
500

ABSTRACT

Purpose: Limited treatment options and lack of treatment sensitivity biomarkers make the 
clinical management of triple-negative breast cancer (TNBC) challenging. Ceramide synthase 
6 (CERS6) generates ceramides, which are key intermediates in sphingolipid biosynthesis 
and play important roles in cancer progression and resistance.
Methods: CERS6 was analyzed to determine its potential as a treatment sensitivity 
biomarker. CERS6 levels were determined in patients with breast cancer, and the roles and 
downstream signaling of CERS6 were analyzed using cellular and biochemical assays.
Results: Analysis of CERS6 expression in 195 patients with TNBC and their clinical 
response to chemotherapy revealed that individuals with CERS6 overexpression experienced 
significantly inferior responses to chemotherapy than those without CERS6 overexpression. 
Functional analysis demonstrated that although CERS6 overexpression did not affect TNBC 
cell growth and migration, it conferred chemoresistance. CERS6 inhibition significantly 
reduced growth, migration, and survival by suppressing the RhoA- and EGFR-mediated 
signaling pathways. Compared to control cells, CERS6-depleted cells were consistently less 
viable at different concentrations of chemotherapeutic agents.
Conclusion: Our study is the first to demonstrate that CERS6 may serve as a treatment 
sensitivity biomarker in patients with TNBC in response to chemotherapy. In addition, our 
findings suggested that CERS6 may be a therapeutic target for TNBC treatment.
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INTRODUCTION

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor, human 
epidermal growth factor receptor 2, and progesterone receptor and accounts for 
approximately 10%–15% of all breast cancers [1]. Compared with other subtypes of breast 
cancer, TNBC is highly aggressive, has early recurrence and poor outcomes, and lacks 
biomarkers and effective therapeutic strategies. Anthracycline/taxane-based chemotherapy 
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regimens remain the only systemic therapeutic options in the adjuvant and metastatic 
settings of this disease [2]. However, most patients develop resistance rapidly and relapse [3]. 
Emerging therapies, including antibody (Ab)-drug conjugates, PARP and PI3K/Akt/mTOR 
inhibitors, and immunotherapy, are currently being investigated in clinical trials [4]. Targeted 
therapies are required to improve the clinical outcomes of TNBC.

Ceramides are important intermediates in the biosynthesis of sphingolipids, which 
are bioactive lipids that regulate multiple cellular functions and are synthesized by 
ceramide synthases (CERS) [5]. Ceramide synthase 6 (CERS6) is a ceramide synthase that 
predominantly generates C16-ceramide. Recent studies have highlighted that CERS6 predicts 
poor prognosis of ovarian and gastric cancers and functions as an oncoprotein [6,7]. Other 
studies have consistently demonstrated that CERS6 confers resistance to chemotherapy in 
T-cell acute lymphoblastic leukemia [8]. CERS6 is required for cell migration and metastasis 
in lung cancer [9]. CERS and ceramide levels were higher in breast cancer tissues than in 
benign and normal tissues. In particular, C16-ceramide displays metastatic potential, as its 
upregulation is associated with positive lymph node status in breast cancer [10]. In line with 
previous efforts, this study explored the expression and function of CERS6 in breast cancer, 
focusing on TNBC and its association with clinical response to chemotherapy.

METHODS

Cell culture, reagents, and western blot
Normal human breast cell lines (MCF-10A and MCF-12A) and human breast cancer cell lines 
(SK-BR-3, MDA-MB-468, Hs 578T, BT-549, MDA-MB-231, MCF-7, HMT-3522, and BT-483) 
were purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences. Cells were 
cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS), 100 U/mL penicillin, 100 μg/mL streptomycin (Gibco, Grand Island, 
USA), doxorubicin, 5-fluorouracil (FU), paclitaxel, and cisplatin (Selleck, Houston, USA). 
Calpeptin (Tebu-bio, Le Perray-en-Yvelines Cedex, France) was reconstituted according to 
the manufacturer’s recommendations. Western blotting was performed according to the 
standard protocol. The antibodies used for western blot analysis included p-Akt (#9271; Cell 
Signaling Technology, Danvers, USA), Akt (#9272; Cell Signaling Technology), p-mTOR 
(#5536; Cell Signaling Technology), mTOR (#2972; Cell Signaling Technology), p-EGFR 
(#2234; Cell Signaling Technology), EGFR (#2232; Cell Signaling Technology), p-myosin 
phosphatase-targeting subunit 1 (MYPT1, #4563; Cell Signaling Technology), MYPT1 (#2634; 
Cell Signaling Technology), p-myosin light chain (MLC, #3671; Cell Signaling Technology), 
MLC (#3672; Cell Signaling Technology), β-actin (#4967; Cell Signaling Technology), and 
CERS6 (#PA5-113036; Thermo Fisher Scientific, Waltham, USA). Active Rho and Rac1 pull-
down and detection kits (Thermo Fisher Scientific) were used for RhoA-GTP and Rac1-GTP 
detection, respectively. The raw experimental images of the western blot membranes are 
shown in the Supplementary Figure 1.

ELISA assays
Snapped frozen tissues were homogenized using a polytron homogenizer in 5 mL ice-cold 
RIRA buffer (Invitrogen, Waltham, USA) on ice. The mixture was incubated at 4°C for 1 
hour in a culture tube rotator. The lysate was then cleared by centrifugation at 4°C, and 
the supernatant was collected for BCA protein assay (Pierce; Thermo Fisher Scientific) to 
determine protein concentration. The tissue samples were adjusted to a concentration of 5 
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mg/mL using phosphate buffered saline (PBS). CERS6 protein levels were measured using 
Human Ceramide Synthase 6 and CERS6 enzyme-linked immunosorbent assay (ELISA) Kit 
(BT LAB, Birmingham, USA). Briefly, 40 µL of protein lysate, 10 µL of human CERS6 Ab, and 
50 µL of streptavidin-horseradish peroxidase were added to each well. A blank was used as 
the background control, and standards were used to generate a standard concentration curve. 
After 1 hour of incubation, the substrates were added, and the optical density of each well 
was determined on a microplate reader at 450 nm. Cellular RhoA and Rac1 activities were 
assessed using cell lysates and were measured using RhoA and Rac1 G-LISA Activation Assay 
Kit (Cytoskeleton, Denver, UA), respectively, according to the manufacturer’s protocol.

Cellular assays
Cell proliferation was determined using the BrdU Cell Proliferation Assay Kit (Abcam, 
Cambridge, UK). Cell apoptosis was determined using cellular DNA fragmentation ELISA 
(Roche, Basel, Switzerland). Cell viability was measured using an MTT assay kit (Abcam). The 
migration assay was performed using a Boyden chamber, which consists of a Falcon cell culture 
insert with 8-µm pore size polycarbonate membrane filters. The medium in the lower chamber 
contained 10% FBS. Cells (5 × 104) in serum-free medium were plated in the upper chamber and 
incubated for 24 hours at 37°C, 5% CO2. After incubation, the non-migrating cells were removed 
from the upper surface of the membrane using a cotton swab, and the migrated cells on the 
lower surface of the culture inserts were stained with 0.4% crystal violet. The number of cells in 
5 random fields of each membrane was counted under a microscope.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded sections were proceeded for antigen retrieval with 
autoclave heating and Ab staining with rabbit polyclonal anti-CERS6 Ab (1:200 dilution, 
PA5-113036; Thermo Fisher Scientific) at 4°C overnight. Tissue sections were incubated with 
secondary Ab and stained using the avidin–biotin immunoperoxidase method.

Phalloidin staining
Transfected cells were fixed with 4% paraformaldehyde. After washing with PBS, the fixed 
cells were incubated with 100 nM TRITC-conjugated phalloidin (Molecular Probes, Eugene, 
USA) and 100 nM Dapi solution in PBS for 30 minutes in the dark. Staining was performed 
using fluorescence microscopy.

Ethics committee approval
Clinical samples were obtained from patients at Xiangyang Central Hospital. Written informed 
consent and Institutional Review Board approval (document No. 87582) were obtained from 
all the patients who contributed to this study. All the included patients were treatment-naïve at 
the time of diagnosis. All TNBC tissues and their adjacent normal breast tissues were stored at 
–80°C and were used for protein extraction. Some were fixed, embedded, and used for IHC.

Transfection of small interfering RNA (siRNA) or overexpression plasmid
The cells (2 × 105 cells/well) were plated in 12-well plates in DMEM. Upon reaching 80% 
confluence, cells were transfected with 100 nM non-targeting siRNA, specific CERS6-targeted 
siRNA (Sigma, Livonia, USA), or 2 µg human CERS6 cDNA ORF and empty vectors (OriGene, 
Rockville, USA) using Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s 
protocol. The sequences of siRNAs CERS6a and CERS6b were (5'-->3'): CAA CUG ACC UUC ACU 
ACU AUA GUA GUG AAG GUC AGU UG and UAC GGU ACU AUU UCA CAC UUA CGC UAC ACU 
CAA, respectively. Stable clones that overexpressed CERS6 were selected in the presence of G418.
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Statistical analyses
We compared the controls and test variables using Student’s t-test in all cell assays. Data are 
presented as mean values with corresponding standard deviations (SDs). To establish the 
significance of chemosensitive and chemoresistant groups, we tabulated the ratios of CERS6 
tumor/normal values. Subsequently, Kaplan-Meier analysis was performed to determine the 
odds ratio (OR) and 95% confidence intervals (CIs). In all analyses, we confirmed statistical 
significance with p-values < 0.05. All statistical analyses were conducted using the PRISM 
v9.0 software (GraphPad Inc., San Diego, USA).

RESULTS

CERS6 expression in patients with TNBC predicts their response to 
chemotherapy
To evaluate the expression pattern of CERS6 in breast cancer, we first performed IHC analysis of 
CERS6 in paired tumor and adjacent normal (at least 5 cm away from the tumor) breast tissues, 
focusing on patients with TNBC. The overall cellularity was moderate to high in all examined 
cases. Representative IHC samples are shown in Figure 1A. We observed weak CERS6 staining 
intensity in normal breast tissues. The ductal epithelial and stromal cells were CERS6-positive. 
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Figure 1. CERS6 is significantly increased in tumor compared to normal breast tissue in patients with TNBC. (A) Representative IHC imaging showing CERS6 
staining on malignant and adjacent normal breast tissues from a patient with TNBC. Scale bar represents 50 µm. (B) Average of CERS6 IHC staining density on 
malignant and adjacent normal breast tissues from 20 patients with TNBC. IHC staining intensity was calculated using IHC profiler plugin in ImageJ software 
and displayed as absolute intensity in a.u. (C) Scatter plot of CERS6 protein in paired TNBC malignant tissues and adjacent normal tissues (n = 195). CERS6 from 
TNBC tissues was quantified using enzyme-linked immunosorbent assay. The line shown in the scatter plot indicates the average ± standard deviation of CERS6 
protein level in TNBC malignant and normal tissue. (D) Average of CERS6 protein ratios in the tumor and normal tissues of patients with TNBC (n = 195). 
CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; IHC = immunohistochemistry; a.u. = arbitrary unit. 
*p < 0.05, compared to normal samples.



In contrast, moderate to strong CERS6 staining intensity was observed in the breast cancer 
tissues. Quantification of staining density showed that CERS6 was significantly increased in the 
tumor by 3-fold compared to that in the adjacent normal tissue (Figure 1B).

To further confirm this finding, we measured CERS6 protein levels in a larger cohort of 
patients with TNBC (n = 195) using ELISA. Meanwhile, we attempted to correlate CERS6 
levels with chemotherapy response in patients with TNBC. Patients included in this 
perspective analysis were treatment-naïve when examining CERS6 levels. Consistent with 
the IHC results, the average CERS6 level was significantly higher in TNBC tumors than in 
adjacent normal tissues (Figure 1C). In addition, 168 of 195 patients demonstrated that the 
tumor/normal ratio of CERS6 was > 1 (Figure 1D), suggesting that CERS6 upregulation is a 
persistent phenomenon in patients with TNBC. The average ± SD of CERS6 tumor/normal 
ratio value was 2.1 ± 1.3 in all tested TNBC samples. In total, 99 and 96 patients displayed 
CERS6 tumor/normal ratio value ≥ 2.1 and < 2.1, respectively (Table 1).

Patients were then administered chemotherapy as the first-line treatment after diagnosis 
(Supplementary Table 1). After 6 months, clinical response was documented as “complete 
response,” “partial response,” “stable disease,” and “progressive disease” based on the 
Response Evaluation Criteria in Solid Tumors (RECIST) [11]. We defined resistant individuals 
as “suboptimal responders” or “failures,” which included subjects who had never achieved 
either complete response or partial response. In contrast, sensitive individuals were defined 
as individuals who corresponded to RECIST-defined “optimal responders.” As shown in 
Table 1, 38% of patients with a CERS6 ratio < 2.1 and 79% of patients with a CERS6 ratio > 2.1 
were resistant to chemotherapy. When analyzed together, the overall OR for resistant disease 
among subjects with CERS6 ratio > 2.1 compared with those with < 2.1 was 3.16 (95% CI, 
1.02–7.69; p= 0.03). In comparison, we did not find any significant differences between the 
2 groups with respect to other potential prognostic factors, including age, grade, and level 
of plasminogen activator inhibitor (Table 2). In addition, CERS6 expression is likely to be an 
independent biomarker for predicting TNBC responses to chemotherapy.

TNBC cells with CERS6 overexpression are more resistant to chemotherapy
As shown in Figure 2A, immunoblotting analysis of CERS6 demonstrated that CERS6 was 
upregulated in TNBC cell lines (MDA-MB-468, Hs578T, and BT-549) and other breast cancer 
cell lines (MCF-7, HMT-3522, SK-BR-3, and BT-483) compared to that in normal breast cell 
lines (MCF-10A and MCF-12A). Next, we performed ELISA, a quantitative assay to determine 
CERS6 levels in TNBC and normal breast cell lines. CERS6 level was significantly increased 
by 2–4-fold in TNBC cell lines compared to that in normal breast cell lines (Figure 2B). 
Although overexpression of CERS6 resulted in a 3-fold increase in CERS6 protein levels 
(Figure 2C and D), the time-course analysis showed that CERS6 did not affect TNBC growth 
(Figure 2E). We also did not observe any significant difference in migration between CERS6-
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Table 1. Establishing CERS6 upregulation and chemoresistance in TNBC
Variables Ratio < 2.1 (n = 96) Ratio > 2.1 (n = 99) OR (95% CI) p-value
Resistance 37 (38.5) 78 (78.8) 3.16 (1.02–7.69) 0.03
Sensitive 59 (61.5) 21 (21.2)
Values are presented as number (%). Study subjects were newly diagnosed TNBC cases and divided into 2 
groups based on the ratio of CERS6(tumor)/(normal) > 2.1 and those with CERS6(tumor)/(normal) < 2.1. Disease 
outcomes of chemo-sensitive or chemoresistance (based on the Response Evaluation Criteria in Solid Tumors 
version 1.1 criteria) were analyzed in these 2 groups. Using the Kaplan-Meier estimator, the OR was determined to 
assess clinical significance.
CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; OR = odds ratio; CI = confidence interval.
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Table 2. Subject demographics and correlations with CERS6 ratio
Variables Resistant (n = 108) Sensitive (n = 87) p-value

Univariate Multivariate
Age

> 50 56 (28.7) 44 (22.6) - -
≤ 50 52 (26.7) 43 (22.1) 0.46 -

Stage
I 11 (5.6) 14 (7.2) - -
II 54 (27.7) 47 (24.1) 0.28 -
III 43 (22.1) 26 (13.3) 0.06 -

PAI-1
< 14 47 (24.1) 39 (20.0) - -
≥ 14 61 (31.3) 48 (24.6) 0.18 -

CERS6 ratio
< 2.1 37 (19.0) 59 (30.3) - -
≥ 2.1 71 (36.4) 28 (14.4) < 0.01 0.03

The proportion of subjects in each category is listed as percentage in parentheses.
PAI-1 = plasminogen activator inhibitor-1; CERS6 = ceramide synthase 6.

E

0 h 24 h 48 h 72 h
0

2

4

6

8

10

Re
la

tiv
e 

gr
ow

th
 to

 c
on

tr
ol

0

2

4

6

8

10

Re
la

tiv
e 

gr
ow

th
 to

 c
on

tr
olControl

CERS6

0 h 24 h 48 h 72 h

D

0

1

2

3

4

5

Re
la

tiv
e 

CE
RS

6 
le

ve
l

to
 c

on
tr

ol

Control CERS6

* *MDA-MB-468
BT-549

MDA-MB-468

Control
CERS6

BT-549

A

MCF-1
2A

MCF-1
0A

MDA-M
B-4

68

BT-5
49

Hs 5
78

T

CERS6

MCF-1
2A

MCF-1
0A

SK
-B

R-3

MDA-M
B-4

68

MDA-M
B-23

1

BT-5
49

HMT-3
52

2

MCF-7
BT-4

83

Hs 5
78

T

β-actin

CERS6

β-actin

CB

0

1

2

3

4

5

Re
la

tiv
e 

CE
RS

6 
le

ve
l 

*

* *
Contro

l

CERS6
Contro

l

CERS6

MDA-MB-468 BT-549

F

Control CERS6 Control CERS6

0

0.3

0.6

0.9

1.2

1.5

Control CERS6

Re
la

tiv
e 

m
ig

ra
tio

n 
to

 c
on

tr
ol

MDA-MB-468

BT-549 n.s. n.s.

BT-549MDA-MB-468 

Figure 2. CERS6 overexpression does not affect proliferation and migration in TNBC cells. Representative western blot image (A) and ELISA analysis (B) showing 
CERS6 staining in normal (MCF-12A and MCF-10A) and malignant breast cancer cell lines. Western blot image (C) and ELISA analysis (D) of CERS6 in TNBC cells. 
(E) CERS6 overexpression does not affect proliferation and migration in MDA-MB-468 and BT-549 cells. (F) Migration in control and CERS6-overexpressing TNBC 
cells. Representative migration images were taken under microscope. 
CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; n.s. = not significant (compared to control); ELISA = enzyme-linked immunosorbent assay. 
*p < 0.05, compared to control or normal samples.



overexpressing and control MDA-MD-468 and BT-549 cells (Figure 2F). We observed that 4 
chemotherapeutic agents, paclitaxel, cisplatin, doxorubicin, and 5-FU, were less effective 
in decreasing the viability of CERS6-overexpressing MDA-MB-468 cells compared to the 
control (Figure 3, Supplementary Figure 2A and B). Notably, BT-549 cells responded similarly 
(Supplementary Figure 2C and D, Supplementary Figure 3). These results demonstrate 
that CERS6 overexpression did not affect TNBC cell growth and migration. However, 
chemotherapy-induced toxicity was alleviated by CERS6 overexpression.

CERS6 inhibition is active against TNBC
To investigate the effects of CERS6 inhibition in TNBC, we used 2 independent siRNAs 
targeting CERS6 mRNA and performed proliferation and apoptosis assays in the absence 
and presence of chemotherapeutic agents. We observed minimal protein levels of CERS6 in 
MDA-MD-468 and BT-549 cells after siRNA transfection (Figure 4A and B). In addition, we 
found that CERS6 depletion significantly decreased proliferation and migration and induced 
apoptosis in TNBC cells (Figure 4C-E). There was up to 75% inhibition of migration and up 
to 50% inhibition of the growth of TNBC cells. Notably, siRNA-CERS6 cells were consistently 
less viable under different concentrations of chemotherapeutic agents than control cells 
(Figure 5, Supplementary Figure 4).
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*p < 0.05.



CERS6 depletion suppresses TNBC by inhibiting RhoA- and EGFR-mediated 
pathways
Rho and Rac GTPases play critical roles in regulating the migration of almost all cell types [12]. 
We found that CERS6 depletion significantly decreased RhoA activity in MDA-MB-468 and BT-
549 cells (Figure 6A). In contrast, CERS6 depletion did not affect Rac1 activity (Figure 6B). Pull-
down followed by western blotting analysis demonstrated that RhoA-GTP, but not Rac1-GTP, 
decreased in CERS6-depleted cells (Figure 6C). In addition, total RhoA and Rac1 levels did 
not change. Consistently, CERS6 depletion led to decreased stress fiber formation, as shown 
by phalloidin staining, which was labelled F-actin (Figure 6D). As expected, we observed 
decreased phosphorylation of MYPT1 and MLC, which are 2 downstream effectors of the 
RhoA pathway [13], in CERS6-depleted TNBC cells (Figure 6E). The levels of phosphorylated 
molecules involved in the EGFR/Akt/mTOR pathway decreased in cells after CERS6 
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CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; siRNA = small interfering RNA. 
*p < 0.05, compared to control.



depletion (Figure 6E). Rescue studies using the Rho activator I calpeptin [14] significantly 
reversed the anti-migratory but not anti-proliferative effects of CERS6 depletion in TNBC 
cells (Figure 6F and G), demonstrating that CERS6 depletion inhibits TNBC cell migration 
through the RhoA-mediated signaling pathway.

DISCUSSION

Patients with TNBC exhibit significant heterogeneity with regard to the speed and depth of 
their responses to chemotherapy, which likely reflects an underlying biological heterogeneity 
at the molecular level in chemoresistance factors. Here, we used an unbiased approach to 
identify CERS6, which predicts or correlates with clinical responses to chemotherapy in 
patients newly diagnosed with TNBC. We found that upregulation of the CERS6 protein level 
was a persistent feature in 168 out of 195 patients with TNBC. This is supported by the RNA 
sequencing expression data of 1,084 breast tumor and 291 normal breast samples from The 
Cancer Genome Atlas and GTEx projects that CERS6 mRNA levels are significantly increased 
by approximately 4-fold in breast tumors compared to normal tissues [15,16]. Our findings 
revealed that CERS6 upregulation affects clinical outcomes among patients with molecularly 
defined TNBC who are treated with chemotherapy and that individuals with CERS6 
upregulation are significantly more resistant to chemotherapy. Increased CERS6 mRNA levels 
in breast cancer tissues are correlated with sphingosine kinase expression [17]. An earlier 
study reported that elevated levels of C16-ceramide, a ceramide mainly generated by CERS6, 

508

Role of Ceramide Synthase 6 in Breast Cancer

https://doi.org/10.4048/jbc.2022.25.e47https://ejbc.kr

A

Cisplatin (µM)

Re
la

tiv
e 

pr
ol

ife
ra

tio
n

MDA-MB-468

siRNA scr
siRNA CERS6a
siRNA CERS6b

0 5 10 15 20 25

0.5

1.0

1.5

0

C

Re
la

tiv
e 

pr
ol

ife
ra

tio
n

0.5

1.0

1.5

Paclitaxel (µM)

MDA-MB-468

siRNA scr
siRNA CERS6a
siRNA CERS6b

0.2 0.4 0.6 0.8 1.0

B

Cisplatin (µM)

Re
la

tiv
e 

pr
ol

ife
ra

tio
n

BT-549

siRNA scr
siRNA CERS6a
siRNA CERS6b

10 20 30 40 500

0.5

1.0

1.5

D

Paclitaxel (µM)

Re
la

tiv
e 

pr
ol

ife
ra

tio
n

BT-549

siRNA scr
siRNA CERS6a
siRNA CERS6b

0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0

Figure 5. CERS6 depletion significantly augments anti-proliferative effect of chemo drugs in TNBC cells. 
Proliferation is significantly decreased in CERS6-depleted MDA-MB-468 and BT-549 cells exposed to cisplatin (A, 
B) and paclitaxel (C, D). After 24 hours of transfection with siRNA, chemo drugs were added to the cell medium 
and incubated for 3 days followed by proliferation measurement. Inhibitory concentration 50% is indicated by 
the green line. 
CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; siRNA = small interfering RNA.



are associated with a positive lymph node status in breast cancer, suggesting that patients 
with breast cancer with C16-ceramide are likely to display metastatic potential [10]. However, 
based on gene expression profiling and interactive analyses provided by GEPIA, CERS6 is not 
involved in overall survival in breast cancer. Our findings suggest that it might be worthwhile 
to examine the association between CERS6 and overall patients with TNBC. Ceramide kinase, 
another lipid kinase that regulates ceramide levels, has recently been shown to mediate 
intrinsic resistance and inferior response to chemotherapy in TNBC [18]. We and others have 
highlighted the central role of molecules involved in ceramide/sphingolipid metabolism in 
mediating chemotherapy sensitivity in TNBC. The prognostic value of CERS6 has also been 
demonstrated in gastric and ovarian cancer [6,7]. We anticipate that the list of cancers in 
which CERS6 influences treatment response will expand to include others.
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Figure 6. CERS6 depletion suppresses TNBC cells through inhibiting RhoA- and EGFR-mediated signaling pathways. (A) CERS6 significantly decreases the activity 
of RhoA in MDA-MB-468 cells. (B) CERS6 knockdown does not affect Rac1 activity in MDA-MB-468 cells. (C) Representative western blot image of active RhoA 
and Rac1 in CERS6-depleted MDA-MB-468 cells. (D) Phalloidin staining of control and CERS6-depleted MDA-MB-468 cells. F-actin is indicated by red and nuclear 
is indicated by blue. Scale bar represents 10 µm. (E) Representative western blot image showing the levels of phosphorylated molecules involved in RhoA and 
EGFR signaling pathways in CERS6-depleted MDA-MB-468 cells. (F) The inhibitory effects of CERS6 depletion on TNBC cell migration are abolished by RhoA 
activator calpeptin (1 mg/mL). (E) Calpeptin does not affect proliferation in CERS6-depleted cells. 
CERS6 = ceramide synthase 6; TNBC = triple-negative breast cancer; n.s. = not significant; siRNA = small interfering RNA; MYPT = myosin phosphatase-targeting 
subunit; MLC = myosin light chain. 
*p < 0.05.



We further demonstrated that CERS6 is a potential therapeutic target for TNBC. In doing 
so, we determined that CERS6 overexpression leads to TNBC cells becoming more resistant 
to commonly used chemotherapeutic agents such as cisplatin and paclitaxel. CERS6 
upregulation increases TRAIL sensitivity in colon cancer cells by increasing the C16-ceramide 
level [19]. Interestingly, CERS6 upregulation confers resistance to chemotherapy by binding 
to CD95/Fas in T-cell acute lymphoblastic leukemia [8]. Although ceramide and ceramide 
synthases have been initially linked to the promotion of apoptosis and drug sensitivity [20], 
our findings, together with other studies, support the increasingly recognized cytoprotective 
role of CERS6 in chemotherapeutic drugs in cancer and that CERS6 functions as an 
oncoprotein [6,8,9].

In agreement with previous findings that CERS6 is required for cancer cell migration 
and metastasis [9,21], we found that CERS6 depletion remarkably decreased TNBC cell 
migration, which was achieved through inhibition of the RhoA-mediated signaling pathway. 
Both RhoA and Rac1 are small GTPases and their signal transmission is modulated by plasma 
membrane lipids [22]. CERS6 knockdown suppresses Rac1-positive ruffling formation and 
attenuates lung metastasis in mice [9]. CERS6 depletion does not affect Rac1 activity in 
TNBC cells. These results suggest that CERS6 inhibition affects the activity of small GTPases 
and influences cell migration, which is cancer cell type-specific. In addition, the rescue 
of anti-migratory but not anti-proliferative effects of CERS6 depletion by RhoA activators 
suggests that other mechanisms are involved. Indeed, CERS6 knockdown suppressed EGFR/
Akt/mTOR signaling in TNBC cells. EGFR inhibitors are among the agents being developed 
for the treatment of TNBC because they are particularly overexpressed in TNBC, and 
targeting EGFR enhances the chemosensitivity of TNBC cells [23,24]. Our study is the first to 
demonstrate the biological implications of CERS6 in EGFR-mediated pathways in cancer.

In conclusion, we have identified CERS6 as an important factor in mediating chemotherapy 
responses in TNBC and described a pathway to RhoA- and EGFR-mediated signaling 
pathways that proceed via CERS6. Given that CERS6 expression levels are upregulated in 
breast cancer, CERS6 may account for treatment resistance in other subtypes of breast 
cancer. Our findings also highlight the therapeutic value of CERS6 inhibition in overcoming 
chemoresistance in TNBC.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Clinical and pathologic characteristics of patients with TNBC

Click here to view

Supplementary Figure 1
Uncropped gel for Figure 2A and C, 4A, 6C and E.

Click here to view

Supplementary Figure 2
CERS6 overexpression alleviates chemotherapy-induced toxicity in TNBC cells. (A, B) 
Viability is significantly increased in CERS6-overexpressing than control TNBC cells exposed 
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to paclitaxel (1 μM) and cisplatin (30 μM) for 3 days. (C, D) Viability is significantly increased 
in CERS6-overexpressing than control TNBC cells exposed to doxorubicin (10 μM) and 5-FU 
(50 μM) for 3 days.

Click here to view

Supplementary Figure 3
CERS6 overexpression alleviates chemotherapy-induced toxicity in BT-549 cells. Cell viability 
increased in CERS6-overexpressing TNBC cells exposed to paclitaxel (A), cisplatin (B), 
doxorubicin (C), and 5-FU (D). After 3 days of treatment, cell viability was assessed. The 
Inhibitory concentration 50% is indicated by the green line.

Click here to view

Supplementary Figure 4
CERS6 depletion significantly augments anti-proliferative effect of chemo drugs in TNBC 
cells. Proliferation significantly decreased in CERS6-depleted MDA-MB-468 (A) and BT-549 
(B) cells exposed to cisplatin (5 μM) and paclitaxel (0.5 μM). After 24 hours of transfection 
with siRNA, chemotherapeutic drugs were added to the cell medium and incubated for 3 
days, followed by proliferation measurement.

Click here to view
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