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Abstract

Original Article

IntroductIon

Whole‑slide tissue specimens have long been used to examine 
how the disease manifests itself at the subcellular level and 
modifies tissue morphology. By examining glass tissue 
slides under high‑power microscopes, pathologists evaluate 
changes in tissue morphology and render diagnosis about 
a patient’s state. Advances in digital pathology imaging 
have made it feasible to capture high‑resolution whole‑slide 
tissue images rapidly. Coupled with decreasing storage 
and computation costs, digital slides have enabled new 
opportunities for research. Research groups have developed 

techniques for quantitative analysis of histopathology images 
and demonstrated the application of tissue imaging in disease 
research.[1‑13]

Context: Image segmentation pipelines often are sensitive to algorithm input parameters. Algorithm parameters optimized for a set of 
images do not necessarily produce good‑quality‑segmentation results for other images. Even within an image, some regions may not be well 
segmented due to a number of factors, including multiple pieces of tissue with distinct characteristics, differences in staining of the tissue, 
normal versus tumor regions, and tumor heterogeneity. Evaluation of quality of segmentation results is an important step in image analysis. 
It is very labor intensive to do quality assessment manually with large image datasets because a whole‑slide tissue image may have hundreds 
of thousands of nuclei. Semi‑automatic mechanisms are needed to assist researchers and application developers to detect image regions with 
bad segmentations efficiently. Aims: Our goal is to develop and evaluate a machine‑learning‑based semi‑automated workflow to assess quality 
of nucleus segmentation results in a large set of whole‑slide tissue images. Methods: We propose a quality control methodology, in which 
machine‑learning algorithms are trained with image intensity and texture features to produce a classification model. This model is applied to 
image patches in a whole‑slide tissue image to predict the quality of nucleus segmentation in each patch. The training step of our methodology 
involves the selection and labeling of regions by a pathologist in a set of images to create the training dataset. The image regions are partitioned 
into patches. A set of intensity and texture features is computed for each patch. A classifier is trained with the features and the labels assigned 
by the pathologist. At the end of this process, a classification model is generated. The classification step applies the classification model to 
unlabeled test images. Each test image is partitioned into patches. The classification model is applied to each patch to predict the patch’s label. 
Results: The proposed methodology has been evaluated by assessing the segmentation quality of a segmentation method applied to images 
from two cancer types in The Cancer Genome Atlas; WHO Grade II lower grade glioma (LGG) and lung adenocarcinoma (LUAD). The results 
show that our method performs well in predicting patches with good‑quality segmentations and achieves F1 scores 84.7% for LGG and 75.43% 
for LUAD. Conclusions: As image scanning technologies advance, large volumes of whole‑slide tissue images will be available for research 
and clinical use. Efficient approaches for the assessment of quality and robustness of output from computerized image analysis workflows 
will become increasingly critical to extracting useful quantitative information from tissue images. Our work demonstrates the feasibility of 
machine‑learning‑based semi‑automated techniques to assist researchers and algorithm developers in this process.
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Nucleus/cell detection and segmentation are the common 
methodologies in tissue image analysis.[14] Over the past 
decade, researchers have developed a variety of nucleus 
segmentation methods. [1,14,15] Nucleus segmentation 
pipelines process images to detect the locations of nuclei 
and extract their boundaries. After the boundaries of nuclei 
are determined, imaging features (such as size, intensity, 
shape, and texture features) can be computed for each 
segmented nucleus and used in downstream analyses for 
mining and classification. Achieving accurate and robust 
segmentation results remains a difficult problem because of 
image noise, such as image acquisition artifacts, differences 
in staining, and variability in nuclear morphology within 
and across tissue specimens. It is not uncommon that a 
segmentation pipeline optimized for a tissue type will 
produce bad segmentations in images from other tissue types 
and even in different regions of the same image. Figure 1 
shows sample patches with good‑segmentation results 
(good‑quality‑segmentation) and sample patches with two 
categories of bad segmentations (under‑segmented and 
over‑segmented) from the same segmentation algorithm. The 
“under‑segmented” patches in the figure refer to the cases, in 
which some nuclei were missed due to poor contrast between 
the nuclei and the tissue. The “over‑segmented” patches, on 
the other hand, have nonnuclear material segmented as nuclei 
or sets of single nuclei segmented as multiple nuclei.

It is necessary to have a quality control stage to assess the 
quality of segmentation results before the results are used in 
downstream analyses for knowledge discovery and scientific 
interpretation. It is labor intensive to manually check every 
image and every segmented nucleus in an image. A typical 
whole‑slide tissue image contains a few hundred thousand to 
over a million nuclei. This data problem is compounded by 
the fact that datasets with thousands of images are becoming 
common in image analysis projects with the help of advanced 
tissue slide scanners and increased storage capacity of modern 
computing platforms. (Semi‑) automated error checking 
workflows are needed that can help researchers and algorithm 

developers detect bad segmentation results quickly and 
reliably.

Bamford and Lovell[16] have proposed a nucleus segmentation 
method with a confidence measure in segmentation output. 
Since the confidence measure is related to a specific parameter 
in the particular segmentation method, this quality control 
method cannot easily be expanded to other segmentation 
algorithms. Cukierski et al.[17] assigned a numeric value to 
each segmented object. Probability is calculated from a logistic 
regression built on the morphological, texture, and contextual 
features of the segmented object. By ranking the segmentations 
based on their probabilities, well‑segmented objects were 
selected. In another recent work,[18] an artificial neural network 
was trained to classify accurately segmented nuclei and other 
segmented objects using the shape, intensity, and texture 
feature of the segmented objects. An experimental evaluation 
showed that this selection procedure can help increase the 
precision of segmented objects from 17% to 71.5%. Brinker 
et al.[19] trained a support vector machine (SVM) classifier 
with the appearance‑based features (area, circularity, and 
solidity) and shape‑based features (intensity variance and 
entropy) of a segmented object. The trained classifier is then 
used to differentiate correct and incorrect cell segmentations 
in the preparation for automatic segmentation correction. 
The previous work on segmentation quality assessment and 
improvement has developed methods that work at the object 
level. The methods aim to assess the correct segmentation of 
individual objects. This process can become computationally 
very expensive in high‑resolution images with millions of 
nuclei and may not scale to large datasets.

In this paper, we propose a novel quality control workflow 
that uses patch‑level intensity and texture features to evaluate 
nucleus segmentation results in high‑resolution whole‑slide 
tissue images. This approach is motivated by the observation 
that image regions with similar intensity and texture features 
tend to have comparable segmentation quality given a 
segmentation algorithm and a set of segmentation parameter 

Figure 1: Sample patches of WHO Grade II lower grade glioma for each of the three categories: good‑quality‑segmentation, under‑ and over‑segmented
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values. In our current implementation, segmentation results 
are used only for labeling image regions in the training phase 
but not used in the prediction (or classification) phase. To scale 
millions of nuclei and large numbers of images, our approach 
assesses the segmentation quality of image patches, instead 
of the accuracy of pixel‑level boundary delineation[20] or the 
probability that an object has been segmented well.[17] The 
proposed approach is executed as follows with segmentation 
results obtained from a collection of whole‑slide tissue 
images. In the training phase, a sample image set is randomly 
selected by a pathologist from the collection of images. 
The pathologist examines the segmentation results in the 
sample images and selects representative regions in each 
sample image. S/he then classifies them into regions with 
good‑segmentation results (good‑quality segmentation) and 
regions with bad‑segmentation results (under‑segmented 
or over‑segmented). The selected regions are partitioned 
into equal‑sized patches, and a set of intensity and texture 
features is computed for each patch. A machine‑learning 
model is trained using the features and labels of each patch 
in the training set. In the classification phase, test images are 
partitioned into patches (of the same size as the patches in the 
training set), the same set of intensity and texture features is 
computed, and each patch is classified using the features and 
the trained model. The classification model must be retrained 
for results obtained from a different segmentation algorithm 
or a different set of algorithm parameter values. In that case, 
the training phase will use the same set of intensity and 
texture features, but the set of patches and their labels may be 
different. We plan to explore the utilization of segmentation 
results and morphological features (such as size and shape of 
a segmented nucleus) in the training and classification phases 
in the future work.

We have experimentally evaluated our methodology with two 
different cancer types: WHO Grade II lower grade gliomas 
(LGGs) and lung adenocarcinoma (LUAD) cases from The 
Cancer Genome Atlas (TCGA) project.[21] For each of the 
cancer types, we segmented images with a segmentation 
algorithm which discriminates between background tissue 
and target nuclei through a threshold parameter.[22] Threshold 
parameters are used in many nucleus segmentation algorithms 
to delineate the boundaries of target objects. The choice 
of threshold parameter values leads to under‑segmentation 
or over‑segmentation of an image. Our approach not only 
can predict the segmentation quality based on the image 
information but also can provide suggestions as to which 
direction the threshold value should be adjusted to obtain 
better segmentation results. Please see the Segmentation 
Algorithm subsection in the Results and Discussion section for 
an example of how predicting if a patch is under‑segmented or 
over‑segmented can be used to guide the selection of algorithm 
parameters to improve segmentation results.

The rest of the paper is organized as follows. The Methods 
section outlines the construction of the proposed segmentation 
quality assessment pipeline, including generation of labeled 

sample patches, patch‑level texture feature extraction, and 
classification. An experimental evaluation of the pipeline is 
presented in the Results and Discussion section.

Methods

Our approach consists of a pipeline of training and classification 
steps as is illustrated in Figure 2. In the training phase, image 
regions in a sample set of images are selected and labeled by 
a pathologist to create the training set. The image regions are 
then partitioned into image patches, and a set of intensity and 
texture features is computed for each patch. The last step in 
this phase is to train a classifier using the labels of the image 
regions and the computed features. In the classification step, 
the classification model is applied to the test data to assess 
the quality of segmentations in image patches extracted from 
images in the test dataset.

Training phase
A subset of segmented whole‑slide images in the target 
dataset is randomly chosen. The pathologist marks up regions 
in each selected image and assigns a classification label to 
each region. There are three classification labels; region with 
good‑segmentation results (good‑quality‑segmentation), 
region with under‑segmented nuclei (under‑segmented), and 
region with over‑segmentation (over‑segmented). If a region 
is labeled under‑segmented, it means that the segmentation 
algorithm has missed some nuclei in the region and/or 
segmented single nuclei as multiple nuclei. If a region is labeled 
over‑segmented, it means that the segmentation algorithm has 
segmented more objects than there are actual nuclei.

The stratified sampling method[23] is used to select a subset 
of images for the training set. If the images belong to some 
natural strata, images are randomly selected from each 
group based on the number of images in each group. In our 
experiments, images are grouped based on their tissue source 
site i (i = 1,… n). The tissue source site indicates from which 
institution the tissue was obtained. Grouping images based on 
tissue source site is performed to accommodate for variability 
in images due to differences in tissue preparation and image 

Figure 2: Workflow of the nucleus segmentation quality assessment 
pipeline
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acquisition across source sites. To select N images for the 
training set, we compute the ratio p pi i( )=∑ 1  of images 
from each site i to the total number of images. The relative 
size of the sample images from site i would be N × pi. To 
ensure that our training set has images from all the source 
sites, we select one image randomly from the sites with 
N × pi ≤ 1. For the rest of the sites i i N p∈ × >{ | }i 1 , we 

recompute the ratio p
p

p
i N p{ | }

i
i

i
i

=
× >∑ 1

 and randomly 

choose ( ) ’{ | }N pi N p− ×× ≤∑1 1i i images from those source sites. 
1 1{ | }i N p× ≤∑ i indicates the number of source sites from which 

only one image has been selected.

Image regions selected by the pathologist can be of any shape 
and size. Each region is partitioned into nonoverlapping 
patches of the same size and shape. The number of patches in 
each region will depend on the region’s shape and size. All of 
the patches in a region are assigned the same label as that of the 
region. Two sets of intensity and texture features are calculated 
for each region – note that the features are computed at the 
patch level, not for nuclei segmented in the patch. The first set 
contains 16 features from three groups (pixel statistics, gradient 
statistics, and edge). A total of 32 features are computed from 
this set; 16 for the red channel and 16 for the blue channel. 
These features are listed in Table 1. The second set of features 
consists of the mean and standard deviation of the intensity 
values of the red, green, and blue channels.

To avoid collinearity among the features and to select the 
more informative features, stepwise variable selection in 
logistic regression is applied. Variable selection is an essential 
preprocedure and has many benefits for classifiers, such as 
reducing the measurement requirements, reducing training and 
utilizing times, and alleviating the curse of dimensionality to 
improve prediction performance.[24] Stepwise variable selection 
in logistic regression is one of the commonly used variable 
selection methods.

Two sets are created for the variable selection step. One set 
contains the patches that have good segmentation results 
and the patches that are under‑segmented. The other set is 
composed of the patches that have good‑segmentation results 
and the patches that are over‑segmented. The variable selection 
process is applied to the two sets independently. The label 
of each patch is treated as a binary response variable. The 
computed features are added to or removed from the feature set 
at each iterative step to achieve a smaller Bayesian information 
criterion until no more action can be done to reduce the 
criterion. In this way, the selected features are the smallest 
subset of the input features with sufficient information to 
differentiate the two categories (good vs. under‑segmented or 
good vs. over‑segmented). For a different set of sample patches, 
the selected features might be different based on their distinct 
texture characters. We use the implementation of stepwise 
selection for generalized linear regression model in Statistics 
and Machine Learning Toolbox™ in MATLAB to carry out 

the variable selection step.

Classification models
The features selected for good versus under‑segmented may 
not be able to differentiate over‑segmented patches from 
patches with good‑segmentation results, and similarly, the 
features for good versus over‑segmented may not be able 
to separate under‑segmented patches from patches with 
good‑segmentation results. The proposed approach trains two 
classification models. One model is trained using the set of 
patches with good‑segmentation results and under‑segmented 
patches. The second model is trained using the set of patches 
with good‑segmentation results and over‑segmented patches. 
These two models are applied to a test patch to predict the test 
patch’s label as we shall describe in the next section.

Test phase
When a new patch with no labels goes through the classification 
process, it will get two labels, one from each classification model. 
One label indicates whether the patch is under‑segmented or 
not‑under‑segmented. The other label classifies whether the 
patch is over‑segmented or not‑over‑segmented. The two 
classification results are combined to make a final decision 
about the segmentation quality of the patch. This is illustrated 
in Figure 3. In Figure 3, we refer one of the models as 
“under remover” which labels a patch under‑segmented or 

Table 1: List of the patch level texture features for red 
and blue channel

Category Name Brief description
Pixel 
statistics

IntensityMean Average of raw pixel value
IntensityMax Maximum of raw pixel value
IntensityMin Minimum of raw pixel value
IntensityStd SD of raw pixel value
IntensityEntropy Entropy of the normalized 

co‑occurrence matrix of pixel value
IntensityEnergy Sum of squared elements in the 

normalized co‑occurrence matrix of 
pixel value

IntensitySkewness Skewness of the normalized pixel 
value

IntensityKurtosis Kurtosis of the normalized pixel 
value

Gradient 
statistics

GradientMean Average of gradient channel value
GradientStd SD of gradient channel value
GradientEntropy Entropy of the normalized 

co‑occurrence matrix of gradient 
channel value

GradientEnergy Sum of squared elements in the 
normalized co‑occurrence matrix of 
gradient channel value

GradientSkewness Skewness of the normalized gradient 
channel value

GradientKurtosis Kurtosis of the normalized gradient 
channel value

Edge CannyNonZero Number of pixel with nonzero canny 
value

CannyMean Average of canny value
SD: Standard deviation
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not‑under‑segmented and the other model as “over remover” 
which labels a patch over‑segmented or not‑over‑segmented.  If 
the under remover labels a patch under‑segmented and the over 
remover labels the patch not‑over‑segmented, the final label 
of the patch will be under‑segmented. This decision is based 
on the expectation that the over remover will not be able to 
differentiate between a patch with good‑segmentation results 
and an under‑segmented patch and that the under remover will 
be more accurate with under‑segmented patches. Similarly, 
if the over remover labels a patch over‑segmented and the 
under remover labels the patch not‑under‑segmented, the final 
label of the patch will be over‑segmented. If the over remover 
and the under remover label a patch not‑over‑segmented and 
not‑under‑segmented, respectively, the final label of the patch 
is chosen to be “patch with good‑segmentation results.” If the 
over remover labels a patch over‑segmented and the under 
remover labels the patch under‑segmented, we can only 
conclude that the patch has bad‑segmentation results; however, 
we cannot tell whether the patch is under‑ or over‑segmented.

results and dIscussIons

We have evaluated the proposed pipeline using two sets of 
whole‑slide images obtained from two different cancer types: 
WHO Grade II LGG and LUAD. The whole‑slide images were 
downloaded from TCGA data set.

Segmentation algorithm
For each cancer type, a computerized nucleus segmentation 
method[22] was applied. The method segments nuclei in 
H&E‑stained whole‑slide tissue images. It applies color 
normalization in the L*a*b color space on input images 
using a properly stained template image. It then extracts the 
hematoxylin (stained on nuclei mainly) channel through a 
color decomposition process. A localized region‑based level 
set method with a user‑defined threshold value determines 
the contour of each nucleus. In cases where several nuclei 
are clumped together, a hierarchical mean shift algorithm is 
employed to separate the clump into individual nuclei.

The threshold parameter in the level set method significantly 
affects the quality of segmentation. Figure 4 shows the 

segmentation results generated by two different threshold 
values. The blue polygons in the images are the segmentation 
results obtained with a small threshold value, while the red 
polygons show the results using a large threshold value. In the 
images in the first row, some light‑colored nuclei have been 
missed with the low threshold value. In the areas highlighted 
with a yellow circle, only six nuclei were segmented with 
the low threshold value. There are actually 10 nuclei in that 
area. The blue result in this case represents a bad result with 
under‑segmentation. After increasing the threshold value, the 
result (red result) can be considered good‑quality segmentation. 
The images in the second row show an example of over 
segmentation; the large threshold value (the red result) would 
lead to segmentation of nonnuclear material. By decreasing 
the threshold parameter value, the segmentation result (the 
blue result) is much better. Therefore, if our quality assessment 
pipeline predicts whether a patch is under‑segmented or 
over‑segmented, this information can be used to guide the 
selection of algorithm parameters to improve segmentation 
results.

Classification methods
In our experiments, we generated the classification models 
using two classification methods and compared their results: 
random forest and SVM. Generally, both random forest and 
SVM have their own pros and cons. Whether one method is 
better than the other depends on the problem and data set.[25]

Random forest is an ensemble learning method for classification 
that works by bagging multiple decision trees and outputting 
the classification label by taking the majority vote. Each of 
the decision trees is built on a bootstrap sample of the training 
data using a randomly selected subset of variables.[26] It has 
the distinct advantage that decision trees’ habit of overfitting 
to their training set can be avoided. Furthermore, since there 
are no parameters to be tuned, the runtime for training a 

Figure 3: Framework of decision‑making strategy for patches with no 
labels

Figure 4: Comparison of segmentation result with different threshold 
parameter values (the example in the first row shows that segmentation 
method with small threshold parameter [blue polygons] would neglect 
some light‑colored nuclei; while the example in the second row indicates 
that segmentation method with large threshold parameter [red polygons] 
would segment nonnuclei area)
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random forest is usually short. We use the implementation of 
random forest in Statistics and Machine Learning Toolbox™ 
in MATLAB. In our experiments, we set the number of trees 
as 1000. We also evaluated a random forest with 10,000 trees. 
The results showed that the performance of the random forest 
did not improve much.

SVM is supervised learning method. It finds hyperplanes 
in a high‑dimensional space that maximizes the distance to 
the nearest training data point of any classes. In addition 
to performing linear classification, SVM can efficiently 
perform a nonlinear classification using a kernel which 
implicitly maps inputs to high‑dimensional feature spaces. 
This is the reason why SVM can achieve better performance 
than traditional linear classifiers, such as linear discriminant 
analysis and logistic regression. We used the MATLAB 
version of LIBSVM[27] with the radial basis function kernel. 
The kernel parameter gamma and cost were selected by 5‑fold 
cross‑validation.

Generation of sample patches
Forty images segmented by the segmentation method were 
randomly selected from each cancer type for our collaborating 
pathologist to manually label regions (also referred to as 
regions of interest [ROIs] in the rest of the paper). Since the 
whole‑slide images in TCGA were collected from different 
tissue source sites, we applied the stratified sampling step as 
presented in the Methods section to create the training dataset.

The pathologist reviewed the segmented images using 
our QuIP application and manually labeled regions 
good‑quality‑segmentations, under‑segmented, and 
over‑segmented in each image in the training set. QuIP is 
a web‑based suite of tools and services that are designed 
to support analysis, management, and query of pathology 
image data and image analysis results (http://www.quip1.
bmi.stonybrook.edu; https://www.github.com/SBU‑BMI/
quip_distro.git). It provides web applications and interfaces for 
users to interact with and visualize images and analysis results. 
The web interfaces and applications are backed by a database, 
which indexes metadata about whole‑slide tissue images and 
results from segmentation and feature computation pipelines. 
Users can view high‑resolution whole‑slide tissue images and 
segmentation results using the caMicroscope application.[28] A 
user can request an image and select analysis results from an 
analysis algorithm and view the analysis results overlaid on the 
image as polygons. The user can pan and zoom in the image, 
markup regions using rectangular or freehand drawing tools, 
annotate the regions with a label, and save the results in the 
database. Figure 5 shows the main image viewing and markup 
interface with segmentation results [Figure 5a] and regions 
marked up by the pathologist [Figure 5b] in a whole‑slide 
tissue image.

In the regions with good‑segmentation results, most of the 
nuclei were segmented correctly. In the under‑segmented 
regions, some nuclei were not segmented or single nuclei were 
segmented as multiple nuclei. In the over‑segmented regions, 

some none‑nucleus material was delineated as nuclei. Regions 
with no tissue (e.g., regions containing slide background and 
image acquisition artifacts) were not taken into consideration. 
Some regions, such as necrosis regions or blood clots, may 
have tissue but no nuclei. If there are segmented objects 
in such regions, they are labeled over‑segmented regions; 
otherwise, they are labeled “region with good‑segmentation 
results.” In our experiments, some regions with no nuclei 
were over‑segmented, but there were few regions with no 
segmentation results.

After the manually labeled regions were obtained, 
nonoverlapping patches of 512 × 512 pixels were extracted 
from each of the regions. Some sample patches of WHO 
Grade II LGG with segmentation results for each category 
are shown in Figure 1.

Table 2 lists the number of manually labeled ROIs and the 
number of patches for each cancer type and each segmentation 
quality category. The number of patches for an ROI was 
determined by the size of the ROI. Larger ROIs generated 
more patches. There are fewer patches generated for LUAD 
even though there are more regions labeled for LUAD. This 
is because tissue images from the WHO Grade II LGG cases 
have usually more uniform texture than images from the LUAD 
cases. Hence, larger regions were selected in WHO Grade II 
LGG images.

Figure 5: CaMicroscope application in QuIP to view images, segmentation 
results, and markup regions. (a) Segmentation results displayed as 
polygons overlaid on a whole‑slide tissue image, (b) regions marked up 
a pathologist to create a training set

a

b
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Computation and comparison of region texture features
For each good‑quality‑segmentation, under‑segmented, or 
over‑segmented patch, 38 texture features were calculated. 
Thirty‑two of them are the features listed in Table 1 for both 
the red and the blue channels. The remaining six features 
are the mean and standard deviation of the raw pixel value 
in each of the red, green, and blue channels (feature names: 
meanR, meanG, meanB, stdR, stdG, and stdB). To remove 
redundant features, stepwise selection of logistic regression 
was carried out for the good‑quality‑segmentation versus 
under‑segmented patches and good‑quality‑segmentation 
versus over‑segmented patches for each cancer type. The 
selected significant features are listed in Table 3. “r_” or “b_” 
prefix in a feature name means that the feature was computed 
for the red channel or the blue channel, respectively. We can 
see from the table that different cancer types have different 
sets of significant features. Comparing with the features 
selected for WHO Grade II LGG, more features were selected 
for LUAD. This means that it was harder to discriminate 

between good‑ and under‑segmented patches or between 
good‑quality‑segmentation and over‑segmented patches in 
LUAD than those in WHO Grade II LGG. As a result, more 
features were needed to be selected.

There are 38 texture features in total. For WHO Grade II 
LGG good versus under, 11 features were selected; for WHO 
Grade II LGG good versus over, 8 features were selected; for 
LUAD good versus under, 22 features were selected; and for 
LUAD good versus over, 21 features were selected.

Even for the same cancer type, different texture features were 
selected in different segmentation quality comparisons. As 
is seen in Table 3, r_GradientMean (the average of gradient 
value for the red channel) was selected for WHO Grade II 
LGG in the good versus under comparison, but not in the good 
versus over comparison. On the other hand, stdG (representing 
standard deviation of the raw pixel value for green channel) 
was selected in the good versus over comparison but not in 
the good versus under comparison.

Table 2: List of information for manual labeled regions of interest

Number of images Number of manual labeled ROI (number of patches)

Good‑quality‑segmented Under‑segmented Over‑segmented
WHO Grade II LGG 40 34 (5819) 24 (6122) 17 (4718)
LUAD 40 28 (3992) 39 (3087) 27 (3121)
ROI: Regions of interest, LGG: Lower grade glioma, LUAD: Lung adenocarcinoma

Table 3: Texture features selected to each cancer and category comparison

Feature name WHO Grade II LGG LUAD Feature name WHO Grade II LGG LUAD

Good 
versus 
under

Good 
versus 
over

Good 
versus 
under

Good 
versus 
over

Good 
versus 
under

Good 
versus 
over

Good 
versus 
under

Good 
versus 
over

r_IntensityMean   b_IntensityMean 

r_IntensityMax b_IntensityMax  

r_IntensityMin    b_IntensityMin
r_IntensityStd    b_IntensityStd  

r_IntensityEntropy   b_IntensityEntropy  

r_IntensityEnergy    b_IntensityEnergy 

r_IntensitySkewness    b_IntensitySkewness    

r_IntensityKurtosis   b_IntensityKurtosis  

r_GradientMean   b_GradientMean 

r_GradientStd    b_GradientStd 

r_GradientEntropy  b_GradientEntropy  

r_GradientEnergy  b_GradientEnergy  

r_GradientSkewness  b_GradientSkewness 

r_GradientKurtosis b_GradientKurtosis  

r_CannyNonZero  b_CannyNonZero  

r_CannyMean   b_CannyMean
meanR stdR 

meanG    stdG  

meanB  stdB 
There are 38 texture features in total. For WHO Grade II LGG good versus under, 11 features were selected; for WHO Grade II LGG good versus over, 8 
features were selected; for LUAD good versus under, 22 features were selected; and for LUAD good versus over, 21 features were selected. LGG: Lower 
grade glioma, LUAD: Lung adenocarcinoma ‘’ means the feature is selected for the category comparison
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The histograms in Figure 6 explain why the two features 
were selected in only one of the two category comparisons 
and why we need to divide the bad‑quality‑segmentation 
group into two subgroups. It can be seen in Figure 6b that 
patches with r_GradientMean <10 are all under‑segmented 
patches and all the patches with good‑quality segmentation 
have r_GradientMean >10. That is, patches with smaller 
variation in the red channel tended to be under‑segmented 
patches. There is still a small portion of under‑segmented 
patches having large variation in the red channel, which 
is caused by the texture variation across different slides. 
Feature r_GradientMean was able to distinguish most of the 
under‑segmented patches from patches with good‑quality 
segmentation. However, as seen in Figure 6c, r_GradientMean 
could not differentiate between over‑segmented patches and 
patches with good‑quality segmentation. If we combined 
under‑segmented patches with over‑segmented patches 
and grouped them together as patches with bad‑quality 

segmentations, as shown in Figure 6a, there would be significant 
overlap between the histogram of the patches with bad‑quality 
segmentations and that of the patches with good‑quality 
segmentations. By dividing the bad‑quality‑segmentation 
group into two subgroups, we can more easily differentiate 
one particular subgroup of bad‑quality‑segmentation patches 
from good‑quality‑segmentation patches. Similarly, feature 
stdG provided more information when distinguishing 
good‑quality‑segmentation patches from over‑segmented 
ones but was less informative when dividing the patches into 
good‑quality‑segmentation group and under‑segmented group 
or bad‑quality‑segmentation group.

Classification result
For each cancer type, SVM and random forest for good 
quality segmentation group and under/over‑segmented group 
were trained using the selected significant texture features. 
Since the primary purpose of our pipeline is to pick up 

Figure 6: Histogram of texture features for WHO II lower grade glioma (histogram of r_GradientMean of [a] good‑quality‑segmentation group 
versus bad‑quality‑segmentation group, [b] good‑quality‑segmentation group versus under‑segmented group, [c] good‑quality‑segmentation 
group versus over‑segmented group, and histogram of stdG of [d] good‑quality‑segmentation group versus bad quality segmentation group, 
[e] good‑quality‑segmentation group versus under‑segmented group, [f] good‑quality‑segmentation group versus over‑segmented group)

a

b

c

d

e

f
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Figure 7: Samples of misclassified good‑quaility and under‑segmented lung adenocarcinoma patches

good‑quality segmentation patches in a whole‑slide image, 
we need to separate the good‑quality segmentation group from 
all the subgroups of bad segmentations (the under‑segmented 
subgroup and the over‑segmented subgroup). The training 
accuracy, which is computed as the average of 10‑fold cross 
validation accuracy, and the test accuracy are listed in Table 4. 
The accuracy is defined as the sum of true positive and true 
negative divided by the total number of cases in the two 
categories of each training or test set. SVM achieved higher 
training accuracy than random forest. However, random forest 
achieved better test accuracy in most of the cases, especially 
for the test of LUAD under remover. This indicates that the 
SVM is easier to be overfitted than random forest.

Although the training accuracies of the under remover models 
(from the SVM and random forest) with the LUAD images were 
above 90%, their test accuracies were low, especially that of 
the model implemented by the SVM. This is unsurprising given 
the wide variety of cell appearances in the LUAD images and the 
similarity of texture feature for good‑quality‑segmentation patches 
and under‑segmented patches. Figure 7 shows some sample 
patches: patches in the first row are good‑quality‑segmentation 
patches that were classified as under‑segmented and the ones 
in the second row were under‑segmented patches but labeled 
good‑quality segmentation. Compared with the LGG samples 
shown in Figure 1, the size and shape of LUAD nuclei are quite 
different, across the slides or even within the same slide. For 
the patches generated from a single ROI, their texture features 
are quite similar. They share the same label with the label given 
to the ROI. However, the texture appearance of different ROIs 
circled from a particular slide or from different slides may be 
very different. As seen in Figure 7, the patches in the first row 
were all labeled as good‑quality segmentation, but they look 
significantly different from each other. This fact also increases 
the difficulty of accurately classify patches into these two quality 
categories for LUAD.

Table 5 lists the precision, recall, and F1 score of the three 
categories: good, under, and over using different methods 
to classify WHO Grade II LGG and LUAD patches. For 
both of the classification methods, the under‑segmented 
category achieved the highest F1 score in the LGG dataset. 

This is because patches in this category have consistent and 
differentiable texture features than the other two categories 
(as shown in Figure 1, under‑segmented sample patches 
are all light‑colored and quite different from patches in the 
other two categories). By applying our segmentation quality 
control pipeline to the other WHO Grade II LGG whole‑slide 
images, we can find out the regions in which the segmentation 
method with a given set of parameters may fail to detect 
all the nuclei. A possible further step would be to increase 
the threshold parameter value for those regions to get more 
accurate segmentation results. Due to more heterogeneous 
collection of nuclei in the LUAD images, the performances 
of the two classification methods were worse with the LUAD 
segmentation results than with the LGG segmentation results. 
Among the three categories, the good‑quality‑segmentation 
category achieved the highest F1 score. This can help in 
finding regions that are better segmented when processing 
an LUAD whole‑slide image through our quality control 
workflow.

We have also combined the two subgroups of patches 
with bad segmentations together to form the bad‑quality‑
segmentation group and trained the classifiers for 
each cancer type by the two classification methods to 
differentiate good‑quality‑segmentation patches from the 
bad‑quality‑segmentation ones. The performance of the 
good versus bad classifiers is given in Table 6. The good 
versus bad classifier has better performance in detecting 
good‑quality‑segmentation areas in the LGG images, while 
it has much worse performance with the LUAD images 
compared with the performances of the classification 
models for good‑versus‑under and good‑versus‑over. These 
results show that dividing the bad‑quality‑segmentation 
group into two subgroups not only provides us with 
information about how to improve the segmentation quality 
for the bad‑quality‑segmentation areas but also achieves 
better classification performance with cancer types, in which 
morphology of nuclei has higher variance.

In general, compared with SVM, random forest has better 
performance in the LUAD dataset. It achieves higher training 
accuracy and F1 score. Therefore, we recommend applying 
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random forest to create classification model. When comparing 
the results for the two cancer types, we observe that the 
classification results for LGG are better than those for LUAD. 
This indicates that our pipeline will likely work better for cancer 
types with more consistent texture features. By dividing the 
bad‑quality‑segmentation group into under‑ and over‑segmented 
subgroups, the F1 score for good‑quality‑segmentation group 
has increased. In addition, the subgroup labels can also be used 
to guide algorithm parameter selection to improve segmentation 
results as described earlier in the segmentation algorithm section.

conclusIons

Effective utilization of whole‑slide tissue images in biomedical 
research hinges on robust methods that extract useful 
information accurately and reliably. Nucleus segmentation 

is one of the core image analysis methods employed by 
researchers to turn image data into knowledge. While computer 
algorithms generally produce more reproducible results, 
they often are sensitive to input data and may not produce 
consistently good segmentation results across image datasets. 
In this paper, a quality assessment pipeline is proposed that 
evaluates nucleus segmentation quality based on patch‑level 
texture features. The decision to use patch‑level texture features 
is based on our experience that images with similar texture 
features in tissue usually have comparable segmentation 
quality given a set of segmentation parameters.

Our experimental results show that the proposed approach 
is able to predict segmentation quality at the patch level 
and performs well across a range of images. Since the 
texture appearance for different cancer types may vary 

Table 4: Performance of support vector machine and random forest for each cancer type and category comparison

Random forest SVM

Training 
accuracy (%)

Test 
accuracy (%)

Training 
accuracy (%)

Test accuracy (%)

WHO Grade II LGG under remover 97.23 97.56 99.60 93.48
WHO Grade II LGG over remover 96.59 82.43 98.21 84.40
LUAD under remover 92.61 83.77 90.57 66.43
(a) LUAD over remover 86.75 83.89 91.43 84.01

WHO Grade II LGG Random forest

Under remover

SVM

Under remover

Tested as not 
under‑segmented

Tested as 
under‑segmented

Tested as not 
under‑segmented

Tested as under‑segmented

Good/over 5286 150 5029 407
Under 2 3039 0 3041

WHO Grade II LGG Random forest

Over remover

SVM

Over remover

Tested as not 
over‑segmented

Tested as 
over‑segmented

Tested as not over‑segmented Tested as 
over‑segmented

Good/under 6064 174 6146 92
Over 918 1321 756 1483

LUAD Random forest

Under remover

SVM

Under remover

Tested as not 
under‑segmented

Tested as 
under‑segmented

Tested as not under‑segmented Tested as 
under‑segmented

Good/over 2644 870 2308 1206
Under 295 1335 445 1185

LUAD Random forest

Over remover

SVM

Over remover

Tested as not 
over‑segmented

Tested as 
over‑segmented

Tested as not over‑segmented Tested as 
over‑segmented

Good/under 2705 851 1611 945
(b) Over 365 1223 395 1193
The table shows the training accuracy (average of 10‑fold cross validation accuracy) and test accuracy of each test. The accuracy is defined as the sum of true 
positive and true negative divided by the total number of cases in the two categories of each training or test set. The tables present the confusion matrices 
of each test for overall test set. LGG: Lower grade glioma, LUAD: Lung adenocarcinoma, SVM: Support vector machine (a) shows the training accuracy 
(average of 10‑fold cross validation accuracy) and test accuracy of each test. The accuracy is defined as the sum of true positive and true negative divided by 
the total number of cases in the two categories of each training or test set. (b) present the confusion matrices of each test for overall test set.
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Table 5: Classification performance for each cancer type in each category

Random forest SVM

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)
WHO Grade II LGG

Good 76.68 94.62 84.71 78.53 86.49 82.32
Under 95.56 95.43 95.49 89.94 100.00 94.71
Over 98.36 59.00 73.76 98.34 66.24 79.16

LUAD
Good 74.76 76.12 75.43 65.09 58.00 61.34
Under 66.19 45.03 53.60 47.44 37.55 41.92
Over 76.79 47.29 58.54 74.45 48.62 58.82

LGG: Lower grade glioma, LUAD: Lung adenocarcinoma, SVM: Support vector machine

Table 6: Classification performance for each cancer type by using good‑quality‑segmented versus bad‑quality‑segmented

Random forest SVM

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)
WHO Grade II LGG

Good 85.16 87.05 86.09 80.60 88.65 84.43
Bad 92.05 90.81 91.43 92.68 87.08 89.80

LUAD
Good 67.64 69.89 68.74 44.00 32.76 37.56
Bad 81.61 79.99 80.79 65.09 75.05 69.71

LGG: Lower grade glioma, LUAD: Lung adenocarcinoma, SVM: Support vector machine

significantly, different texture features would be selected for 
the classification model and the training phase would result 
in a different classification model. While the model trained in 
our experimental evaluation cannot be directly applied to other 
cancer types, our pipeline can be generalized to other cancer 
types by training new classification models for other cancer 
types. By comparing the results of applying our pipeline on two 
different cancer types, we found that our pipeline works better 
when applying to the images with less heterogeneity of nuclei 
appearance and more consistent texture characteristics. The 
proposed approach can be applied to segmentation methods 
that make use of the texture characteristics of tissue to detect 
and delineate nuclear boundaries. However, if a segmentation 
method adapts its parameters across images, our method may 
not be suitable to check for segmentation quality since similar 
texture features may have different segmentation results in that 
case. We are in the process of involving the size, shape, and 
texture features of the segmented objects in our segmentation 
quality assessment pipeline and will report on our findings in 
the future work.
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