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A B S T R A C T   

Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic 
pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new corona-
virus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients 
with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. 
To accurately determine the factors that play a decisive role in the early recognition and discrimination of 
COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization 
(HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method 
uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The 
experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, 
sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by 
the proposed feature selection method. The simulation results show that the established methodlogy can achieve 
promising performance. We believe that our proposed model provides an effective strategy for accurate early 
assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgh 
arheidari.com/HHO.html.   

1. Introduction 

The International Committee on the Taxonomy of Viruses (ICTV) 
described a new virus, namely, severe acute respiratory syndrome 
coronavirus (SARS-CoV-2) [1]. SARS-CoV-2 is believed to be the path-
ogen that causes viral pneumonia, which has caused a worldwide 
pandemic [2]. On February 11, 2020, the viral pneumonia that is caused 
by SARS-CoV-2 was named coronavirus disease 2019 (COVID-19) by the 
World Health Organization (WHO) [3]. The case fatality ratio (CFR) of 

COVID-19 is significantly lower than those of severe acute respiratory 
syndrome (SARS) and Middle East respiratory syndrome (MERS) [4,5]. 
However, COVID-19’s long incubation period of approximately two 
weeks and the presence of asymptomatic infections increase the risk of 
COVID-19 virus infection and promote its spread [6]. As of 6:18pm CET, 
4 January 2022, according to WHO data3, COVID-19 has spread glob-
ally, with more than 290,959,019 cases of COVID-19 diagnosed in 
various countries, which have resulted in more than 5,446,753 related 
deaths (https://www.who.int/). 
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The most common clinical manifestation of 2019-nCoV infection 
includes fever, dry cough, dyspnea, chest pain, myalgia, and fatigue [7]. 
According to a previous clinical study, 20.7%–31.4% of COVID-19 pa-
tients developed a severe form of this disease, such as adult respiratory 
distress syndrome (ARDS) [8,9]. Furthermore, 4.9%–11.5% of patients 
with COVID-19 needed advanced life support techniques in the intensive 
care unit (ICU) [8]. The main characteristics of severe COVID-19 are 
rapid progression, ARDS, multiple organ dysfunction (MOF), and high 
fatality rate [10]. According to previous reports, elderly patients with 
comorbidities are more susceptible to being infected by COVID-19 [11, 
12]. Moreover, the mortality rate of elderly patients (>65 years old) 
with comorbidities and ARDS is significantly increased [13]. 

The rapid progression of COVID-19 places substantial strain on 
health care systems and hospital critical care resources. Severe COVID- 
19 patients may experience rapid deterioration if not treated in the ICU 
timely [14]. Therefore, it is vital to conduct accurate and frequent 
clinical assessments [8,9,15–17]. However, due to resources being 
stretched thin and lack of experience and prior knowledge of experts, 
accurate and frequent assessment is not easy. Effective novel prognostic 
model systems that can help monitor changes in the condition of 
COVID-19 patients can guide the effective use of hospital resources. 
Recently, machine learning methods have been used by many medical 
workers to help solve medical problems. According to many studies, 
machine learning (ML) techniques and artificial intelligence (AI) 
methods have been widely implemented in the diagnosis of COVID-19 
[18–21], and many studies have applied swarm intelligence methods 
to COVID-19 image segmentation [22,23]. 

Pham et al. [24] trained convolutional neural networks (CNNs) to 
fine-tune COVID-19 detection in chest slices. Canayaz [25] used deep 
learning models such as AlexNet, VGG19, GoogleNet, and ResNet to 
conduct feature extraction and select optimal potential features; two 
meta-heuristic algorithms, namely, binary particle swarm optimization 
and binary gray wolf optimization, were used. Al-Falluji [26] et al. 
utilized X-ray images for deep learning and retrieved essential bio-
markers that were related to COVID-19 disease detection. Shaban et al. 
[27] combined a fuzzy inference engine with deep neural networks 
(DNNs) to propose a new hybrid diagnostic strategy (HDS) for classi-
fying newly infected individuals to determine whether they are infected. 
Sun et al. [28] proposed an adaptive feature selection guided deep forest 
(AFS-DF) approach that is based on chest CT images for COVID-19 
classification. Shaban et al. [29] introduced a novel COVID-19 patient 
detection strategy (CPDS) that is based on hybrid feature selection and 
enhanced the KNN classifier, which significantly improved the diag-
nostic accuracy. Dey et al. [30] built various machine learning models 
for predicting protein–protein interactions (PPIs) between COVID-19 
and human proteins and further validated them by biological experi-
ments. Abraham et al. [31] combined multiple CNN-extracted features 
with a correlation-based feature selection (CFS) technique and a 
Bayesian classifier for COVID-19 prediction. Liu et al. [32] developed 
and validated a complete machine learning framework for chest CT 
images to distinguish COVID-19 from global pneumonia (GP). Tuncer 
et al. [33] proposed a novel intelligent computer vision method for 
automatic detection of the COVID-19 virus and conducted 10-fold 
cross-validation based on the SVM classifier, which showed a classifi-
cation accuracy of 100.0%. Casiraghi et al. [34] proposed an inter-
pretable machine learning system that provides simple decision criteria 
for use by clinicians in assessing patient risk. Novitasari et al. [35] used 
convolutional neural network methods such as feature extraction and 
support vector machines (SVM) as classification methods to detect 
whether a patient being examined was healthy, coronavirus-positive, or 
only had pneumonia. 

In this work, we proposed a new machine learning framework, 
namely, the swarm intelligence augmented kernel extreme learning 

machine (KELM) [30], for predicting the severity of COVID-19. Notably, 
for the first time, the binary Harris hawk optimization (HHO)4, which is 
improved using specular reflection learning, is used in combination with 
the KELM classifier for feature selection. The experimental results and 
simulation results demonstrate the superior performance of the method. 
The results show that bHHOSRL_KELM performs well in determining 
which factors play a decisive role in the outcome in COVID-19 diagnosis. 
The proposed bHHOSRL_KELM was compared with other classifiers, 
such as fuzzy k-nearest neighbors(FKNN), k-nearest neighbors(KNN), 
multilayer perceptron (MLP), and support vector machines(SVM), in 
terms of four classification metrics, namely, classification accuracy, 
sensitivity, specificity, and Mathews correlation coefficient (MCC). In 
addition, nine other feature selection methods that are based on swarm 
intelligence algorithms were used to evaluate the performance of the 
developed bHHOSRL_KELM based on the fitness values throughout the 
iterative process. The experimental results show that the developed 
bHHOSRL_KELM has high predictive performance. 

The main contributions of this study are as follows: (1) an efficient 
diagnostic aid for COVID-19 in blood specimens was developed; (2) a 
promising hybrid model was proposed, and the potential of KELM was 
enhanced using an improved HHO method; and (3) the bHHOSRL_KELM 
feature selection method was used to identify the most critical features 
effectively. 

The remainder of this paper is organized as bellow. The first section 
describes the current state of research on novel coronaviruses and the 
application of machine learning methods to novel coronavirus research. 
The second section presents the dataset that is used in this paper. The 
third section presents the improved HHO method and its integration 
with KELM. The fourth section analyze the proposed method and pre-
sents the experimental results on COVID-19. The fifth section discusses 
the proposed method and analyzes the final medical data results. 

2. Materials and methods 

2.1. Data collection 

Our study was approved by the Ethics Committee of the Affiliated 
Yueqing Hospital of Wenzhou Medical University (Yueqing, China; 
protocol number 202000002) and complied with the Helsinki declara-
tion. In this single-center retrospective study, our dataset consisted of 
clinical notes on 51 Chinese COVID-19 patients from a third-level grade- 
A hospital in eastern China between January 21 and March 10, 2020. 
The diagnosis was based on the positive detection of SARS-CoV-2 nucleic 
acid by reverse-transcription polymerase chain reaction (RT–PCR) 
testing on throat swab samples. 

We separated the COVID-19 patient dataset into severe COVID-19, 
which corresponded to 21 samples, and nonsevere COVID-19, which 
corresponded to 30 samples. For a diagnosis of severe COVID-19, the 
following requirements should be satisfied: (1) respiratory rate greater 
than 30/min (respiratory distress); (2) resting oxygen saturation lower 
than 93%; and (3) oxygenation index (OI) lower than 300 mmHg. We 
collected arterial blood samples from all 51 patients with a COVID-19 
diagnosis. Blood gas analysis was performed by a SIEMENS RAPID 
Point 500 blood gas analyzer. The basic clinical information and 22 
blood gas analysis parameters (features) are listed in Table 1. All con-
tinuity variables are presented as the mean ± standard deviation (SD) 
and were analyzed with SPSS Statistics 24.0. An independent sample t- 
test was used to analyze the continuous variables (age and blood gas 
analysis parameters). p < 0.05 was considered statistically significant. 
The statistical analysis results are presented in Table 2. 

4 https://aliasgharheidari.com/HHO.html 
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3. Methods 

In this study, the improved HHO with specular reflection learning 
(HHOSRL) mechanism is used as a learning algorithm in the parcel- 
based feature selection method, and the binary HHOSRL method is 
used as a feature selection tool to identify the critical features and 
evaluate the feature subsets using the KELM model. HHO [37] is a new 
swarm algorithm that was proposed by Heidari et al., in 2019 inside the 
class of bio-inspired methods [38]. Since its introduction, it has been 

used in many situations, such as parameter estimation of photovoltaic 
models. It is a superior method compared to many other algorithms in 
recent years [39–42], such as the colony predation algorithm (CPA) 
[43]. HHO has the unique feature that Harris hawks can cooperate in 
groups to chase prey and adjust the chase pattern according to the dy-
namics of the situation and the escape pattern of the prey. Since its 
introduction, HHO has been applied to solve many problems such as 
parameters identification of photovoltaic cells and modules [44–47], 
feature selection [48,49], optimizing the machine learning models [21, 

Table 1 
List of the used features and their abbreviations [36].   

Feature Abbreviation 

F1 Gender Gender 
F2 Age Age 
F3 Hydrogen ion concentration PH 
F4 Partial pressure of carbon dioxide PaCO2 

F5 Partial pressure of oxygen PaO2 

F6 Oxygen saturation SaO2% 
F7 Hemoglobin percentage Hb 
F8 Oxyhemoglobin percentage HbO2% 
F9 Carboxyhaemoglobin percentage COHb% 
F10 Deoxyhemoglobin percentage DeOxyHb% 
F11 Methaemoglobin percentage MetHb% 
F12 Potassium ion concentration K+

F13 Sodium ion concentration Na+

F14 Chloride ion concentration Cl−

F15 Calcium ion concentration Ca2+

F16 Glucose concentration GLU 
F17 Lactic acid LAC 
F18 Anion gap AG 
F19 Buffer bases BB 
F20 Bases excess BE 
F21 Standard bicarbonate SB 
F22 Actual bicarbonate AB  

Table 2 
Comparison of age and blood gas analysis indices between severe COVID-19 and nonsevere COVID-19 [36].  

Index Severe COVID-19 (n = 21) Nonsevere COVID-19 (n = 30). p value 

Age 61.43 ± 17.64 42.30 ± 11.53 0.00 
PH 7.46 ± 0.34 7.43 ± 0.32 0.01 
PaCO2 32.10 ± 4.20 37.55 ± 4.51 0.00 
PaO2 65.13 ± 12.45 103.73 ± 27.87 0.00 
SaO2% 92.73 ± 4.20 98.03 ± 1.00 0.00 
Hb 13.50 ± 1.98 14.41 ± 2.16 0.13 
HbO2% 91.58 ± 4.28 96.51 ± 0.97 0.00 
COHb% 1.01 ± 0.27 1.02 ± 0.26 0.84 
DeOxyHb % 6.84 ± 4.29 1.95 ± 0.98 0.00 
MetHb % 0.51 ± 0.28 0.52 ± 0.18 0.97 
K+ 3.36 ± 0.42 3.32 ± 030 0.68 
Na+ 131.00 ± 3.72 136.23 ± 2.74 0.00 
Cl− 103.33 ± 3.37 107.37 ± 3.87 0.00 
Ca2+ 1.08 ± 0.06 1.12 ± 0.03 0.01 
GLU 10.29 ± 3.58 8.16 ± 2.88 0.02 
LAC 2.35 ± 1.09 1.70 ± 0.62 0.01 
AG 4.86 ± 2.20 4.28 ± 1.41 0.25 
BB − 0.24 ± 2.82 0.93 ± 2.48 0.29 
BE − 0.86 ± 3.09 0.77 ± 2.79 0.06 
SB 24.02 ± 2.55 25.29 ± 2.15 0.06 
AB 22.56 ± 3.21 24.58 ± 2.72 0.02  
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50], engineering design problems [47,51,52], web service composition 
[52], bankruptcy prediction [53], and multi-objective problems [54]. 

3.1. Exploration phase 

Harris hawks perch at random in a specified location and find their 
prey through 2 strategies, which are expressed mathematically in Eq. 
(1). 

X(t+ 1)=
{

Xrand(t) − r1|Xrand(t) − 2r2X(t)| , q ≥ 0.5
[Xrabbit(t) − Xm(t)] − r3[lb + r4(ub − lb)] , q < 0.5 (1)  

where X(t) and X(t +1) are the positions of individuals at the current and 
next iterations, respectively; t is the number of iterations; Xrand is the 
randomly selected individual position; and Xrabbit is the prey position, 
namely, the global optimum of the current evaluation. r1, r2, r3, r4 and q 
are random numbers in [0,1], q is used to select the strategy to be used 
randomly, Xm is the average individual position, Xk(t) is the position of 
the kth individual in the population and N is the population size. 

3.2. Conversion between exploration and exploitation 

The HHO algorithm shifts between exploration and various exploi-
tation behaviors based on the prey’s escape energy, which is defined as 
follows: 

E = 2E0

(

1 −
t

Max iter

)

(2)  

where E0 is the initial energy of the prey, which is a random number in 
[-1,1] that is updated automatically at each iteration; t is the number of 
iterations; and Max iter is the maximum number of iterations. The 
search phase is entered when |E| ≥ 1, and the exploitation phase is 
entered when |E| < 1. 

3.3. Exploitation phase 

Define r as a random number between [0,1] for choosing the 
exploitation strategy. 

When 0.5 ≤ |E| < 1 and r ≥ 0.5, a soft besiege strategy is used to 
update the position. 

X(t+ 1)=ΔX(t) − E|J ⋅ Xrabbit(t) − X(t)| (3)  

where ∇X(t) = Xrabbit(t) − X(t) represents the difference between the 
prey position and the individual’s current position and J is a random 
number in [0,2]. 

When |E| < 0.5 and r ≥ 0.5, a hard besiege strategy is used to update 
the position. 

X(t+ 1)=Xrabbit(t) − E⋅|ΔX(t)| (4) 

When 0.5 ≤ |E| < 1 and r < 0.5, a soft besiege strategy with a pro-
gressive rapid dive is used to update the position. 

X(t+ 1)=
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t)) (5)  

Y = Xrabbit(t) − E⋅|J ⋅ Xrabbit(t) − X(t)| (6)  

Z =Y + S × Levy(2) (7)  

where f(∗) is the fitness function; S is a 2-dimensional random vector 
with elements that are random numbers in [0,1]; and Levy(∗) is the 

mathematical expression for Levy flight. 
When |E| < 0.5 and r < 0.5, a soft besiege strategy with a progressive 

rapid dive is used to update the position. 

X(t+ 1)=
{

Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t)) (8)  

Y = Xrabbit(t) − E ⋅ |J ⋅ X rabbit (t) − Xm(t)| (9)  

Z =Y + S × Levy(2) (10)  

3.4. Proposed binary HHOSRL 

In this paper, we address a binary optimization case, which corre-
sponds to whether a feature is selected or not. In a discrete binary space, 
a solution is restricted to two numbers (0 and 1). For our case, an 
upgraded binary HHO is proposed. In this study, we represent a solution 
as a d-dimensional vector, where d is the number of attributes of the 
dataset. A value of 1 indicates that the corresponding attribute in the d- 
dimensional sample is selected, whereas a value of 0 indicates the 
attribute is not selected. Updating equations such as Eq. (1), Eq. (3), Eq. 
(4), Eq. (5), and Eq. (8) are useless in dealing with binary optimization 
tasks since these solutions do not have only two values, namely, "0" and 
"1". To overcome this problem, the method discretizes the updated 
hawks’ position vector to a binary vector. The updating equation is as 
follows: 

Xd(t+ 1)=
{

1 , S(Xd(t)) ≥ rand
0 , otherwise (11)  

where rand is a random number in [0,1] and Xd(t+1) is the updated 
location at the t-th iteration. The expression for S(x) is presented below. 

S(x) =
1

1 + e− 10(x− 0.5) (12) 

This paper updates the solution using a variation operator based on 
specular reflection learning (SRL) to further explore more combinations 
of properties. 

Xt
new(i, j)= (0.5λ+ 0.5)×

(
Umax,j +Lmin,j

)
− λ⋅Xt(i, j) (13)  

where Xt
new(i, j) is the binary value of the j− th dimension of the i-th 

individual in the t-th iteration after mutation and λ is a variable that 
controls the range of the new position after specular reflection, which is 
calculated via Eq. (14). 

λ=
{

1 + φR0, if k1 > k2
1 − φR0, otherwise (14)  

where k1 and k2 are two random numbers that are uniformly distributed 
between 0 and 1 and R0 is the neighborhood radius, which is also called 
the elasticity factor. From Eq. (14), if k1 > k2, Xt

new will appear in the 
right neighborhood of Xt; otherwise, Xt

new will appear in the left neigh-
borhood of Xt. Therefore, it is reasonable to set R0 to [0,1] to balance the 
search space of the left and right neighbors. Additionally, φ is also set to 
[0,1], namely, all possible values within a radius R0 of the neighborhood 
are obtained. 

Algorithm 1. Procedure of HHOSRL   

J. Hu et al.                                                                                                                                                                                                                                       
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4. Classification based on KELM 

4.1. KELM 

The ELM is a special kind of single-implicit feedforward neural 
network with three separate layers: input, hidden, and output. For a 
dataset of N training samples ( xj, tj) ∈ Rn × Rm, when the number of 
implicit layer nodes of the ELM is L and the excitation function is ϑ: 

f (xi)=
∑L

i=1
βiϑ
(
ωixj + bi

)
= tj, j= 1,…,N (15)  

where the vector of weights between the i − th hidden layer node and the 
output layer node is βi. ELM differs completely from traditional iterative 
learning algorithms in that it randomly selects the input weights ω and 
bias b of the implicit layer nodes before analytically calculating the 
least-square solution of the output weights β. Reducing the training error 
rate and optimizing the generalization capabilities are the goals of these 
calculations. 

Eq. (15) is expressed in a compact form according to ELM theory: 

Hβ=T (16) 

After the excitation function and the number of implicit layer nodes 
are established, the following 3 steps are conducted to train the ELM on a 
training dataset. 

Step 1. Randomly generate input weights ωi and bi, 1 ≤ i ≤ N; 

Step 2. Calculate the output matrix of the hidden layer H; 

Step 3. Calculate the output weight matrix β = H+ T; 

where H+ is the Moore-Penrose generalized inverse of the implicit 
layer output matrix H. When HHT is nonsingular, H+ = HT(HHT)

− 1. 
To eliminate errors in the results of the "sick matrix," according to the 

strategy of ridge regression, a regularization factor η is introduced, and 
the least-squares solution of the output weights of the network is 

β=HT (HHT + ηI
)− 1T (17) 

Therefore, the corresponding ELM output function is 

y(x)= h(x)β (18) 

If the feature mapping function h(x) is not known, a new kernel- 
based ELM (KELM) method can be formed by introducing a kernel 
function into the ELM. In the KELM method, we need to define the kernel 

J. Hu et al.                                                                                                                                                                                                                                       
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matrix QELM = HHT, which has the following elements: 

QELM(i, j)= h(xi) ⋅ h
(
xj
)
=K

(
xi , xj

)
(19) 

Then, using Eq. (18), the network output can be expressed as follows: 

y(x)=

⎡

⎣
K(x , x1)

⋮
K(x , xN)

⎤

⎦ (ηI +QELM)
− 1 T (20) 

In Eq. (20), the radial basis kernel function is selected as the kernel 
function K(xi ,xj): 

K
(
xi , xj

)
= exp

(

−

⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒2

γ2

)

(21)  

where γ is the nuclear parameter of the RBF kernel function. 
The two key parameters have been shown to have a large impact on 

the performance of KELM on many problems, such as second major 
prediction [55], medical diagnosis [56–61], financial stress prediction 
[62,63], and recognition of foreign fibers in cotton [64]. 

4.2. Proposed HHOSRL-KELM 

To find more representative attributes in the dataset to help us make 
a medical diagnosis, this paper uses HHOSRL-KELM as a feature selec-
tion method to choose the optimal feature subset. First, we use HHOSRL 
as the optimization algorithm to find the optimal subset, and after 
finding the optimal features, we use KELM as the classifier for the 
classification task. Fig. 1 shows a HHOSRL-KELM flowchart. It illustrates 
the process of finding key factors for a new coronary pneumonia blood 
sample. The main steps of the HHOSRL-KEML method are described 
below. 

Step 1. Initialize the parameters of the HHOSRL method, such as 
population size, search space boundary, variance probability, maximum 

number of iterations, and initial escape energy. 

Step 2. Randomly initialize the binary population of Harris hawks. 

Step 3. Use the agent’s binary value in each dimension to represent the 
subset selection of the dataset (1 indicates that the feature is selected, 
and 0 indicates that it is not selected). 

Step 4. Calculate the fitness value of the selected feature subset for 
each hawk as follows: 

F(x)=α⋅error + β⋅
|R|
|D|

(22)  

where error is the classification error rate of KELM, |D| is the number of 
features in the data sample, |R| represents the number of features in the 
selected feature subset, α and β are two weights that reflect the impor-
tance of the classification error rate and the length of the selected fea-
tures, respectively In this paper, we set α = 0.99 and β = 0.01, which are 
values that are commonly used in many works [48,49]. 

Step 5. Update the population of agents according to the HHOSRL 
algorithm. 

Step 6. Select the individual with the smallest fitness value as the 
optimal solution. 

Table 3 
Parameter settings for the five methods.  

Method Parameter values 

bHHOSRL_FKNN K = 1,m = 2  
bHHOSRL_SVM C = 850, γ = 0.17  
bHHOSRL_KNN K = 1  
bHHOSRL_MLP C = 88, γ = 1024  
bHHOSRL_KELM M = 1   

Fig. 1. Flowchart of the HHOSRL-KELM  
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Step 7. Determine whether the termination condition has been 
reached, namely, whether the maximum number of iterations has been 
reached. If yes, proceed to the next step; otherwise, repeat Step 3 until 
the termination condition is met. 

Step 8. Return the final optimal solution as the selected feature subset. 

Step 9. Use the final feature subset as the input parameter of KELM to 

obtain the final classification result. 

Step 10. Using the classification results that were obtained in Step 9, 
calculate the classification error accuracy, number of selected feature 
subsets, sensitivity, specificity, and other evaluation criteria. 

Fig. 2. Comparison of HHOSRL on five well-known classifiers.  

Fig. 3. Boxplot of the classification performances of the four methods in terms of time, fitness, error, and size.  

J. Hu et al.                                                                                                                                                                                                                                       
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5. Experiments and analysis 

5.1. Experimental setup 

To verify the effectiveness of the proposed HHOSRL-KELM method, 
the traditional BHHO, bGWO, bMFO, bWOA, and BPSO were used for 
comparison. bHHO is a binary HHO algorithm that is obtained by dis-
cretizing the original HHO algorithm with the sigmoid method. bGWO, 
bMFO, bWOA, and BPSO are feature selection algorithms that were 
proposed by various scholars and perform well on the UCI dataset. 
Additionally, to further evaluate the performance of the HHOSRL, ex-
periments were also done on a practical dataset to evaluate the perfor-
mance of the HHOSRL in combination with various classifiers. The blood 
samples were normalized to the range of [− 1,1] before developing the 

classification model. For comparison purposes, all implementations 
were performed using the same simulation parameters, as per rules for 
fair comparisions in machine learning [65]. The max_iter and popsize 
were set to 50 and 20, respectively. Other parameters in WOA, MFO, and 
GWO were set to those that were used in the original manuscripts 
[66–68]. Classification performance was evaluated using 10-fold 
cross-validation (CV) analysis to obtain an objective result. Additio-
naly, to evaluate the performance of HHOSRL-KELM, we considered five 
commonly used evaluation criteria: classification accuracy (ACC), 
specificity, sensitivity, number of selected feature subsets, and MCC 
[69]. 

5.2. Performance metrics 

We utilized four mutual rules based on the confusion matrix to 
validate the efficacy of the classifier. Full definitions of these metrics are 
provided in Refs. [70,71]. Here, we present their formulas to avoid 
discussions that are outside the scope of this study: 

Accuracy=
TP + TN

TP + TN + FP + FN
(23)  

Specificity=
TN

FP + TN
(24)  

Sensitivity=
TP

TP + FN
(25)  

where all variables are as defined in Ref. [71]. In addition, the MCC was 
used to carefully evaluate the classifier’s performance because it pro-
vides an objective predictive valuation [72]. 

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√ (26)  

Fig. 4. Convergence evolution trends of the five methods.  

Fig. 5. Comparison of bHHOSRL_KELM with well-known classifiers.  

J. Hu et al.                                                                                                                                                                                                                                       
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5.3. Analysis of the experimental results 

It is well known that classification methods play an important role in 
the performance of wrapped feature selection approches [20,73–78]. 
Therefore, to evaluate the performance of the proposed HHOSRL 

method, it was combined with five classification methods, namely, SVM, 
KNN, FKNN, MLP, and KELM, and applied to the feature selection of 
blood samples. To evaluate the reliability of the results, we analyzed 
these five feature selection methods on blood data in terms of four as-
pects: MCC, ACC, sensitivity, and specificity. The parameter settings of 

Fig. 6. Comparison results of 10 algorithms on four classification criteria.  

Fig. 7. Boxplot of the performances of the ten methods in terms of error and time consumption.  

Fig. 8. Selected features by the bHHOSRL_KELM during the 10-fold CV procedure.  

J. Hu et al.                                                                                                                                                                                                                                       
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these five classification methods are presented in Table 3. 
Fig. 2 shows error bar graphs for the five methods on these four 

criteria. The error line is the magnitude of the mean confidence space, 
which represents the standard error and is used to visualize the 
magnitude of the standard deviation. It can be easily observed from the 
graph that all five classification methods achieve a result of 1 on this 
criterion and that the error results are all 0. This is sufficient to prove 
that HHOSRL has a strong learning performance and can accurately find 
the globally optimal solution. It also shows that HHOSRL has strong 
stability. 

In addition to these four evaluation criteria, to compare the advan-
tages and disadvantages of HHOSRL using these five classifiers, the five 
feature selection algorithms were also analyzed in terms of time con-
sumption, fitness value, size of the selected feature subset and classifi-
cation error rate. 

Fig. 3 is a box plot, which is used to view possible outlier data con-
ditions. The blue points in the graph are called error points. The upper 
and lower middle-box lines represent the upper and lower quartiles with 
a specified resistance. A horizontal line in the middle represents the 
median, which reflects the distribution of the experimental results. As 
shown in the graph, all the time consumptions are relatively small 
except for that of bHHOSRL_MLP. All the algorithms have small fitness 
values except for bHHOSRL_SVM, which has a large fitness value and is 
not concentrated. All the algorithms have classification error rates of 0. 
Finally, in terms of the size of the feature subset, bHHOSRL_SVM does 
not perform very well, and the values for bHHOSRL_FKNN and 
bHHOSRL_KNN are relatively large. The most stable subset size is ob-
tained by bHHOSRL_KELM. Therefore, we finally selected bHHOSRL_-
KELM as the wrapper method. The convergence plot of the average 
fitness value from 50 iterations in Fig. 4 shows that bHHOSRL_KELM has 
the fastest convergence speed and the smallest convergence value. 

After determining the classification method, we used bHHOSRL_-
KELM as the final feature selection method and compared it with eight 
feature selection methods that were proposed by other scholars and with 
the feature selection method after discretizing the original HHO. The 
performance of bHHOSRL_KELM was evaluated in terms of MCC, ACC, 
sensitivity, and specificity, which are the four commonly agreed upon 
classification accuracy metrics, and in terms of time consumption, 
classification error rate, and convergence of the fitness values of the 
algorithmTo evaluate the impacts of the feature selection part and the 
efficiency of the developed HHO-based core in the bHHOSRL_KELM 
technique, we compared it with the method without feature selection. 
The method was compared with a set of well-regarded classifiers, such as 
classification decision tree (CART), BP, extreme learning machine 

(ELM), the ensemble methods including (AdaBoostM1) and RF. We 
utilized the BP algorithm, CART, RandomF, and AdaBoostM1 in the self- 
built classifiers from the MATLAB toolbox. The ELM method is available 
at http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm. We present the 
results of the six classifiers in Fig. 5. As shown in Fig. 5, the proposed 
bHHOSRL_KELM method with feature selection outperforms the basic 
classifier without the HHO-based strategy. In addition, the bHHOSRL_-
KELM technique is the best performing model on the blood dataset in 
terms of four performance metrics. 

Fig. 5 shows that among the six classification methods, bHHOSRL_-
KELM performs the best, and AdaBoost ranks second. Pure ELM does not 
perform best on the blood dataset. This shows that the HHOSRL algo-
rithm in bHHOSRL_KELM can effectively compensate for the disadvan-
tages of the simple classifier in classification to achieve better results. 

To further evaluate the effectiveness of the developed bHHOSRL_-
KELM on the blood dataset, bHHOSRL_KELM was compared with com-
mon algorithms, namely, bGWO, bMFO, BGSA, bALO, BPSO, BSSA, 
bWOA, and BBA. 

Fig. 6 compares these ten algorithms on the four evaluation criteria. 
As shown in the figure, bGWO, BGSA, and BPSO perform poorly in terms 
of ACC and MCC. Four algorithms, namely, bMFO, bALO, BBA, and 
BSSA, reach the maximum value of 1 in most cases on these four criteria. 
However, according to the error line, these four algorithms have many 
errors. bHHO does not reach the optimum on any of the four criteria. 
Finally, the error bar graph of bHHOSRL_KELM shows that the overall 
accuracy is the highest and the error is the smallest; hence, 
bHHOSRL_KELM has the best results on these ten feature selection 
methods. 

To fully analyze the performance of the bHHOSRL_KELM algorithm, 
we also compared the algorithm in terms of classification error rate and 
time consumption. Fig. 7 shows that the classification error rates are 
larger for bMFO, BBA, BSSA, and bWOA. There are anomalous data 
points in bGWO, BPSO, bALO, and bHHO in the tenfold cross-validation. 
This indicates that these algorithms are not very stable. In contrast, 
bHHOSRL_KELM always attains a value of 0 for both the overall distri-
bution and the anomalies. Therefore, bHHOSRL_KELM has both higher 
stability and higher classification accuracy. An analysis of the algo-
rithm’s classification performance must also consider the time con-
sumption. bHHO is the least time-consuming, and bHHOSRL_KELM is 
the second most time-consuming. Overall, the classification perfor-
mance of bHHOSRL_KELM is the best. 

Finally, the results of the feature selection were analyzed. To deter-
mine whether the subset of features that were selected by bHHOSRL_-
KELM are substantially helpful for medical diagnosis, tenfold cross- 
validation of the classification results was performed in this paper. 
The number of times that each feature was selected in each experiment 
was counted. The results are presented in the form of a line graph in 
Fig. 8. According to the graph, age, PaO2, SaO2%, Na+, and LAC were 
selected the most times. PaO2 was selected 57 times; hence, PaO2 was 
the most important factor that influenced the determination of whether 
a patient was infected with the new coronavirus. The next most 
important attribute was SaO2%, which was selected ten times. This also 
suggests that SaO2% plays a role in the final outcome diagnosis. Age and 
Na+ were checked nine times, thereby indicating that age and Na+ can 
facilitate final diagnosis. Finally, LAC was selected eight times. This 
shows that LAC is also a factor that cannot be ignored in diagnosis. Fig. 9 
shows the convergence graphs of these ten algorithms, which were used 
to analyze the convergence accuracy and convergence speed of 
bHHOSRL_KELM. As shown in the graph, in terms of both convergence 
speed and convergence accuracy, bHHOSRL_KELM performs the best, 
and BGSA and bGWO perform the next best. 

6. Discussion 

In this study, a KELM-based feature selection method was used to 
screen a dataset of COVID-19 patients. Then, we screened several key 

Fig. 9. Convergence evolution trends of ten methods.  

J. Hu et al.                                                                                                                                                                                                                                       

http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm


Computers in Biology and Medicine 142 (2022) 105166

11

features, including age, PaO2, SaO2%, Na+, and LAC. Subsequently, the 
bHHOSRL_KELM model was constructed to accurately assess the 
severity of COVID-19 and monitor its early progression. Therefore, we 
believe that the use of the bHHOSRL_KELM model can make a more 
accurate clinical decision-making. Due to its great optimization capa-
bility, the proposed HHOSRL algorithm can also be applied to solve 
other problems, such as problems in video deblurring [79], microgrid 
planning [80], information retrieval services [81–83], image dehazing 
[84], image fusion [85], kayak cycle phase segmentation [86], human 
motion capture [87], fault detection [88], virus detection [89], video 
coding optimization [90], outlier detection [91], location-based services 
[92,93], image retrieval [94], multivariate time series analysis [95] and 
multi-objective problems [96]. 

Previous studies have shown that age is an important independent 
indicator for predicting the prognosis of SARS and MERS [97,98]. In the 
study, Smits et al. found that elderly macaques that were vaccinated 
with SARS coronavirus showed stronger host innate responses than 
younger macaques, which may be related to the increased differential 
expression of inflammation-related genes and reduced expression of 
type I interferon β [99]. Similar to SARS and MERS, Zhou et al. found 
that the mortality rate of COVID-19 patients increases with age [100]. 
Through multivariate analysis, other studies show that in COVID-19 
patients, advanced age is an independent risk factor for pneumonia. 
Moreover, patients with ARDS are older than those without ARDS [101]. 
Furthermore, another study found that elderly patients have a higher 
probability of developing sepsis, which may be related to age-dependent 
defects in lymphocyte function and excessive production of type 2 cy-
tokines [102]. In summary, age is an essential predictor of the prognosis 
of COVID-19 patients. 

SaO2 is the percentage of the volume of HbO2 that is bound by ox-
ygen in the blood relative to the total volume of bound hemoglobin. PO2 
is the tension that is produced by oxygen that is physically dissolved in 
the blood [103]. Xie et al. found that hypoxemia in COVID-19 patients is 
associated with mortality [104]. Hypoxia has been reported to increase 
angiotensin I-converting enzyme 2 (ACE-2) expression at the tran-
scription and protein levels in human cells [105,106]. According to re-
ports, ACE2 is the target receptor that SARS-CoV-2 enters. Moreover, the 
binding affinity of the SARS-CoV-2 spike protein to the ACE2 receptor is 
10–20 times higher than that of SARS-CoV [107]. The high affinity of 
ACE2 and the SARS-CoV-2 spike protein may explain some complica-
tions of COVID-19 patients, including acute renal failure, cardiovascular 
and cerebrovascular diseases. Diffuse endotheliitis and microthrombi 
formation may be an important pathogenesis mechanism for COVID-19 
[108,109]. Therefore, hypoxia may aggravate the severity of COVID-19 
by upregulating the target receptor for virus entry. Additionally, in the 
presence of microthrombi, hypoxemia will cause a higher degree of 
hypoxia and damage to peripheral tissues [110]. Based on the above 
considerations, SaO2 and PO2 may be powerful predictors of the severity 
of COVID-19. 

Sodium ions (Na+), which are the most abundant cations in the 
extracellular fluid, are essential for maintaining the volume of the 
extracellular fluid, regulating the acid-base balance, maintaining the 
normal osmotic pressure and cell physiological functions, and partici-
pating in the normal physiological activities of the nerve and muscle 
system [111]. In early COVID-19 studies, the sodium ion concentration 
in the severe COVID-19 group was significantly lower than the con-
centration in the nonsevere COVID-19 group [112,113]. In a study that 
was based on 59 COVID-19 patients, Huang and colleagues found that 
the sodium ion concentration in ICU care groups was lower than that in 
no ICU care groups [11]. Our study also found that the average sodium 
ion concentration in severe patients, namely, 131.00 mmol/L, was lower 
than that in nonsevere patients, namely, 136.23 mmol/L (p < 0.01). 
Therefore, serum sodium ion concentration may also be an essential 
indicator for predicting severe COVID-19. 

Lactic acid (LAC) is an intermediate product of sugar metabolism. 
Increased glucose metabolism or decreased pyruvate metabolism will 

increase the production of lactic acid. In sepsis, the inflammation 
response is associated with increased glycolysis and impaired pyruvate 
dehydrogenase. At this time, the metabolism of pyruvate is limited; 
hence, the concentration of pyruvate increases. To maintain a normal 
ratio of pyruvate to lactic acid, the lactic acid concentration will increase 
[114]. Therefore, LAC can be used as an indicator of the severity of 
inflammation in patients. A study of 1461 patients showed that the 
mortality rate of COVID-19 patients with high lactate levels was 
approximately twice that of patients with low lactate levels [115]. 
Although cell breakdown under conditions of critical illness may also 
play a role, the increase in lactic acid in COVID-19 patients may be 
caused by increased glycolytic activity in multiple cell types [116]. 
Moreover, an inflammatory factor, namely, interleukin 6, which induces 
lactic acid production, is present at high concentration in patients with 
COVID-19. In conclusion, LAC can be used as a predictor of the severity 
of COVID-19 disease. 

Up to now, few studies have utilized blood gas analysis parameters or 
clinical information to distinguish the severity of the COVID-19. To the 
best of our knowledge, this is the first study to predict the prognosis of 
COVID-19 using machine learning methods based on age, PaO2, SaO2%, 
Na+, and LAC. However, this study has several limitations. First, our 
data originated from a single third-level grade-A hospital in the east of 
China, and the sample size is not large enough. This limits the accuracy 
of the prediction. We will expand the sample size in future studies. 
Second, multicenter, large independent/external datasets and prospec-
tive studies need to be conducted to validate the results. 

7. Conclusions and future work 

This article begins with a description of the current status of COVID- 
19 and the tremendous strain it places on health care systems and hos-
pital critical care resources. It also describes in detail the sources of the 
data that are used in this paper. Later, the methodology that is proposed 
is described in detail. First, the basic HHO algorithm is described. Then, 
the improvement strategy that is proposed in this paper is presented. 
Finally, its fusion with the KELM classifier is used to filter out essential 
features from a blood sample dataset. To evaluate the performance of 
the proposed method, HHOSRL is fused with various classifiers, and it is 
demonstrated that HHOSRL produces satisfactory results using many of 
these classifiers. An accuracy of almost 100.00% is achieved. Then, it is 
determined that fusion with the KELM classifier enables HHOSRL to 
perform best on blood samples. After determining the best classifier, the 
proposed method is compared with various swarm intelligence feature 
selection methods. It is found that the proposed bHHOSRL_KELM ach-
ieves almost 100.00% specificity, accuracy, sensitivity, and MCC. The 
time consumption of bHHOSRL_KELM is much less than those of other 
feature selection methods. Finally, the five features that were selected 
most frequently in the experiment were selected by this method. 
Moreover, the roles of these five features in medical diagnosis are 
discussed. 

For future work, several issues merit further consideration. Addi-
tional influencing factors and coefficients can be included in the inves-
tigation, and in our paper, only the available data are presented. 
Moreover, parallel computing can be used to decrease the computational 
load during various applications. Additionally, more data samples can 
be collected to construct a more efficient and reliable framework. 
Finally, bHHOSRL_KELM can be used for the diagnosis of other diseases, 
and the algorithm’s application scope can be expanded, e.g., to clus-
tering and CT image segmentation. 
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