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Cryptocurrencies have received a lot of attention from central banks, investors, and governments 
worldwide. The insufficiency of any method of political guideline and their market is far from 
“effective”, so they want novel regulation methods shortly. From an econometric perspective, the 
technique underlying the growth of the cryptocurrencies’ volatility was observed to demonstrate 
similarities and differences with other economic time series, e.g., foreign exchange yields. Accurate 
prediction of cryptocurrency price fluctuations is significant for effectual portfolio management 
and improves economic models by identifying potential risks and attacks. With the growing use of 
AI in various fields, its application in financial markets, especially cryptocurrencies and stocks, is an 
emerging research area. This study presents an Empirical Evaluation of Fuzzy Bidirectional Long 
Short-Term Memory with a Soft Computing-based Decision-Making Model for Predicting Volatility 
of Cryptocurrencies (FBLSTMSC-DMPVC) technique. The primary focus of the FBLSTMSC-DMPVC 
technique is to present a robust and intelligent framework for an advanced decision-making model 
to predict cryptocurrency volatility. Initially, the presented FBLSTMSC-DMPVC method performs 
the data preprocessing process using Z-score normalization to ensure all features are standardized 
and scaled. Furthermore, the fuzzy bidirectional long short-term memory (FBLSTM) method predicts 
cryptocurrency volatility. To enhance the hyperparameters of the FBLSTM technique, the improved 
carnivorous plant algorithm (ICPA) is employed. A wide range of simulation is accomplished to ensure 
the impact of the FBLSTMSC-DMPVC technique. The FBLSTMSC-DMPVC technique portrayed 
a superior MAPE value of 0.7939 for BTC, 0.8633 for ETH, 0.6187 for LTC, and 0.6667 for XRP, 
demonstrating its performance across various cryptocurrencies.

Keywords  Cryptocurrencies, Volatility, Soft computing, Decision making, Artificial intelligence, Fuzzy 
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The financial markets eventually presented several new technologies, but these mainstream have not succeeded or 
survived. However, the occurrence of cryptocurrencies has attracted several investigators’ attention worldwide, 
and various investigators have predicted these digital currencies would have destructive consequences on the 
economic system1. Cryptocurrencies are technologies with unpredicted behaviour that are complex to forecast 
regarding their future acceptance in the worldwide financial system. Cryptocurrencies have involved the interest 
of several investors, and it has become another form of coin owing to their digital features2. The digital attributes 
have made cryptocurrencies more dynamic than classical currencies in payment cases because these depend on 
cryptographic proof. In measurable finance, instability denotes the conditional standard variance or deviation 
of the fundamental assets that are proceeded3. Amongst several economic markets, the fast development of 
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the cryptocurrency market, its higher instability, and its applications in diverse business transactions have 
attracted the attention of investors and academics4. From a financial econometric viewpoint, this work is 
unstable in predicting typically and contains Autoregressive Conditional Heteroskedasticity (ARCH) and their 
generality, such as GARCH-form methods. Such time series methods using heteroscedastic errors are valid for 
modelling volatile economic market data. Like other financial time series, cryptocurrencies are forecasting, and 
heteroscedastic instability is an essential variable in risk management, which is a challenging task5.

The unpredictability of economic time series has gathered substantial attention from both practitioners 
and researchers, comprising risk managers, policymakers, and investors. These problems’ significance is due 
to the wide variety of real-world applications in investment, option pricing, portfolio optimization, and risk 
management6. But, the unpredictability of economic series, because of its particular properties, is not a trivial 
challenge7. Such characteristics as an extended to sound sharing of multiple outliers, price fluctuations, the 
substantial impact of market microstructure, the conditional heteroscedasticity proceeds, and the occurrence 
of diverse time scales of stakeholders cause further progressive approaches to have complexities for higher 
predicting accurateness. Statistical analysis methods like multiple-linear regression are well-known, and 
amongst the others, the Integrated Moving Average (ARIMA) approach is generally utilized to forecast the data 
variable tendencies8. This method is used frequently to predict time series that are trend stationary, and it is not 
standard for weak stationary or non-stationary data. Also, statistical approaches, such as Deep Learning (DL) 
and Machine Learning (ML) methods, are utilized to forecast time series concerns9. The time series properties 
are often complex and non-linear, making it complex for these approaches to take the actual dynamics. Thus, 
some advanced ML methods have been implemented to address these tasks. Amongst DL methods, long short-
term memory (LSTM) is a significant framework with time-series data10. Because LSTMs can remember and 
process components in time series data and forecast dependencies between data effectively. Cryptocurrencies’ 
swift growth and volatility have created significant challenges in predicting their future behaviour, making 
them an intriguing research subject. Accurately forecasting cryptocurrency volatility is crucial for investors and 
policymakers to navigate complex and dynamic market conditions.

This study presents an Empirical Evaluation of Fuzzy Bidirectional Long Short-Term Memory with a Soft 
Computing-based Decision-Making Model for Predicting Volatility of Cryptocurrencies (FBLSTMSC-DMPVC) 
technique. The primary focus of the FBLSTMSC-DMPVC technique is to present a robust and intelligent 
framework for an advanced decision-making model to predict cryptocurrency volatility. Initially, the presented 
FBLSTMSC-DMPVC method performs the data preprocessing process using Z-score normalization to ensure all 
features are standardized and scaled. Furthermore, the fuzzy bidirectional long short-term memory (FBLSTM) 
method predicts cryptocurrency volatility. To enhance the hyperparameters of the FBLSTM technique, the 
improved carnivorous plant algorithm (ICPA) is employed. A wide range of simulation is accomplished to 
ensure the impact of the FBLSTMSC-DMPVC technique. The key contribution of the FBLSTMSC-DMPVC 
technique is listed below.

•	 The Z-score normalization standardizes the data by transforming it into a standard scale, ensuring that each 
feature contributes equally to the model. This process mitigates the impact of scale-related biases, resulting 
in more accurate predictions. It improves model performance by improving consistency across features and 
making them comparable.

•	 The FBLSTM method effectively handles complex, non-linear patterns in cryptocurrency volatility, improv-
ing prediction accuracy. Its bidirectional structure captures the data’s past and future dependencies, providing 
a more comprehensive analysis. This approach enhances the technique’s capability to predict volatility trends 
with greater reliability.

•	 The ICPA technique optimizes hyperparameters to improve the model’s performance in forecasting cryp-
tocurrency volatility. Refining the search process ensures more precise hyperparameter tuning, improving 
prediction accuracy. This optimization strengthens the model’s capability to adapt to changing market con-
ditions.

•	 The novelty of the FBLSTMSC-DMPVC method is integrating FBLSTM with ICPA for hyperparameter tun-
ing. This method utilizes the power of fuzzy logic and bidirectional LSTM networks to capture complex 
patterns in cryptocurrency volatility. This incorporation enhances the model’s accuracy by optimizing hyper-
parameters more effectively through ICPA. By merging these two techniques, the model is better equipped to 
handle volatile market conditions and deliver more reliable predictions.

Literature survey
Tang et al.11 aim to predict the recognized Bitcoin volatility using an enhanced DL method. Initially, a complete 
factor indicator method and exploit diverse approaches for feature selection is created, and the random forest 
(RF)-based feature selection fits proficiently to initiate DL methods. Afterwards, the Particle Swarm Optimization 
(PSO) method is used to enhance the hyper-parameter of the Gated Recurrent Unit (GRU) method. Amirshahi 
and Lahmiri12 created several LSTM and DL methods depending on Feed Forward Neural Networks (DFFNNs) 
models. Subsequently, dissimilar hybrid methods were made for the 3 GARCH-type outputs, such as EGARCH, 
APGARCH, and GARCH, with three diverse assumptions for the distribution of the residuals that led to the LSTM 
and DFFNN models. Specifically, GARCH-type methods were used for feature extraction, and the DL methods 
leveraged a feature extraction sequence as their inputs to create instability the next day. In13, an innovative 
approach is projected by leveraging probabilistic GRU (P-GRU). This method incorporates probabilistic features 
into the technique. In search of enhancing method efficiency, a bespoke callback mechanism is employed. This 
callback mechanism, determined by R2-score tracking, takes optimum method weights depending on the 
validity of the data. Furthermore, a transfer learning pattern is accepted to extend the investigation’s prospects. A 
pre-trained method on BTC data is connected to forecast values for six other vital cryptocurrencies. Jin and Li14 
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implement a new hybrid forecast method, VMD-AGRU-RESVMD-LSTM, that combines the decomposition-
incorporation structure with DL methods. The process is initiated by disintegrating the cryptocurrency cost 
sequence into a limited amount of sub-series, utilizing the Variational Mode Decomposition (VMD) approach. 
Afterwards, the GRU-NNs are associated with an attention mechanism, individually forecasting every modal 
element sequence. In addition, the residual sequence is attained after decomposition and endures further 
decomposition. In15, a hybrid method that incorporates Bi-LSTM models with FinBERT is presented to improve 
predicting precision for those properties. This method fills a main gap in predicting unstable economic markets 
by combining developed time series methods with sentimental analysis, providing valuable points for analysts 
and investors to navigate changeable markets. In16, this research’s main contribution is using classical DL methods 
in groups with the three most common ensemble learning models, such as ensemble-bagging, stacking, and 
averaging, to forecast the major hour values of cryptocurrencies. Classical DL approaches containing a grouping 
of BiLSTM, convolutional layers, and LSTM were used to evaluate the recommended ensemble approaches.

Ghosh et al.17 present a granular hybrid predictive modelling structure. Primarily, the main temporal features 
of the price series are studied. Then, Maximal Overlap Discrete Wavelet Transformation (MODWT) and 
Ensemble Empirical Mode Decomposition (EEMD) are utilized to disintegrate the unique time series into dual 
diverse sets of granular subseries. Afterwards, extreme gradient boosting (XGB) and LSTM disintegrate subseries. 
Finally, Sequential Quadratic Programming (SQP) is utilized to predict by relating the earlier predictions. In18, 
a hybrid method is advanced to predict the risk and volatility of economic instruments by relating general 
econometric GARCH time series methods with DL NNs. GRU models are applied for that final, where four 
diverse specifications are utilized as the GARCH component. As the significant instability estimator and the 
fundamental targeted functions of the hybrid methods, this research utilizes the price range-based Garman-
Klass estimator, altered to integrate the closing and opening costs. Cho and Lee19 develop a forecasting model 
integrating asymmetric fractality and DL to predict one-day-ahead stock price volatility, utilizing asymmetric 
Hurst exponents and recurrent neural networks (RNNs) for improved performance in volatile markets. Bildirici, 
Ucan, and Tekercioglu20 analyze daily and weekly Bitcoin returns utilizing hybrid models, exploring fractal and 
chaotic structures and comparing the performance of ARFIMA, LieNLS, and LieOLS methods for forecasting. 
Kabir et al.21 propose a novel financial forecasting model, LSTM-mTrans-MLP, integrating LSTM, a modified 
Transformer, and MLP, showing superior forecasting accuracy, robustness, and sensitivity. Behera, Nayak, and 
Kumar22 aim to construct optimal ANNs using metaheuristics, namely FWA, CRO, and TLBO, to predict the 
behaviour of fast-growing cryptocurrencies like Bitcoin, Litecoin, Ethereum, and Ripple. Safari et al.23 present 
an ensemble learning approach for portfolio optimization, incorporating ML models such as LSTM, GRU, RF, 
etc., with mean-variance models using ridge and principal component regression to optimize asset al.locations 
for balanced risk and return. Nagajothi and Meyyappan24 explore the relationship between public sentiment and 
Bitcoin price fluctuations utilizing DL fuzzy logic, integrating sentiment data from social media to predict future 
prices. Rahim et al.25 explore artificial neural networks (ANNs) to develop more advanced trading strategies, 
addressing the challenges of accurately predicting market patterns and returns in automated trading systems. 
Koo and Kim26 improve Bitcoin price prediction by introducing the Centralized Clusters Distribution (CCD) 
for data filtering and the Weighted Empirical Stretching (WES) loss function, enhancing both overall and tail 
performance using LSTM and SSA decomposition.

The limitations of the existing studies comprise the reliance on single-method approaches for cryptocurrency 
prediction, which often fail to capture the intrinsic, non-linear relationships in financial markets. While hybrid 
models show promise, integrating multiple techniques can lead to computational complexity and overfitting. 
Furthermore, many models do not account for the dynamic nature of cryptocurrencies, which may limit 
their capability to adapt to sudden market changes. There is also a lack of consistency in evaluating models, as 
diverse metrics and datasets are often used, making comparisons difficult. Future research should concentrate 
on improving the adaptability and interpretability of hybrid models while exploring new data sources and 
methodologies to enhance prediction accuracy.

Materials and methods
In this study, an Empirical Evaluation of the FBLSTMSC-DMPVC technique is presented. The primary focus of 
the FBLSTMSC-DMPVC technique is to present a robust and intelligent framework for an advanced decision-
making model to predict cryptocurrency volatility. To accomplish that, the FBLSTMSC-DMPVC approach has 
three processes: data normalization, a predicting method using FBLSTM, and ICPA-based parameter tuning. 
Figure 1 depicts the workflow of the FBLSTMSC-DMPVC approach.

Data normalization
Initially, the presented FBLSTMSC-DMPVC method performs the data preprocessing process using Z-score 
normalization to ensure all features are standardized and scaled. Z-score normalization is employed to tackle 
the task set by the distinct measures of the dataset’s features27. This technique alters every feature to have a 
standard deviation of one and a mean of zero, as demonstrated in Eq. (1). This kind of normalization assists the 
comparison of features with modifying units and scales vital for the successive study.

	
z = (x − µ)

σ
� (1)

Here, where z signifies the value of standardized, x denotes an original value, µ refers to a mean, and σ indicates 
the standard deviation.
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Predicting using the DBLSTM model
Next, the FBLSTM model is employed to predict cryptocurrency volatility. The Bi-LSTM approach is an 
expansion of the conventional LSTM structure intended to enhance the learning of either future or past context 
in sequential data28. But standard LSTM models handle data in a direction either backwards (from future to past) 
or forward (from past to future)-Bi‐LSTM methods contain dual layers of LSTM: one handling the sequences in 
the forward and the other in the backward directions. Incorporating the outputs from either direction requires 
complete knowledge of the sequences, making it mainly suitable for tasks. It is beneficial to context data from the 
future or the past. During Bi‐LSTM, all input sequences are passed over dual LSTMs:

Both Forward and Backward LSTM Handle the sequences in the traditional left-to‐right direction and manage 
the sequence backwards, from right to left direction. The last hidden layer (HL) at every time step combines the 
HL from backward or forward LSTMs. This permits the method to utilize data from either direction, enhancing 
the capability to take longer range dependency, which is lost in unidirectional techniques. This ability is mainly 
beneficial in tasks like speech recognition, machine translation, and time series prediction, whereas past or 
future contexts are crucial.

In Mathematics, for every time step t, the LSTM of forward calculates:

	
−→
ht = LST M

(
xt,

−−→
ht−1,

−−→
Ct−1

)
� (2)

Fig. 1.  Workflow of FBLSTMSC-DMPVC approach.
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However, the LSTM of backward calculates:

	
←−
ht = LST M

(
xt,

←−−−
ht+1,

←−−
Ct+1

)
� (3)

Whereas xt refers to input at t th time , 
←−
ht and 

−→
ht represent HL for the backward and forward LSTMs, and −−→

Ct−1 and 
←−−
Ct+1 denote states of the cell for all directions. The last HL at every time step t is gained by combining 

the forward and backward HLs:

	
ht =

[−→
ht ;

←−
ht

]
� (4)

This connected HL has information from either the past or the future, enhancing the method’s capability to 
handle seizure dependency in both directions. Figure 2 exemplifies the structure of BiLSTM.

A fuzzy rule (FR) is a true or false description. During fuzzy logic, inference rules define the values of the 
output variable according to the input variable’s values. Each of the FRs that are successful in fuzzy logic29.

	1.	� Fuzzy control rules

The skills of an expert in some related zone usage must be named the fuzzy control rules. When the controller 
of the closed-circuit approach has been applied, the FR is considered by a sequence of the category IF-THEN, 
which results in processes describing which case should be completed in the now specified data that comprises 
response and input. This rule regulates the construction or design of the group of FR, which is positioned on 
a human’s knowledge or experience that differs based on the particular use. An IF‐THEN FR links a condition 
described by sets of fuzzy and language variables to the outcome. The IF factor is primarily implemented to 
gather knowledge through elastic conditions; however, the THEN factor is applied to offer an output using the 
semantical variable method. This inference FR often uses these IF‐THEN rules to control the amount to which 
the input data encounters the state of the rules.

	2.	� Fuzzy mapping rules

It provides effective maps among the input and the output utilizing language variables. It is established based on 
a fuzzy graph showing the connection between the fuzzy input and output. It may be problematic to remove the 
particular connection between input and output, or the connection between these inputs and outputs is incredibly 
intricate even in case it is produced the real-time products. These rules are the right choice for particular cases. 
Fuzzy mapping rules are equivalent to intuition and human interpretations; each fuzzy mapping rule values a 
smaller percentage of the function. FR mapping group must be applied to assess the complete functions. The 
input variables consume numerous sizes in most real‐time applications. However, the fuzzy control rules must 
be extended to consider many inputs; the outputs must be computed.

The inputs differ at a dissimilar step, and these inputs are connected to the IF parts of the rules of IF-THEN. 
It is recognized as the controller output and 3D variable established at the connection of all rows and columns, 
and it is connected to the THEN factor of the rules of IF‐THEN.

	3.	� Fuzzy implication rules

Fig. 2.  BiLSTM architecture.

 

Scientific Reports |         (2025) 15:8592 5| https://doi.org/10.1038/s41598-025-93212-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


A widespread logic proposes the connection between input and output. A fuzzy implication rule defines it. 
Every restricted basis of fuzzy logic is the essence of an implication rule of fuzzy. Multi-valued and conventional 
dualistic logic are associated with the implication rule of fuzzy.

•	 Similarity Relation—Fuzzification

In comparison with an essential subject for which a basic method is regularly exposed to be inadequate. The 
measured properties of the fuzzy sets display the insight of the measured properties. The relation of fuzzy 
equivalence has been applied to exemplify the link between substances of a fuzzy set from the viewpoint of the 
relation of fuzzy equivalence. Fuzzy sets have been considered to inspire ideas by describing similarity, which 
is a foundation of the relation of fuzzy equivalence. A fuzzy set can’t distinguish dual components when they 
are members of a similar set or its balance. The group of the membership functions of the fuzzy set utilizing the 
relation of fuzzy equivalence is described as shown:

•	 Definition 1

A similarity relation of the fuzzy on set V  denotes mapping E : V xV → [O, 1] satisfies
(E1) E(v, v) = 1, v ∈  (reflexivity)
(E2) E(v1, v2) = E (v2, v1) , v1v2 ∈  (symmetry)
(E3) E (v1, v2) *E (v2, v3) ≤ E (v1, v3) , v1v2v3 ∈ V  (transitivity)
whereas the unit interval is signified as [0,1] using the standard ordering. Sometimes, E is considered a 

similarity relation. Consistently, a small number of descriptions and theorems are hereby recollected.

•	 Definition 2

•	 A fuzzy set A ∈ [0,1]u is named as extended over the relation of fuzzy equivalence E on V  if and only if 
µ A (v1) *E(v1, v2) ≤ µ A (v) carries for each v1, v2 ∈ V.Definition 3

Let E represent the fuzzy equivalence relation on V  and let A ∈ [O, 1]u.
The fuzzy set Â = ∩ (B| A ⊆ B and B are logical about E)  is defined as the relevant hull of A regarding 

E.
The incorporation of Fuzzy and Bi-LSTM networks, frequently connected with FBLSTM, unites the strengths 

of both methods to tackle composite problems relating to sequential data and uncertainty. Fuzzy logic is famous 
for its capability to manage imprecision and vagueness, whereas Bi-LSTM networks perform well in capturing 
longer-range dependency in sequential data. By joining these two techniques, FBLSTM utilizes fuzzy logic for 
modelling uncertain inputs and enhances the Bi-LSTM performance in prediction and decision-making tasks. 
The fuzzy logic module processes uncertain or inaccurate information by changing it into fuzzy sets, which 
the Bi-LSTM then handles to learn sequential patterns and forecast future states. This combination is valuable 
in applications such as time series prediction, pattern classification, and speech recognition, whereas either 
uncertainty or sequential dependencies are essential.

The standard equation for FBLSTM is represented as shown:

	 yt = BiLST M (f (xt, θf ))� (5)

Whereas, yt​ refers to output at tth time step. xt​ characterizes the input vector at tth time step. θ f ​ signifies 
the fuzzy inference parameters that handle the input over the fuzzy network. f(xt, θ f ) represents fuzzy logic 
conversion used to the input. The Bi-LSTM handles this converted input and outputs the classification or 
prediction at t.

This equation takes how the fuzzy logic network handles the inputs, and the Bi-LSTM learns the temporal 
dependency for additional prediction.

Hyperparameter tuning using ICPA
To enhance the hyperparameters of the FBLSTM method, the ICPA is employed30,31. This method is chosen 
due to its unique search mechanism, which replicates the natural behaviour of carnivorous plants in optimizing 
solutions. Unlike other techniques such as grid or random search, ICPA can explore a wide search space 
while averting local optima, making it highly effective for intrinsic, non-convex optimization problems. Its 
adaptive nature allows it to balance exploration and exploitation, ensuring thorough search and fine-tuning 
hyperparameters. Furthermore, the capability of the ICPA technique to diversify its search when stuck in local 
optima provides robustness in finding optimal solutions. Compared to conventional methods, ICPA requires 
fewer iterations for convergence, mitigating computational costs while improving the quality of hyperparameter 
tuning. This makes ICPA a more efficient and effective choice for hyperparameter optimization. Figure  3 
illustrates the structure of the ICPA model.

To tackle intricate dynamic and kinematic restraints and improve robot guidance routes in multi-objective 
situations, preceding research work has employed heuristic techniques to classify optimum routes that fulfil 
third‐order restraints. Making these discoveries, an in-depth exploration was conducted, and additional 
improvements were proposed for a three-dimensional B-spline curve. Notably, the ICPA is presented to 
enhance the spread of controller point within the cubic B‐spline, sustaining third‐order restraint needs while 
improving route efficiency and smoothness. The CPA is a bio‐inspired metaheuristic technique that simulates 
carnivorous plants’ existence tactics and variation systems in demanding surroundings. The method establishes 
higher efficiency in addressing intricate search space issues that are illustrated by higher‐dimensional design 
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variables, many restraints, and several local goals. The CPA works through four phases: initialization, grouping, 
classification, reproduction, and growth.

In the initialization phase, it builds the original population of N  individuals, which consists of carnivorous 
plants (nCP lant) and prey (nP rey), via arbitrary allowance. Notably, nprey  must be k times nCP lant. The 
longitudinal spread of these individuals was denoted in the form of a matrix.

	

P op =




X1,1 X1,2 . . . X1,D

X2,1 X2,2 . . . X2,D

...
...

. . .
...

XN,1 XN,2 . . . XN,D


� (6)

Here, D signifies the dimension and the amount of nCP lant and nprey  equivalents N . The randomly generated 
initialization of the population follows the below-mentioned formulation:

	 Xi,j = Lbj +
(
Ubj − Lbj

)
× rand� (7)

Assume i = 1,2, . . . , N  and j = 1,2, . . . , D, while Ub and Lb denote the upper and lower limits of the 
searching area, correspondingly; rand indicates a randomly produced amount in the range of 0 and 1.

During the grouping and classification phase, the technique classifies all individuals in descending order 
according to their fitness values. Next, it identifies the highest nCP lant individual as a carnivorous plant and 
the left nP rey  Beings as a target. The most appropriate target is allocated to the highest carnivorous plant. Next, 
the 2nd and 3rd most appropriate prey are set using the consequent carnivorous plant. This procedure continues 
until every plant is opposite with its consistent prey. Then, the additional prey corresponded again initially with 
the high-ranking, and the pattern restarted.

In the growth stage, which is a feature of the exploration stage, carnivorous plants issue smells to charm prey. 
Trapped prey deliver foods that advance plant development; not every prey was well-trapped. To consider this, 
an attraction rate (ar) was presented, defining the capture of prey by equating the ar value with a randomly 
generated number between 0 and 1. The formulations employed in this stage are mentioned below:

Fig. 3.  Steps involved in the ICPA approach.
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NewCPi,j = growth × CPi,j + ( 1 − growth) × P reyv,j

growth = growthrate × randi,j

NewP reyi,j = growth × P reyu,j + (1 − growth) × P reyv,j , u ̸= v

� (8)

	
growth =

{
growth−rate × randi,j if f (Preyv) > f (Preyu)
1 − growth−rate × randi,j if f (Preyv) < f (Preyu)

� (9)

While, CPi,j  signifies the carnivorous plant of set i, P reyv,j  and P reyu,j  denote dual randomly chosen preys 
in set i, respectively; growth_rate refers to a value of pre-defined, randi,j  indicates the randomly produced 
value within the interval of [0,1] .

The reproduction stage observes the commencement of the exploitation method and is repeated depending 
on the nCP lantvalue. During this phase, carnivorous plants utilize the foods attained to develop and reproduce, 
thus making sure that the optimum individuals in the populace, such as the high-rank individuals, are 
reproduced. This permits the CPA model to concentrate on following the optimum solution.

The calculated representation of the reproduction phase is mentioned below:

	 NewCPi,j = CP1,j + Reproduction−rate × randi,j × matei,j

	
matei,j =

{
CPv,j − CPi,j , if f (CPi) > f (Cp)
CPi,j − CPv,j , if f (CPi) < f(CPv) , i ̸= v ̸= 1� (10)

Here, CP1,j  denotes the finest solution, CPv,j  represents a randomly chosen carnivorous plant, and the 
reproduction rate refers to the pre-defined value.

As the number of controller points improves, the searching efficacy of CPA supervises decreases. To tackle 
this problem, the next developments in the CPA are presented. A chaotic searching tactic has been utilized to 
enhance the model’s primary solution, improving the exploration range. Next, a growth phase tactic depending 
upon the normal distribution was employed, permitting the technique to actively alter the development direction 
throughout the search method as per the excellence of the solution. These improvements enhance both the 
accuracy and efficiency of the exploration. It is denoted as Improved Carnivorous Plant Algorithm (ICPA).

Tent map is a perfect selection for setting the population owing to its efficiency and simplicity in producing 
a chaotic series. Its mathematical equation is expressed below:

	
xn+1 =

{
xn
0.7 , 0 < xn ≤ 0.7
xn(1−xn)

0.3 , 0.7 < xn ≤ 1 � (11)

The specific process of utilizing a Tent map is given below:

	

Xj
i (0) = xmin + Chaos × (xmax − xmin) ,{

i = 1, 2, . . . , n
j = 1, 2, . . . , d

� (12)

In the equation, Xj
i (0) signifies the first value of ith individual on jth decision variable; xmin and xmax 

signify the lower and upper limits for independent variables, correspondingly; M  represents the number of 
individuals; d refers to the size of the issue; and Chaos indicates the factor of chaos produced over the tent 
mapping.

People using less objective function values are more likely to resolve the least value during this optimization 
issue. To help this feature, a novel tactic is presented, in which the progression of off-spring is based upon 
the typical distribution N

(
µ , σ 2)

. Here, µ  denotes a chosen parent, and σ  refers to a regulating standard 
deviation, limiting further individuals’ search range. As per the 6σ  value of the standard distribution, the 
range of (µ − 3σ and µ + 3σ ) includes many probable values. By altering σ , the produced off-spring can 
be focused on µ , thus improving the model’s capability to concentrate on the present optimal solution. At the 
same time, this technique permits the search of novel solutions in an assured span.

To execute this approach, the Eqs above. (8) and (9) are substituted by using novel Eqs.  (13) and (14) 
throughout the off-spring production stage:

	
NewCPi,j = N

(
CPi,j ,

√
ε +

[
CPi,j − P reyv,j

6

]2
)

� (13)

	

NewP reyi,j =




N

(
CPv,j ,

√
ε +

[
CPi,j −P reyu,j

6

]2
)

if f (P reyv) > f (P reyu)

N

(
CPu,j ,

√
ε +

[
CPi,j −P reyv,j

6

]2
)

if f (P reyv) < f (P reyu)
� (14)

Here, ϵ  refers to a small coefficient to guarantee strength and declare a definite measure of randomness.
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In this paper, the ICPA has been applied to define the intricate hyperparameter in the FBLSTM approach. The 
MSE is measured as the objective function and described as shown.

	
MSE = 1

T

L∑
j=1

M∑
i=1

(
yi

j − di
j

)2
� (15)

Here, L and M  consistently characterize the resulting value of layer and data, and yi
j  and di

j  indicate the 
achieved and proper magnitudes for the jth component from the resulting layer of the system in tth time, 
respectively. The pseudocode of the ICPA model is given below.

Pseudocode 1.  ICPA Technique

Performance validation
The experimental validation of the FBLSTMSC-DMPVC approach is studied below the Cryptocurrency Price 
Analysis Dataset32. The major cryptocurrencies are Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), and Litecoin 
(LTC). The historical volatility is utilized as the measure of volatility, and the data period for analysis spans from 
January 1, 2018, to May 31, 2023. This timeframe was chosen to represent market conditions and fluctuations 
during the specified period comprehensively.
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Figure  4 establishes the correlation matrix produced by the FBLSTMSC-DMPVC technique. The results 
identify that the FBLSTMSC-DMPVC model effectively predicts all class labels precisely.

Figure 5 represents the close price result analysis of the FBLSTMSC-DMPVC model under cryptocurrencies.
Figure 6 depicts the pairwise result analysis plot of the FBLSTMSC-DMPVC model for crypto data under 

different cryptocurrencies.
Figures 7, 8, 9, 10 and 11 shows an outcome analysis graph for the actual vs. prediction of FBLSTMSC-

DMPVC methodology under several epochs. The outcomes specified that the FBLSTMSC-DMPVC technique 
has enhanced prediction results. The figure shows the actual vs. prediction results of the FBLSTMSC-DMPVC 
approach. The outcomes stated that the FBLSTMSC-DMPVC approaches have exposed better-predicted results 
under every operation hour. It is also well-known that the variance between the predicted and actual values is 
measured at the least.

Figure 12 establishes outcome analysis for the loss curve of the FBLSTMSC-DMPVC technique under MAE, 
MAPE, MSE, and RMSLE. The values of loss are computed over the range of 0–50 epochs. The training values 
exemplify a diminishing tendency, informing the capacity of the FBLSTMSC-DMPVC methodology to balance 
a trade-off between data fitting and generalization. The continuous reduction in loss values guarantees the 
superior performance of the FBLSTMSC-DMPVC methodology and tunes the prediction outcomes over time.

Table 1 provides the classifier result of the FBLSTMSC-DMPVC technique under multiple cryptocurrencies. 
The table values specify that the BTC cryptocurrency has attained MSE of 0.0015, RMSLE of 0.0369, MAE of 
0.0364, and MAPE of 0.7939. At the same time, the ETH cryptocurrency has an MSE of 0.0018, RMSLE of 
0.0408, MAE of 0.0423, and MAPE of 0.8633. Meanwhile, LTC cryptocurrency has obtained an MSE of 0.0016, 
an RMSLE of 0.0351, an MAE of 0.0355, and a MAPE of 0.6187. At last, the XRP cryptocurrency has an MSE of 
0.0021, RMSLE of 0.0403, MAE of 0.0414, and MAPE of 0.6667.

Table 2 provides the MSE outcome of the FBLSTMSC-DMPVC technique under various cryptocurrencies 
with existing models33. The results indicate that the FBLSTMSC-DMPVC technique performs better. With 
BTC cryptocurrency, the FBLSTMSC-DMPVC technique has a lesser BTC of 0.0015, unlike the Bi-directional 
LSTLM (Bi-LSTM). LSTM-RNN, Bi-directional GRU (Bi-GRU), Tensor-based Collaborative Fuzzy Spatio-
Temporal Model (T-CFSTM), Adaptive Neuro-Fuzzy Inference System (ANCFIS), Linear Regression (LR), 
Naïve Bayes (NB), Support Vector Machine (SVM), and RF models have obtained greater BTC of 0.0020, 

Fig. 4.  Correlation matrix of FBLSTMSC-DMPVC model.
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Fig. 6.  Pairwise result analysis plot for crypto data.

 

Fig. 5.  Close price result analysis of FBLSTMSC-DMPVC model under various cryptocurrencies.
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0.0027, 0.0035, 0.0021, 0.0029, 0.0036, 0.0042, 0.0049, and 0.0057, respectively. Moreover, the FBLSTMSC-
DMPVC methodology has gained a lower ETH of 0.0018 with ETH cryptocurrency. In contrast, the Bi-LSTM, 
LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF methods have achieved superior ETH of 
0.0025, 0.0033, 0.0039, 0.0024, 0.0032, 0.0039, 0.0044, 0.0050, and 0.0057, correspondingly. Besides, with LTC 
cryptocurrency, the FBLSTMSC-DMPVC methodology has attained an inferior LTC of 0.0016. In contrast, the 
Bi-LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF techniques have attained greater 
LTC of 0.0023, 0.0031, 0.0036, 0.0021, 0.0028, 0.0034, 0.0040, 0.0046, and 0.0054, respectively. At last, with 
XRP cryptocurrency, the FBLSTMSC-DMPVC methodology has accomplished a minimum XRP of 0.0021. 
In contrast, the Bi-LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF approaches have 
achieved better XRP of 0.0026, 0.0033, 0.0039, 0.0101, 0.0158, 0.0208, 0.0269, 0.0341, and 0.0400, respectively.

Table 3 presents the MAPE result of the FBLSTMSC-DMPVC method under multiple cryptocurrencies with 
existing techniques. The outcomes specify that the FBLSTMSC-DMPVC method has higher performance. With 
BTC cryptocurrency, the FBLSTMSC-DMPVC approach has attained a maximal BTC of 0.7939, whereas the Bi-
LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF techniques have realized superior BTC 
of 0.7369, 0.6599, 0.5959, 0.7349, 0.6629, 0.6089, 0.5499, 0.4769, and 0.4019, correspondingly.

With ETH cryptocurrency, the FBLSTMSC-DMPVC methodology has accomplished a maximal ETH of 
0.8633. In contrast, the Bi-LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF methods 
have attained greater ETH of 0.8093, 0.7293, 0.6493, 0.8093, 0.7523, 0.6923, 0.6143, 0.5363, and 0.4693, 
correspondingly. At the same time, With LTC cryptocurrency, the FBLSTMSC-DMPVC model has achieved 
higher LTC of 0.6187, while the Bi-LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF 

Fig. 8.  Result analysis graph of FBLSTMSC-DMPVC model for epoch 20

 

Fig. 7.  Result analysis graph of FBLSTMSC-DMPVC model for epoch 10
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methods have achieved superior LTC of 0.5437, 0.4927, 0.4157, 0.5457, 0.4757, 0.3977, 0.3377, 0.2677, and 
0.1997, individually. Lastly, with XRP cryptocurrency, the FBLSTMSC-DMPVC technique has accomplished a 
better XRP of 0.6667, whereas the Bi-LSTM, LSTM-RNN, Bi-GRU, T-CFSTM, ANCFIS, LR, NB, SVM, and RF 
methods have attained greater XRP of 0.5907, 0.5307, 0.4507, 0.5887, 0.5237, 0.4477, 0.3827, 0.3197, and 0.2657, 
respectively.

Conclusion
In this study, an empirical evaluation of the FBLSTMSC-DMPVC technique is presented. The primary focus of 
the FBLSTMSC-DMPVC technique is to present a robust and intelligent framework for an advanced decision-
making model to predict cryptocurrency volatility. To accomplish that, the FBLSTMSC-DMPVC technique 
has three processes: normalization, prediction using FBLSTM, and ICPA-based parameter tuning. Initially, the 
presented FBLSTMSC-DMPVC method performs data preprocessing using Z-score normalization to ensure 
all features are standardized and scaled. Next, the FBLSTM model is employed to predict cryptocurrency 
volatility. ICPA is utilized to enhance the hyperparameters of the FBLSTM method. A wide range of simulation is 
accomplished to ensure the impact of the FBLSTMSC-DMPVC technique. The FBLSTMSC-DMPVC technique 
portrayed a superior MAPE value of 0.7939 for BTC, 0.8633 for ETH, 0.6187 for LTC, and 0.6667 for XRP, 
demonstrating its performance across various cryptocurrencies.

Fig. 10.  Result analysis graph of FBLSTMSC-DMPVC model for epoch 40

 

Fig. 9.  Result analysis graph of FBLSTMSC-DMPVC model for epoch 30
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Cryptocurrency MSE RMSLE MAE MAPE

BTC 0.0015 0.0369 0.0364 0.7939

ETH 0.0018 0.0408 0.0423 0.8633

LTC 0.0016 0.0351 0.0355 0.6187

XRP 0.0021 0.0403 0.0414 0.6667

Table 1.  Classifier outcome of FBLSTMSC-DMPVC model under various cryptocurrencies.

 

Fig. 12.  Result analysis for Loss graph under MAE, MAPE, MSE, RMSLE.

 

Fig. 11.  Result analysis graph of FBLSTMSC-DMPVC model for epoch 50
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Data availability
The data that support the findings of this study are openly available in Kaggle repository at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​
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