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The immune system protects against disease, but may aberrantly silence immunity against
“altered self,” with consequent development of malignancies. Among the components of
the endoplasmic reticulum (ER), important in immunity, is calreticulin (CRT) that, in spite of
its residence in the ER, can be translocated to the exterior.Trypanosoma cruzi is the agent
of Chagas disease, one of the most important global neglected infections, affecting sev-
eral hundred thousand people.The syndrome, mainly digestive and circulatory, affects only
one-third of those infected. The anti-tumor effects of the infection are known for several
decades, but advances in the identification of responsibleT. cruzi molecules are scarce.We
have shown that T. cruzi CRT (TcCRT) better executes the antiangiogenic and anti-tumor
effects of mammal CRT and its N-terminus vasostatin. In this regard, recombinant TcCRT
(rTcCRT) and/or its N-terminus inhibit angiogenesis in vitro, ex vivo, and in vivo. TcCRT
also inhibits the growth of murine adenocarcinomas and melanomas. Finally, rTcCRT fully
reproduces the anti-tumor effect of T. cruzi infection in mice. Thus, we hypothesize that,
the long reported anti-tumor effect ofT. cruzi infection is mediated at least in part byTcCRT.
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INTRODUCTION
The immune system protects against disease. However, abnor-
mally silenced protective immunity against “altered self” may lead
to the development of malignancies. As such, cancer represents a
prominent example of defective immunological surveillance.

Components of the ER play key roles in the development of pro-
tective immunity. Among these components, is calreticulin (CRT)
that, in spite of its residence in the endoplasmic reticulum (ER),
can be translocated to the extracellular milieu, where it displays
immune modulating capacities. Work from several laboratories
indicates that CRT is an interesting ER candidate to manipulate
anti-cancer immunity.

According to the World Health Organization (WHO), Chagas’
disease is endemic in 21 countries, with about 8 million infected
people (1). The disease is considered one of the most impor-
tant neglected tropical infections worldwide, because it causes
15,000 deaths per year and 0.7 million disability adjusted life-years
(2). The impact of this parasite on domestic and wild animals
(reservoirs) (3) is unknown.

The disease is endemic in Latin America. However, it has now
gone global, affecting several hundred thousand people, mainly
South American immigrants, in the USA, Canada, Europe, Ocea-
nia, and Asia (4), where transmission is independent of the pro-
tozoan. In countries without arthropod vectors, transmission is
through blood products (5), organ transplants (1, 5), or congenital
(6). Infection can also occur per os through parasite-contaminated
food (7, 8).

The most frequent treatments for Chagas’ disease have been
the administration of Benznidazole or Nifurtimox, with reported
efficacy in up to 80% of acute cases after a 60-day course, but with
frequent severe side effects and drug resistance (9). Although these
drugs reportedly may cure the disease in the acute phase, partic-
ularly in children, their efficacy in adults, in the indeterminate or
chronic phases, has not been determined.

About 80 years ago, Roskin, Exemplarskaja, and Kliueva, inves-
tigators from the former Soviet Union postulated an anti-cancer
activity of Trypanosoma cruzi, based on a toxic effect of this par-
asitic infection, or parasite extracts, over different tumors, both
in experimental animals and humans (10, 11). More recently, it
was described the parasite capacity to infect preferentially tumor
cells as compared to normal host cells (12). In general, these
data suggest an antagonism between T. cruzi infection and tumor
growth (12). Herein, we will review the available information
with regard to possible molecular mechanisms underlying the
anti-tumor effects of T. cruzi infection, with emphasis on the
experimental rational basis leading to the proposal that the par-
asite utilizes its calreticulin (TcCRT) to protect its host against
neoplastic aggressions. We have provided experimental evidences
indicating that TcCRT is an antiangiogenic molecule that inhibits
proliferation, migration, and capillary morphogenesis in several
in vitro, ex vivo, and in vivo (in ovum) assays (13–15). On the
other hand, TcCRT inhibits the growth of a mammary ade-
nocarcinoma and a melanoma in different experimental animal
models (13–16).
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IS IT ALL THAT BAD WHEN LIVING WITH AN
INTRACELLULAR PROTOZOAN?
The work from the investigators from the former Soviet Union,
proposed that T. cruzi infection potential as a biotherapy for can-
cer treatment (17–19), opened possibilities for several research
lines. They produced a “cancerolytic toxin” [Kliueva and Roskin
(KR) preparation], from T. cruzi lysed cells. In humans, affected
by a variety of tumors, these “toxins,” reduced tumor growth, pain,
local inflammation, and bleeding (18). Controversial results fol-
lowed and the situation, complicated by World War II and “The
Cold War,” interrupted or greatly delayed this work (10). Thus,
the mechanism and the molecular component responsible for the
biotherapy effect have remained largely unknown.

Of note is the proposal in Science journal in 1948, by the immu-
nologist Theodore S. Hauschka and Margaret Blair Goodwin that
tumor-bearing mice, concomitantly infected with the lethal T.
cruzi strain died within 8–13 days post infection. They observed
that weight loss in tumor-bearing infected animals was important,
and that tumor growth was almost completely suppressed. When,
in tumor-bearing animals, the infection was treated, the tumors
resumed their usual growth rate, and the hosts died of cancer (20).
Thus, presence of the parasites was necessary for tumor inhibi-
tion. However, the authors’ view (20) that tumor and parasites
compete for nutrients with consequent inhibition of the former
does not seem now completely satisfactory given the information
emerging during the last few years that we review and discuss
below.

Earlier this century, experimental data obtained from rats
infected with T. cruzi parasites and carcinoma induced by 1,2-
dimethylhidrazyne, demonstrated that chronic infection may
enhance resistance against tumor growth (21). More recent
reports, evaluated the tumor-tropism-parasite capacity to infect
host cancer cells rather than normal cells. Normally, the invasive-
ness (tissue-distribution of parasites of different strains of T. cruzi)
in mice, primarily demonstrated a parasite tropism toward heart
tissues, since 46% (40–65%) of parasites are found in this organ.
The liver and kidney contained 3–4 times less parasites and even
less was found in the spinal cord. Finally, only 3–4% were found
in the brain, spleen, and lymph nodes. However, the presence of
a tumor in the host leads to T. cruzi redistribution between the
tissues: the parasites found in the tumor accounted for 18% in
the decrease of heart invasion (now down to 28%) and increased
invasiveness of spleen and lymph nodes (12). Nevertheless, a rela-
tionship between these findings and tumor development was not
addressed in these studies.

More recently, a role for T. cruzi infection in controlling tumor
growth has been revisited at least in two laboratories, including
ours (22, 23). Junqueira et al. (23) reported that the use of a recom-
binant non-pathogenic T. cruzi clone as vector of a testis tumor
antigen (NY-ESO-1) is efficient in generating T cell-immune
responses and protection against cancer cells, thus delaying tumor
development in mice.

Most recently, we have corroborated that T. cruzi infection
greatly reduces the growth of a mammary adenocarcinoma.

CALRETICULIN
Calreticulin, a 46 kDa pleiotropic protein, participating as a
chaperone and in calcium homeostasis (24), has been described

in different organisms such as humans (25), insects (26, 27),
nematodes (28–31), protozoa (32–35), and plants (36).

Calreticulin, mainly residing in the ER of all nucleated cells
(37), contributes in different processes such as the control of glyco-
protein folding quality and binding to monoglucosylated glycans
with high mannose content. CRT is also present in the cytosol,
nucleus, secretory granules, on the plasma membrane and also
free in the extracellular environment (37). There, CRT modu-
lates the immune response against apoptotic cancer cells (38–42).
The mechanisms involved in CRT translocation and release to the
extracellular milieu are still unknown (43). CRT also promotes
cutaneous wound healing (44–46), cell adhesion (37), nuclear
export of some steroid hormone receptors (47–49), and the sta-
bility or translation of a variety of RNAs (50–54). CRT reaches
the cytosol and nucleus by a C-terminal domain-dependent
retrotranslocation, after ER calcium depletion (55).

Calreticulin has a globular N-terminus (N), a proline-rich (P)
domain, and an acidic C-terminus (37). An S-domain (aa 160–
289), within N and P, binds complement component C1, a “danger
signal detection module” that initiates the classical complement
activation pathway (56, 57). The primary CRT sequence starts
with a signal peptide and ends with a KDEL-ER retention sequence
(58). Human CRT (HuCRT) and its N-terminal fragment binds
laminin (59), with antiangiogenic properties in vitro and in vivo
(60, 61) and inhibit the growth in several tumor models (62–
64). Vasostatin, is a CRT 180 amino acid N-terminal fragment,
a potent endogenous inhibitor of angiogenesis and suppressor
of tumor growth. Vasostatin inhibits vascular endothelial growth
factor (VEGF)-induced endothelial cell proliferation and interac-
tions in matrigel and induces cell apoptosis under limiting oxygen
availability (65).

TcCRT AND INFECTIVITY
Trypanosoma cruzi, may use its CRT, a putative universal apoptosis
cell marker (39, 41, 42), in an “apoptotic mimicry” strategy to gen-
erate “eat me” signals (i.e., by capturing C1 in the area of flagellum
emergence), thus facilitating the invasion of host cells. C1q bridges
the parasite molecule with host cell surface receptors (66), most
likely CRT known as cC1qR (67). Thus, host C1, upon binding
to the trypomastigote surface, also promotes parasite infectivity
(68). The parasite molecule responsible for recruiting this comple-
ment component has been identified as TcCRT (69, 70). Increased
parasite infectivity is paralleled by significant increases in TcCRT
mRNA levels during early (cell contact and penetration) infection
stages of a VERO cell line. In spite of its lysine–aspartic acid–
glutamic acid–leucine (KDEL)-ER retrieval sequence, TcCRT does
translocate from the ER to the parasite area of flagellum emer-
gence. An augmented capacity to recruit C1, an important “eat
me” signal for phagocytic cells follows, thus leading to increased
infectivity (41, 68–72).

The TcCRT–C1q interaction can be decreased by anti-TcCRT
F(ab′)2 antibody fragments (lacking the C1-binding Fc domains)
(73). Indeed, passive immunization of mice with these fragments
resulted in important decreases in infectivity and improved clinical
parameters (69).

Of particular interest and conceivable consequences in pathol-
ogy is the possibility that, in T. cruzi infected individuals, the
parasite molecule may promote autoimmune mechanisms (74).

Frontiers in Oncology | Tumor Immunity January 2015 | Volume 4 | Article 382 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


Ramírez-Toloza et al. Trypanosoma cruzi calreticulin, angiogenesis, and cancer

Trypanosoma cruzi CRT also binds complement mannan bind-
ing lectin (MBL) and Ficolins (75). Together with C1(q,r,s) they
are three complement “danger signal” recognition macromolec-
ular modules. Genetically, structurally, and functionally related,
they differ in the nature of the recognized danger signals (22).
After binding C1(q,r,s), TcCRT or its S and R central domains
inhibit the classical pathway of human complement, in a calcium-
independent manner (69, 72, 76). More recently, we have also
proposed that l-Ficolin binds TcCRT, thus inhibiting the lectin
pathway, a likely alternative or concomitant T. cruzi strategy to
inhibit the host immune response (75). The roles of MBL and
Ficolins in the infectivity process are still under study.

TRYPANOSOMA CRUZI CALRETICULIN, A MOLECULE WITH
ANTIANGIOGENIC AND ANTI-TUMOR PROPERTIES
Inhibition of tumor angiogenesis, proposed as a cancer therapy
almost 40 years ago (77), is a complex process to form new blood
vessels, thus providing the necessary supply of nutrients, oxygen,
and ways for waste disposal (78). Antiangiogenesis is currently
applicable to a wide variety of tumors, frequently as a supplement
to other therapies (79).

Our description of TcCRT provides alternative or concomitant
explanations for at least an important part of the anti-tumor effect
of this parasite infection. Most likely, TcCRT anti-tumor proper-
ties derive from its antiangiogenic properties (13, 73). By direct
interaction with endothelial cells, probably through a Scavenger-
like receptor, TcCRT acts as a potent angiogenesis inhibitor (13,
14, 71). Antiangiogenic agents may generate a primary stressing
challenge to a variety of tumor cells. On the other hand, many
tumors have a notorious capacity to produce an array of proangio-
genic molecules. Of note areVEGF, the platelet-derived endothelial
cell growth factor (PD-ECGF), and the acidic and basic fibrob-
last growth factors (aFGF and bFGF) (80). Thus, tumor growth
and metastasis are indirectly, but importantly promoted by these
factors.

Angiogenesis modulators behave differently across species.
TcCRT and its N-terminal vasostatin-like domain (N-TcCRT)

were studied in mammals, Homo sapiens sapiens included (13).
Thus, recombinant TcCRT (rTcCRT) and its N-terminal domain
inhibit capillary growth ex vivo in Rattus rattus aortic rings, mor-
phogenesis, proliferation, and chemotaxis in human umbilical
cord endothelial cells (HUVECs) (13) and in ovum angiogene-
sis in the Gallus gallus chorioallantoid membrane (CAM) assay
(14). These are valid correlates of important features of angio-
genesis in vivo. In most of these assays TcCRT was more effec-
tive, in molar terms, than HuCRT (13). Of particular interest
is the fact that, in the CAM assay, the antiangiogenic TcCRT
effect was fully reverted by polyclonal antibodies against rTc-
CRT (15). We are currently investigating whether the anti-
tumor effect of T. cruzi infection is reverted by F(ab′)2 anti-
TcCRT antibody fragments, derived from these immunoglobu-
lins. In such a case, a formal causal link between externalized
TcCRT and the anti-tumor effect of T. cruzi infection would be
established.

In agreement with the previously described facts, inoculation
of rTcCRT inhibits by 60–70% the time-course development of
a murine mammary metrotexate multiresistant adenocarcinoma
(TA3-MTX-R), with a higher efficiency than the human counter-
part (13) (Figure 1).

CONCLUDING REMARKS
Recombinant TcCRT, and most likely translocated native TcCRT,
mediate mechanisms relevant in the host/parasite interplay: (i)
through a central S domain (aa 159–281), it interferes with the
earliest stages of the complement activation; (ii) C1, bound to the
parasite,promotes infectivity (69); and (iii) through an N-terminal
domain (20–193), it interacts directly with endothelial cells and
inhibits angiogenesis (13). Thus, prolonged host–parasite inter-
actions may be promoted. Several of these features are variably
conserved in the HuCRT, but with lower equimolar efficiency.
Thus, when the parasite and human chaperones are compared
in equimolar terms, the former displays stronger antiangiogenic
effects in in vitro, ex vivo, and in vivo (22, 70) and this is reflected
in the compared anti-tumor effects.

FIGURE 1 |Trypanosoma cruzi CRT-mediated tumor growth inhibition.
In both experiments, 5×105 murine A/J mammary tumor (TA3 MTXR) cells
were inoculated s.c. in A/J female mice, five animals per group.
(A,B) Together with tumor cells, and every other day, the animals were
inoculated s.c. with 50 µg TcCRT or HuCRT or solvent. While TcCRT had a
similar anti-tumor effect in both experiments (p=0.0078), HuCRT did not

show that effect under these conditions (13). In both experiments, the
tumor size was determined with a digital caliper (Mitutoyo Corp., Japan), in
a double blind procedure. The formula (π/ 6× length×width2) was used.
Data were statistically validated by Wilcoxon Signed Rank test, GraphPad
Prism 4. Reproduced with permission from PLoS Neglected Tropical
Diseases (13).

www.frontiersin.org January 2015 | Volume 4 | Article 382 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


Ramírez-Toloza et al. Trypanosoma cruzi calreticulin, angiogenesis, and cancer

FIGURE 2 |Trypanosoma cruzi CRT participates in infectivity and
anti-tumor process. (a) TcCRT, exposed on the parasite surface, binds C1q
thus inhibiting the classical pathway of the complement system.
TcCRT/C1q interaction participates in the infectivity process binding CRT
present on mammalian cells. (b) TcCRT is translocated to the parasite
surface and secreted. This TcCRT in the extracellular milieu binds to
endothelial cells, (c) inhibiting angiogenesis. (d) This inhibition provokes a
stressful environment in the tumor (decreased nutrients and oxygen supply,
accumulation of metabolic waste products, etc.) (e) that induces CRT
exteriorization on tumor cells. External tumor CRT captures C1, a signal that
increases phagocytosis of tumor cells and consequent immunogenicity and
(f) reduction of the tumor growth. Whether TcCRT also binds tumor cells
in vivo, thus promoting tumor immunogenicity, has not been demonstrated.

Perhaps the TcCRT antiangiogenic effects reflect a parasite
evolutionary adaptation to protect its host integrity and, as a
necessary consequence, its own (71). Concomitantly, by decreasing
angiogenesis, access of immunocompetent cells to the sites of
parasite locations may be impaired, as well as subsequent inflam-
matory consequences, both with possible benefits to the aggressor,
although the second strategy could also benefit the host from
exaggerated immune reactivity.

The ability of TcCRT to delay solid tumor growth may represent
an evolutionary adaptation with consequences in host survival and
increased possibilities for the parasite to expand its genome. Based
on fundamental Darwinian principles, cancer (i.e., mammary,
cervix-uterine, prostate, lung, stomach, among others), taken alto-
gether, have prevalence equivalent to an epidemic. These cancers
may have exerted a selective pressure on the parasites, to develop
molecular mechanisms to protect their hosts. Our experimental
evidences indicate that externalized TcCRT, through its antian-
giogenic properties may explain, at least in important part, such
mechanisms (70).

Trypanosoma cruzi CRT-mediated antiangiogenesis, may pro-
voke a stressful environment in the tumor (decreased nutrients
and oxygen supply, accumulation of metabolic waste products,
etc.) that induce CRT exteriorization on tumor cells. External
CRT captures C1, a signal that increases phagocytosis of tumor
cells and consequent immunogenicity (16). These possibilities are
summarized in Figure 2. Other stressful agents (i.e., UV, anthra-
cyclins) (39–42, 81) also mediate CRT translocation with similar
immune stimulating consequences. The possibility that a con-
comitant immune boost, mediated by other means, is promoted
by the infection (23), is also conceivable.

Finally, given the current evidences, the old proposal that tumor
and parasites compete for nutrients with consequent inhibition of
the former (20), now seems less likely.
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