COVID-19 patients have 

normal chest x-rays or CT scans; and therefore, their 
imaging result could falsely indicate that they are 

healthy.
· Since COVID-19 is very contagious, the use of 
imaging equipment by COVID-19 patients, may 

cause a health hazard.

Genomic sequencing · Very sensitive and specific.
· Provide detailed information.

· Require high expertise.
· Involve sophisticated Lab.

LAMP, loop-mediated isothermal amplification; RT-PCR, reverse transcription polymerase chain reaction.
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data set consisted of 1427 chest X-ray images that contained 700 
pneumonia images, 504 normal images, and 224 COVID-19 
images. They reported a 97% classification accuracy.

Narin et al39 proposed five pre-trained CNN models for the detec-
tion of COVID-19 in chest X-rays. Specifically, they suggested 
the following models: Inception-ResNetV2, ResNet50, Incep-
tionV3, ResNet152, and ResNet101. Their data sets contained 
four classes: bacterial pneumonia, viral pneumonia, COVID-
19, and normal. In some of their experiments, they used 20% 
of the images for testing and the remaining 80% for training. 
When implementing three binary classifications based on a five-
fold cross-validation, they reported that the ResNet50 model 
produced the highest classification accuracy (99%).

We note that a proper benchmark data set for COVID-19 detec-
tion in chest X-ray/CT images, is necessary but is currently 
unavailable. Presented in in Table 2 is a summary of the accura-
cies and sizes of training and test sets, for some of the proposed 
methods that used X-ray scans in automatic diagnosis of 
COVID-19.

METHODS AND MATERIALS
The proposed system employs SVM to classify the features 
extracted from Wavelet approximation coefficients using a new 
coefficient selection scheme. Figure 1 depicts a block diagram of 
the proposed system.

This study is based on X-ray imaging of the chest to diagnose 
COVID-19.

Medical imaging modalities
The most commonly used medical imaging modalities include:

•	 X-ray imaging: the oldest and the most commonly used 
imaging technique. X-rays are high-frequency electromagnetic 
radiations that can pass through the body. The X-rays that 
penetrate through an object are collected behind the object by 
digital sensors or a photographic film. The X-ray method is 
typically employed in diagnosing the skeletal system.

•	 CT: uses a computer to combine a set of X-ray images taken at 
various angles around the body, to form slices (cross-sectional 
images).

•	 Ultrasound imaging: reflected sound waves are used by the 
computer to generate images of body organs and other body 
parts.

•	 MRI: high-intensity magnetic fields and radiofrequencies are 
used by the computer to generate images of the body’s internal 
parts.

The pros and cons of imaging modalities
The advantages and disadvantages of imaging modalities are 
summarized in Table 3.

Digital radiography vs computed radiography
Digital radiographic images can be obtained using digital radiog-
raphy (DR) and computed radiography (CR) technologies. Both 
DR and CR techniques use digital systems to produce a digital 
image. DR uses flat panel transducers (sensors) that convert 
X-ray intensities to proportional voltages. A microcontroller or 
a computer processes these data (voltages) to produce a digital 
image.

Table 2. Dataset size and accuracy of COVID-19 diagnosing 
models in chest X-ray images

Ref. Accuracy Training set Test set
Hemdan et al.36 83% 40 10

Sethy et al.37 95% 160 54

Ioannis et al.40 99% 3514 391

Ioannis et al.41 98% 1284 143

bbas et al.42 95% 137 59

Zhang et al.43 96% 100 764

Biraja et al.44 90% 4753 1188

Chowdhury et al.45 99% 304 85

Wang et al.46 92% 1,6756 210

Halgurd et al.47 98% 263 263

Parnian et al.48 96% 764 100

Ezzat et al.49 98% 114 31

Karim et al.50 93% 1,1896 5099

Zahangir et al.51 99% 5216 45

Eduardo et al.52 93% 1,6546 210

Oh et al.53 90% 354 99

Lawrence et al.54 94% 410 242

Khan et al.55 89% 1125 126

Basu et al.56 95% 718 175

Li et al.57 97% 1791 448

Figure 1. Block diagram of the proposed system. DWT, discrete Wavelettransform; SVM, support vector machine.
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CR, on the other hand, employs a photostimulable-phosphor 
(PSP) plate. When an imaging plate is exposed to X-rays, the 
energy of the incoming radiation is absorbed in a special phos-
phor layer to form a latent image. A scanner is then employed 
to capture the latent image from the storage plate by first stim-
ulating the plate with a fine laser beam. When stimulated, the 
plate releases the stored energy by emitting blue light whose 
intensity is proportional to the amount of radiation absorbed in 
the exposure phase. The light is then detected by a photomulti-
plier (PMT) which is an optical transducer that coverts light to 
analog voltage. Using an analog-to-digital converter (ADC) IC 
(integrated circuit) chip, the PMT output is converted to a digital 
image.

Once the latent image is read, the imaging plate can be erased and 
reused. Erasure of the latent image can be achieved by subjecting 
the plate to a high-intensity light. Normally, the plate can be used 
for about 100 times.

X-ray artifacts
Radiography systems may produce several artifacts. An artifact 
refers to an appearance or something seen on a radiograph that 
is not really present but appears due to a fault that occurred 

somewhere in the imaging chain. The fault may be caused by 
equipment defect, the operator of the imaging equipment, or by 
a peculiarity of the modality itself. The fault may also be caused 
by external things such as monitor wires and patient clothing. 
Image noise is the most common artifact and is intrinsic to every 
modality. Although image noise can be attenuated, it cannot be 
completely removed. The common computed/digital radiog-
raphy artefacts58 are listed in Table 4.

CT artifacts can be reduced by proper planning and procedure, 
but usually cannot be completely. wiped out.59 CT artifact removal 
in ML algorithms for CT imaging, has not been adequately 
addressed. Most of the research in this field has mainly focused 
on grid artifacts and artifacts caused by metalware. Metal artifact 
reduction (MAR) algorithms are used to enhance the quality of 
CT images in patients with metal implants.60 Grid artifacts are 
removed in the frequency domain by filtering since grid artifacts 
occupy a narrow range of frequencies.61

Wang et al46 performed an audit on COVID-Net to validate 
that its classification was not based on imaging artifacts and 
embedded markup symbols. Karim et al suggested to eliminate 

Table 4. Typical radiographic artifacts

Signal processing

· Ghosting or image lag-DR.
· Presence of previous latent image due to incomplete erasure-CR.

· Detector saturation thresholds - DR/CR.
Detection · Damage of Imaging plate-CR.

· Dust or dirt in reader-CR
· Dead pixels/lines- DR/CR

Acquisition · Radiation scattering through back of the detector -DR/CR.
· Beam hardening- DR/CR.

· Grid interference patterns-DR/CR.
· Under/overexposure- DR/CR ·

Image Transmission · Readout disruption-CR/DR.
· Image stitching- CR/DR

Mains electricity Mains power cables produce 50/60 Hz signal (radiation). This electromagnetic interference 
(EMI) can be absorbed by the measurement leads to form noise in the measurement. The 

50/60 Hz signal has narrow frequency bands; usually outside the band of the desired signal, 
and can be normally removed using a band-pass filter.

Instrumentation Thermal noise originates from the electronic circuit itself.

Experimental error Generated by undesired /uncontrolled change in the setup of the experiment.

EMI, electro magnetic interference.

Table 3. Advantages and disadvantages of imaging modalities

Approach Advantages Disadvantages
X-ray Cheap and easy to use. · Not very safe because ionizing radiation can cause cancer or lead to cell 

mutations.
· Does not generate detailed images. · Used to image bones only.

CT Very detailed and precise. More ionizing radiation than X-ray.

Ultrasound Safe, affordable, and simple. · Low image resolution.
· Increase tissue temperature.

MRI · Can image any body part.
· Safe- no ionizing radiation.

· Expensive.
· Uncomfortable for patients.
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textual artefacts from chest X-ray images using thresholding to 
remove very bright pixels. They also employed image standard-
ization and normalization.50 Pixel normalization refers to scaling 
pixel values to the range 0–1. Pixel standardization refers to 
scaling pixel values to have a zero mean and unit variance. These 
processes can be performed either per data set (featurewise) 
or per image (samplewise). In other areas of biomedical signal 
processing, such as in the field of physiological signals, pre-
processing methods and adaptive filtering are currently the main 
techniques used in removing physiological signal artifacts.

In the proposed system, the training process adaptively learns to 
remove the common imaging artifacts. The relatively high accu-
racy produced by the proposed system demonstrates its ability to 
detect artifacts related to digital radiography.

At the time of conducting this study, only a few X-ray and CT 
scans were publically available. The chest X-ray images symbol-
izing COVID-19 cases were gathered from Cohen.62 Cohen 
collected the COVID-19 chest X-ray images from various 
sources. Cohen’s database is composed of 125 COVID-19 chest 
X-ray images. The images had different formats (jpeg, jpg, and 
png). 88 images were gathered from Cohen database. Figure 2 
(top) depicts sample COVID-19 images that were taken from 
Cohen database.

Cohen database, however, does not comprise normal (nega-
tive) cases. In this study, the normal chest X-ray images were 
acquired from the Chest X-ray8 database offered by Wang et 
al.63 Chest X-ray8 included more than a thousand frontal view 
X-ray images. For this study, only 88 normal (no-finding) images 
were drawn from this database. Figure 2 (bottom) shows sample 

images collected from Chest X-ray8 database. Therefore, our 
data set consisted of 176 chest X-ray images (88 normal images 
and 88 COVID-19 images). Other public COVID-19 chest X-ray 
images can be found in.64–66

It is important to note that in the ideal scenario, all images should 
be taken using the same equipment and under the same condi-
tions. However, in this COVID-19 study, chest X-ray images 
were very restricted; at least when this report was first prepared. 
Theoretically, image classification is independent of the imaging 
modality and is affected by the input image. However, the image 
quality (contrast resolution, spatial resolution, artifacts, and 
noise) is greatly dependent on the imaging modality.

Originally, the images making our data set were of different 
grayscale and spatial resolutions. Before further processing, all 
images were first changed to 8-bit intensity images with a 512 × 
512 spatial resolution. Different image sizes and intensity resolu-
tions will have different statistical properties; and therefore when 
analyzed using the proposed system, will not produce the same 
optimum parameters (decomposition level and threshold values) 
reported in this paper. The first operation of the proposed system 
is to decompose the input chest X-ray image using the DWT.

Discrete Wavelet transform and feature extraction
The DWT or Wavelet decomposition, is a mathematical func-
tion (mapping) that generates another representation of the 
input signal or image.67,68 The DWT is well-known for its energy 
compression power. The Wavelet decomposition tree, depicted in 
Figure 3, shows the main functions executed by the DWT acting 
on an input image. The input image, at the first level of decompo-
sition, dissolves into both approximation and detail coefficients. 

Figure 2. Samples from our data set: (Top): COVID-19 cases and (Bottom): normal cases.
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While the low frequency contents of the input image are carried 
by the approximation coefficients, the detail coefficients hold 
the high-frequency information. At the second level of decom-
position, the approximation coefficients develop two groups of 
approximation and detail coefficients, whose lengths are equal 
to half of the length of the original approximation vector. This 
procedure continues to break the approximation coefficients into 
two new vectors for each subsequent level of decomposition.69–71

Unlike Fourier and other signal transforms, the DWT exhibits 
a great energy condensation property as most of the energy of 
the transformed image is deposited in few ultra large approxi-
mation coefficients. This characteristic indicates that small coef-
ficients can be set to zeros without establishing a huge distortion 
in the inverse-transformed image. The energy compactness attri-
bute of DWT has been successfully utilized in image compres-
sion schemes, such as the jpeg compression scheme.72 In data 
compression applications, only Wavelet coefficients which 
contain most of the signal energy are retained for use in the 
signal reconstruction.

In the proposed system, we exploit this energy compression 
property of the DWT to form a discriminative feature vector 
representing the input image. High-energy coefficients are 
extracted in the proposed system using the hard-thresholding 
scheme, given by Equation 1:

	﻿‍
C(i)=

{
0 if |C(i| < T
C(i otherwise) ‍�

(1)

where, ‍C‍ (i), and C(i) are the ith approximation coefficient after 
and before thresholding, respectively; and T is the threshold 
value.

Equation 1 indicates that the elimination of small-valued coeffi-
cients can be achieved by setting to zeros all coefficients whose 
values are less than a certain threshold value. An illustration of 
the hard-thresholding technique, using a threshold value of 3.1, 
shown in Table 5..

The input and output vectors represent the Wavelet approxima-
tion coefficients before and after thresholding, respectively. By 
selecting a non-negative threshold, the small approximation 
coefficients can be reset to zeros. To determine the optimum 
threshold value, we suggest inspecting the histogram of the 
approximation coefficients or using statistical moments of the 
approximation coefficients. Other thresholding schemes are 
discussed in Wei and Burrus,73 Chang and Vetterli,74 Donoho,75 
Poornachandra and Kumaravel.76

The standard level-thresholding mechanism produces a lot of 
zeros, generating a vector that is too large to carry a few discrim-
inative features. The zeros are eliminated in the proposed coeffi-
cient selection technique by utilizing the RLE scheme.

Run-length encoding
The RLE scheme, patented by Hitachi, is employed in JPEG, 
MPEG, H.261, and H.263 compression methods.77 The RLE 
methods were first used in 1967 in the analog signal transmis-
sion for television applications. Basically, RLE replaces a string 
of identical values by codes to indicate the value and the number 
of times it occurs. To illustrate the RLE scheme employed in this 
study, consider an approximation vector consisting of 50 zeros. 
RLE converts it to two numbers. The first number is 0, which 
indicates the string zeros and the other number is 50, which indi-
cates the number of zeros. Figure 4 depicts an illustration of the 
RLE scheme used in this study.

Table 5. Hard-thresholding scheme

Input vector Output vector
−11 −11

−2.9 0

3.2 3.2

2.3 0

300 300

Figure 3. Wavelet decomposition tree: a1 and d1 represent the approximation and detail coefficients at level 1, respectively.

https://www.merriam-webster.com/thesaurus/condensation#noun
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After applying zero-padding to unify their lengths, the feature 
vectors are applied to a SVM for classification (normal or 
COVID-19).

Support vector machines
A SVM is considered one of the most commonly used AI algo-
rithms. SVMs are ML methods that were first introduced by 
Cortes and Vapnik.78 Regression and classification are the most 
common applications of SVMs. A SVM classifies data by first 
detecting the closest vectors (support vectors) among the data 
comprising the classes. Using supervised learning, the SVM 
classifier then determines the optimum hyperplane that isolates 
the data points of the classes by producing the widest possible 
margin (Figure 5). In two-dimensional (2D) data, the hyperplane 
reduces to a simple line.

SVMs can manage linear and non-linear tasks. Linear problems 
are problems where data can be easily separated by drawing a 
hyperplane or straight line. In non-linear problems, data cannot 
be easily separated with a linear line.

SVMs were originally designed to be binary or two-class classi-
fiers. However, SVMs have been altered to tackle data composed 
of more than two classes. A SVM kernel is a function used in SVM 
to facilitate problem solving. Kernels provide shortcuts (tricks) 
to go around complicated computations. A kernel allows for 
mapping the problem to higher dimensions in order to perform 
simpler computations. An infinite number of dimensions can be 

obtained using kernels. The performance of SVM can be altered 
by choosing a different kernel function.

The Gaussian kernel, given by Equation 2, was implemented by 
the SVM in the proposed system.

	﻿‍ k(x, y) = exp− ∥x−y∥2
2σ2 ‍� (2)

where σ is a user-defined variance.

The Gaussian kernel is a general-purpose kernel. It can be used 
when there is no prior information about the data. Other kernels 
include the Polynomial kernel, Gaussian radial basis function 
(RBF), Laplace RBF kernel, Hyperbolic tangent kernel, and 
Sigmoid kernel.

DISCUSSION AND RESULTS
To avoid overfitting, fourfold cross-validation was employed in 
the assessment of the system’s accuracy. Hence, our data set was 
divided into four non-overlapping folds. Four experiments were 
performed. Each of the four folds was used in one of the exper-
iments as a test set. The remaining three folds were used as a 
training set. The accuracy of each experiment was calculated and 
the average of the four accuracies was reported as the system’s 
overall accuracy.

In the first investigation, the accuracy is computed vs the Wavelet 
decomposition level. This experiment used the Haar Wavelet. The 
Haar Wavelet, also known as the Daubechies 1 (db1) Wavelet, is 
considered the simplest Wavelet. The Haar Wavelet is depicted 
in Figure 6.

Figure 7 depicts the accuracy of the proposed system vs decom-
position level. Figure 7 shows that a maximum accuracy of 76% 
is achieved for a decomposition level of 2. Accuracy is defined in 
this experiment as the rate of correct detections.

Since the optimum decomposition level is 2, we further inves-
tigate the approximation coefficients at level 2. Figure 8 shows 
the histogram of the approximation coefficients of all the 176 
images comprising the employed data set, decomposed at Level 
2 using the Haar Wavelet. Figure  8 indicates that only few 
approximation coefficients have high magnitudes. Specifically, 
a small subset of the approximation coefficients has magnitudes 
greater than 900.

Figure 4. RLE scheme. (top): input vector and (bottom): output vector. RLE, run-length encodingThe RLE generated vector is 
employed as the feature vector representing the input image.

Figure 5. Support vector machine for a 2D data. 2D, 
two-dimensional.



9 of 13 birpublications.org/bjro BJR Open;2:20200028

BJR|OpenOriginal research: RLE Encoding Based Wavelet Features for COVID-19 Detection in X-rays

Next, we investigate the accuracy using threshold values around 
900. Specifically, in the experiment of Figure 9, threshold values 
were investigated in the range between 900 and 905, using a 
decomposition level of 2 and the Haar Wavelet. In the experi-
ment, approximation coefficients whose absolute values are less 
than the variable threshold value, were set to zeros.

The resultant thresholded vector, composed of mostly zeros, is 
then encoded using the RLE scheme, to produce a code vector. 
The code vector is used as the feature vector symbolizing the 
input chest X-ray image. After applying zero-padding to unify 
their lengths, the feature vectors are passed to a SVM for classifi-
cation (normal or COVID-19). Figure 9 depicts the accuracy as 
a function of threshold value. Figure 9 shows that the threshold 
value of 903 produces the maximum accuracy of 94%.

Specificity (SP), sensitivity (SE), and accuracy (AC) are used here 
to assess the performance of the proposed system.

Accuracy, given by Equation 3, is defined as the ratio of non-
occurrences that are accurately rejected and the real occur-
rences that are accurately identified, among all occurrences and 
non-occurrences.

	﻿‍ AC = (TP+TN)×100
(TP+FN+FP) ‍� (3)

Sensitivity (also called true positive rate) is the fraction of posi-
tive occurrences that are accurately discovered by the system:

	﻿‍ SE = TP×100
FN+TP ‍� (4)

Figure 6. The Haar (db1) Wavelet.

Figure 7. Accuracy vs Wavelet Decomposition Level

Figure 8. Histogram of the approximation coefficients at 
level-2.

Figure 9. Accuracy vs threshold value, using the Haar Wavelet 
and a decomposition level of 2.
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Specificity (true negative fraction) measures the power of the 
system to accurately discover those who do not have the disease.

	﻿‍ SP = TN×100
FN+TP ‍� (5)

where,

TP: True positive samples (predicts COVID-19 as COVID-19).

FP: False positive samples (predicts normal as COVID-19).

TN: True negative samples (predicts normal as normal).

FN: False negative samples (predicts COVID-19 as normal).

The prevalence (PR) is calculated using the following equation:

	﻿‍ PR = AC−SP
SE−SP ‍� (6)

Table 6 shows the calculated PR, SE, SP, and AC.

Table 6 illustrates that the proposed system delivers high spec-
ificity and sensitivity ratios. The presence of other diseases in 
the COVID-19 chest image is a challenge to any classifier. The 
success of the classifier depends greatly on the training data. In 
general, the greater the number of lung images in the dataset, 
that are correctly classified with the corresponding diseases, the 
higher the accuracy of the classifier.

It is important to point out that the CNN classifier, the main 
competitor to the proposed system, cannot challenge the 

proposed system in the COVID-19 detection application. The 
majority of the proposed CNN systems feed the whole input 
image to the CNN classifier. In this study, image size is 512 × 512, 
and when the whole image is fed as input (no feature extraction), 
the size of the feature space dimension is

512 × 512=262,144.

The feature space dimension for the proposed system, on the 
other hand, is the length of the approximation vectors, which is 
16,384 coefficients, as indicated by Figure 10. Figure 10 depicts 
the approximation coefficients representing a sample COVID-19 
chest X-ray image used in our dataset, decomposed at level 2 
using the Haar Wavelet.

Figure 10 indicates that the length of the approximation vector 
is 16,384 coefficients. We hypothesize that for an n x m image 
decomposed at level L, the length of the approximation coeffi-
cient vector l is given by

	﻿‍ l = m x n
22L ‍� (7)

For example, the size of the images in our dataset is 512 × 512. 
When decomposed at level 2, equation 7 gives 1,6384 as the size 
of the approximation vector, as shown below:

512 × 512/24 = 1,6384.

Figure  11 shows the approximation coefficients of Figure  10, 
thresholded using a threshold value of 904. Figure 11 illustrates 
that thresholding a vector of 16,384 approximation coefficients, 
retains only 104 coefficients and sets the remaining 16,280 coef-
ficients to zeros. In other words, thresholding reduced the feature 
space dimension by more than 99%.

As a commonly used rule of thumb, data set size should be about 
10 times its dimension.79 Using the 10x rule, the number of 
training images needed by the proposed system is

16,384 × 10=163,840.

Whereas the number of training images needed by a CNN clas-
sifier is

262,144 × 10=2,621,440, which is impractical considering the 
small number of COVID-19 chest images that are currently 
available. Typically, deep learning demands millions of training 
images.

Just like other CAD systems, the proposed system processes 
digital images to help radiologists and other medical profes-
sionals in examining medical images such CT, X-ray, ultrasound, 
and MRI scans. Furthermore, due to human-related factors such 
as tiredness, fatigue, and enormous workload, the subjective 
interpretation by the observer of medical images, can be delu-
sive or insufficient. In such situations, CAD systems can be very 
assistive.

Table 6. Performance measures of the proposed system

Number of cases AC SP SE PR
100 94% 90% 92% 2

AC, accuracy; PR, prevalence; SE, sensitivity;SP, specificity.

Figure 10. Approximation coefficients representing a sample 
COVID-19 image in the data set.
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CONCLUSION
In this paper, a novel approach to the detection of COVID-19 
cases employing SVM and DWT is proposed. The DWT is appre-
ciated for its energy compression power. To find discriminative 
features in the X-ray image, the proposed system utilizes DWT 
to decompose the input chest X-ray image into a set of approxi-
mation coefficients that include a small number of high-energy 

(high-magnitude) coefficients. The proposed system introduces 
a new coefficient selection technique that uses thresholding, 
RLE, and zero-padding to extract only high-energy Wavelet 
approximation coefficients. These features are subsequently 
introduced to a SVM classifier for detecting whether the input 
image represents a normal or COVID-19 case.

By drawing out a restricted set of discriminative features, the 
proposed system proves its ability to reduce the feature space 
dimension, which naturally leads to the minimization of 
required training data set size and to the reduction of space and 
time complexities of the system.

The performed experiments show that exploiting and reshaping 
the Wavelet approximation coefficients can produce discrimina-
tive features symbolizing the input image. Experiments on the 
used data sets obtained a recognition accuracy of 94% using a 
decomposition level of 2 and the db1 Wavelet.

The proposed system does not claim to offer a manufacturing-
ready solution to the problem of COVID-19 detection in chest 
X-rays. The aim is to build upon the promising results achieved 
by the Wavelet features on the Cohen data set, anticipating that 
more COVID-19 X-ray images will be available in the future.

The author declares that no external funding was received for 
this work.

Figure 11. Approximation coefficients of Figure  10, thresh-
olded using a threshold value of 904.
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