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Abstract

Purpose: This work aims to develop a knowledge‐based automated dose volume

histogram (DVH) prediction module that serves as a plan quality evaluation tool and

treatment planning guidance in commercial Pinnacle3 treatment planning system

(Philips Radiation Oncology Systems, Fitchburg, WI, USA).

Methods: The knowledge‐based automated DVH prediction module was developed

with kernel density estimation (KDE) method and applied for Pinnacle3 treatment

planning system. Treatment plan data from 20 esophageal cancer cases were used

for creating a module to predict DVHs. Twenty additional esophageal clinical plans

were evaluated on the developed module. Predicted DVHs were compared with

manual ones. Differences between the predicted and achieved DVHs were analyzed.

Results: The plan evaluation module was successfully implemented in Pinnacle3

treatment planning system. Strong linear correlations were found between predicted

and achieved DVH for organs at risk. Suboptimal treatment plan quality could be

improved according to the predicted DVHs by the module.

Conclusion: The knowledge‐based automated DVH prediction module implemented

in Pinnacle3 could be used to efficiently evaluate the treatment plan quality and as

guidance for further plan optimization.
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1 | INTRODUCTION

Intensity‐modulated radiation therapy (IMRT) is a popular clinical

treatment modality used worldwide. Compared to conventional

beams of uniform intensity, intensities of radiation beams are modu-

lated in IMRT to deliver a nonuniform dose distribution to the tumor

target. A desired target dose conformity and sufficient sparing of

critical structures could be achieved through IMRT planning.1–3 An

ideal IMRT plan could require a lot of trial‐and‐error process and

was time‐consuming. The efficiency of making an IMRT plan and the

quality of this plan depend on the clinical experience of the dosime-

trist.3–5

The population of patients treated for esophageal cancer is

increasing in our center. Esophageal plan quality has been investi-

gated for different treatment modalities.6 Compared to three‐dimen-

sional conformal radiotherapy (3DCRT), IMRT plans generally show

better target dose coverages and lower mean doses to organs at risk

(OARs). Also, high‐quality plans are desired to achieve optimal
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treatment outcomes.7 Therefore, a pretreatment plan quality assur-

ance (QA) tool is crucial for assuring treatment plans.

Knowledge‐based dose volume histogram (DVH) prediction has

shown good results for head and neck, pancreas and prostate treat-

ment planning.8–12 The plan variability can be reduced through

knowledge‐based planning.13–16 Although there is no definitive

method to evaluate a radiotherapy treatment plan, the feasibility of

using knowledge‐based DVH prediction for QA of head and neck

plan has been demonstrated.17 As a commercial knowledge‐based
optimization engine, RapidPlan™ in the Eclipse treatment planning

system (Varian Medical Systems, Palo Alto, USA) showed its poten-

tial to serve as an accurate plan QA tool. Strong correlations had

been found between RapidPlan™ predicted and manually achieved

mean doses to OARs. The predicted OAR sparing was validated by

replanning the patient with the RapidPlan™ module. Suboptimal

IMRT plan quality can be improved. Besides the knowledge‐based
RapidPlan™ module in the Eclipse, Pinnacle3 treatment planning sys-

tem (Philips Radiation Oncology Systems, Fitchburg, WI, USA) also

provides an Auto‐Planning module using plan‐simulating for auto-

mated plan optimization.15,18 However, it cannot predict OAR DVH.

The dilemma on balancing plan efficiency and plan quality is popular

in developing country with heavy patient load but limited dosime-

trists. Therefore, a quick method to verify plan quality or guide the

treatment planning is crucial in clinic.

We have proposed a new knowledge‐based auto‐planning solu-

tion for IMRT treatment planning.19 It used two parameters kernel

density estimation (KDE) algorithm to build the DVH prediction

model. The model feasibility in breast cancer has been validated with

treatment plan quality and consistency. In this study, a different

KDE method was developed and applied for esophageal cancer and

integrated into the commercial Pinnacle3 treatment planning system

to create a knowledge‐based automated DVH prediction module,

which can be used for treatment planning QA or guidance.

2 | METHODS AND MATERIALS

2.A | Overview of the knowledge‐based plan QA
module workflow

A schematic view of the plan QA module in Pinnacle3 is showed in

Fig. 1. Twenty IMRT cases with the same prescription dose for

esophageal cancer were planned by dosimetrists who had more

than 10 years work experience in our institution. These manually

optimized plans were clinically acceptable with high quality. DVH

data, voxels of planning target volume (PTV) and OARs extracted

from these plans were used as training data. A KDE model was

trained with these data and integrated into the Pinnacle3 treatment

planning system as a plan evaluation module. For new patient with

PTV and OAR delineation, corresponded DVH prediction would be

generated from this module. Predicted DVH curves can be shown

on Pinnacle3 user interface (UI), which could be used as a bench-

mark to evaluate treatment plan quality or as guidance for further

treatment optimization.

2.B | KDE‐based DVH prediction

Dose distribution, voxels of PTV and OARs extracted from the train-

ing data were trained to get DVH prediction. DVH can be deter-

mined by a cumulative probability distribution of dose x that is

lower or equal to a given dose D as Eq. (1).

DVH Dð Þ ¼ 1�
ZD
0

pD xð Þdx (1)

The dose probability density function pD(x) was predicted by

marginalizing the conditional probability density p(x|t) estimated from

training data over probability density p*(t) from input plan data,

where t was the signed minimal distance between dose point in

OAR voxel and PTV boundary. When OAR overlapped PTV, signed

distance of the point was negative inside PTV. For each input plan

data, pD(x) can be estimated by Eq. (2).

F I G . 1 . Schematic view of knowledge‐based plan quality assurance
module workflow.
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pD xð Þ ¼
Z
t
p xjtð Þp� tð Þdt (2)

From KDE method which was introduced by Skarpman,20 to gen-

erate a continuous probability density function pD(x), Gaussian kernel

was applied to the training data. The width of the Gaussian kernel in

this KDE model was calculated by minimizing mean integrated

squared error.21

2.C | KDE model validation

The KDE model was validated by 10 additional high‐quality treat-

ment plans. Plan evaluation metrics were summarized in Table 1.

DVH cut‐points (Vd) represented percent volume coverage of OAR

that received dose higher than d (Gy). By calculating Eq. (3), perfor-

mance of the model was evaluated with root mean square error

(RMSE) by comparing the difference between predicted and

achieved DVH metrics from corresponding validation data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Predicted� Achievedð Þ

Nplans

s
(3)

2.D | Plan QA module implementation and user
interface integration in Pinnacle3

Realization of plan QA function in Pinnacle3 treatment planning sys-

tem has three parts: plan data access, data processing, and results

feedback. Plan data from treatment planning system was imported

through an interface developed in Java programming language and

data processing was also performed in Java. The plan QA model was

developed in R programming language. The predicted DVH from the

model was embedded in the plan evaluation module of treatment

planning system using Pinnacle3’s scripts.

2.E | Application and evaluation in clinical
implementation

The developed QA module in Pinnacle3 was applied for 20 new eso-

phageal IMRT plans with the same prescription dose. Plan quality

evaluation was made with respect to the DVH metrics in Table 1.

The discrepancy between predicted and achieved DVH metrics was

analyzed statistically.

2.F | Statistical analysis

Clinical IMRT plans of esophageal cancer were evaluated between

the manual DVHs and predicted DVHs from the QA module. Mean

values and RMSE of data were used for statistical analysis. The

statistics were calculated using SPSS (v13.0, IBM corp., New York,

NY, USA). Regression analysis used R‐squared (R2) as the coefficient

of determination. The coefficient of determination of the regression

model would be close to 1 for a good fit.

3 | RESULTS

3.A | KDE model validation

Performance of the KDE model for esophageal cancer plan is shown

in Table 2. The mean values of the differences between predicted

and achieved OAR metrics from validation plans were also summa-

rized in the table. A 3.4% deviation of V5 index of lung‐PTV was

found on average.

3.B | Pinnacle3 user interface

The developed Pinnacle3 UI for plan QA module has the following

three parts: data base server login [Fig. 2(a)]; patient plan selection

[Fig. 2(b)]; PTV and OAR matching [Fig. 2(c)]. In this study, 20

patients were selected using this UI for evaluation.

Predicted DVH for plan QA was successfully integrated in the

DVH display module in Pinnacle3 using the script. An example of

plan evaluation UI in Pinnacle3 is shown in Fig. 3. The dashed line

represents the predicted DVH and the solid line is the achieved

DVH for the same OAR in treatment plan.

TAB L E 1 Evaluation metrics for esophageal IMRT plan

OAR DVH

Heart Mean (Gy)

V30 (%)

Lung Mean (Gy)

V20 (%)

V5 (%)

Lung‐PTV Mean (Gy)

V20 (%)

V5 (%)

SC Max (Gy)

Abbreviations: DVH, dose volume histogram; IMRT, intensity‐modulated

radiation therapy; OAR, organs at risk; PTV, planning target volume.

TAB L E 2 Model validation

Predicted‐to‐achieved value difference

OAR Mean RMSE

Heart Mean (Gy) 0.64 2.06

V30 (%) 0.5 4.4

Lung Mean (Gy) 0.2 1.32

V20 (%) 0.9 4.9

V5 (%) 1.7 6.7

Lung‐PTV Mean (Gy) 0.34 1.1

V20 (%) 1.1 4.4

V5 (%) 3.4 6.3

SC Max (Gy) 1.04 1.1

Abbreviations: OAR, organs at risk; PTV, planning target volume; RMSE,

root mean square error.
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3.C | Clinical implementation

The dose comparison between predicted and manual DVHs was per-

formed on 20 clinical plans. The OAR DVH comparison is shown in

Table 3. A 1.2% deviation of V20 index and 2.5% deviation of V5

index of lung‐PTV were found on average.

Figure 4 shows the achieved and predicted DVH curves for each

OAR as a plan evaluation example using the model. The coefficient

of determination (R2) of DVH linear fit for all plans evaluated are

shown in Fig. 5. All linear fits had slopes toward 1 except an outlier

of heart DVH linear regression. Lung and lung‐PTV both showed a

strong linear correlation between predicted and achieved DVH data

points with R2 values close to 1 (0.984 ± 0.015), which indicated

that the predicted DVH curve nearly overlapped the achieved DVH

curve. For spinal cord, the linear fit R2 values ranged from 0.904 to

0.996 (0.974 ± 0.025). The heart had R2 values ranging from 0.0078

to 0.997 (0.919 ± 0.216).

3.D | Predicted DVH‐guided treatment planning

To test the feasibility of treatment planning guidance using the pre-

dicted DVH, one of the 20 patients (patient number 18) from clinical

test group with a slight lower predicted lung dose was selected. For

this patient, the lung mean dose, V5, V20 in the manual plan was

1.0 Gy, 2.3%, 2.1% higher than the predicted ones, respectively.

F I G . 2 . (a) Pinnacle3 data base server login; (b) patient plan
selection; (c) planning target volume and organs at risk matching.

F I G . 3 . Plan quality assurance user interface in Pinnacle3.

TAB L E 3 OAR DVH metrics comparison

Predicted‐to‐achieved value difference

OAR Mean RMSE

Heart Mean (Gy) −1.99 2.78

V30 (%) 0.12 7.6

Lung Mean (Gy) −0.56 1.16

V20 (%) −1.2 4.0

V5 (%) −1.5 5.2

Lung‐PTV Mean (Gy) −0.59 1.25

V20 (%) −1.2 4.3

V5 (%) −2.5 5.8

SC Max (Gy) 1.27 1.25

Abbreviations: DVH, dose volume histogram; OAR, organs at risk; PTV,

planning target volume; RMSE, root mean square error.
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With the guidance of predicted DVH, a re‐optimization was per-

formed. The final plan with re‐optimization is shown in Fig. 6. This

indicated the feasibility of using predicted DVH as a treatment plan-

ning guidance.

4 | DISCUSSION

The scope of this study was to apply a knowledge‐based automated

DVH prediction module that could be integrated in Pinnacle3 UI for

plan QA and guidance. To the best of our knowledge, this is the first

time to develop the KDE‐based DVH prediction module in Pinnacle3.

One of the 20 clinical esophageal IMRT plans was randomly selected

out for re‐optimization under the guidance of predicted OAR DVHs.

It was available to achieve an optimized result. We believe that this

tool would be helpful for both plan QA and further DVH‐guided plan

optimization or re‐optimization.

KDE method has shown good DVH prediction for Gamma knife

radiosurgery of acoustic schwannoma and non‐small cell lung cancer

treated with stereotactic body radiation therapy.20 The knowledge‐
based module we developed with KDE for Pinnacle3 treatment plan-

ning system could be used to benchmark the quality of esophageal

cancer plans and also to guide auto planning. With a training dataset

consisting of clinical high‐quality plans created from expert dosime-

trists, the DVH predictions would result in the best possible DVHs

that could be expected in clinic. Automated individual plan QA

F I G . 4 . Achieved and predicted DVHs of
different OARs and corresponding linear
fits: (a) Heart DVHs; (b) Linear fit of Heart
DVHs; (c) Lung DVHs; (d) Linear fit of
Lung DVHs; (e) Lung-PTV DVHs; (f) Linear
fit of Lung-PTV DVHs; (g) SC DVHs; (h)
Linear fit of SC DVHs. The blue line is the
original DVH and the red one is the
generated DVH prediction. The predicted
DVH data points were plotted against the
achieved DVH data points for multiple
OARs in the figure. The dashed line
represents a linear fit with slope of 1. R2

values show the goodness of fit.
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would be possible by the developed module in Pinnacle3 as Rapid-

plan™ in Eclipse.17 There could be other better models for DVH pre-

diction of esophageal IMRT plan, which needs to be investigated in

the future.

A quantitative analysis of dosimetric accuracy of the knowledge‐
based model was performed. For all manually optimized plans, strong

linear correlations were found between predicted and achieved OAR

DVHs. The achieved OAR mean doses were close to the predicted

OAR mean doses. The consistency of good match between predicted

and achieved OAR DVHs and mean OAR doses demonstrated that

the developed plan QA model could evaluate plan quality effectively.

The plans evaluated showed a consistently good level of OAR spar-

ing. Higher maximum dose prediction of spinal cord could be a result

of small number of samples in high dose region of DVH which would

degrade the accuracy of KDE. Similarly, the OAR receiving low dose

would result in insufficient sampling for low dose region estimation

of DVH. Considering the geometric relationships between OARs and

PTV in the training dataset, trade‐off scenarios among different

OARs sparing would introduce different patterns of OAR DVH

prediction with KDE. The model was trained with clinical IMRT plans

for upper, medium, and lower third of the esophagus to build a gen-

eralized model for OAR DVH prediction. Therefore, any case of eso-

phageal cancer IMRT plan could be available for QA with this model.

Similar results were found in DVH estimation by RapidPlan™ using

broad‐scope knowledge‐based model.22

Different planning techniques or field settings were not consid-

ered in this model. The model was unable to provide any evaluation

results for triggering re‐optimization. That will be studied in the

future. Broad knowledge‐based libraries could be built for different

cancers in the future to generate specific plan QA models as a part

of auto‐planning module in Pinnacle3. The planning knowledge from

large centers would benefit relatively small centers to improve treat-

ment plan quality and clinical outcome.

5 | CONCLUSIONS

Implementation of a knowledge‐based automated DVH prediction

module in Pinnacle3 has been successfully realized. The developed

UI enables comparison between achieved and predicted DVHs. The

feasibility of automated esophageal IMRT plan QA using the module

has been demonstrated. Plan consistency and quality can be

improved under the guidance of the module prediction.
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