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Purpose. Studies were performed to examine hemodynamic and renal function before and after acute induction of the endogenous
CO system with delta-aminolevulinic acid (DALA), which drives HO activity. Methods. In vivo studies were conducted on Inactin-
anesthetized male Sprague Dawley rats (250—-300 g) either with or without chronic pretreatment with L-NAME (50 mg/Kg, q12
hours x4d). Results. DALA (80 umol/Kg, IV bolus) administration acutely increased endogenous CO production and HO-1
protein. In untreated and L-NAME-pretreated rats, DALA did not alter BP, GFR, or RBF but increased UF, Uy,V, and UxV
(untreated: A108.8 + 0.28%, 172.1 + 18.4%, and 165.2 + 45.9%; pretreated: A109.4 + 0.29%, 187.3 = 26.9%, and 197.2 = 45.7%).
Acute administration of biliverdin (20 mg/kg, IV) and bilirubin (30 mg/kg, IV) to similarly treated animals did not alter UE, Uy, V,
and UxV. Conclusion. These results demonstrate that heme oxygenase induction increases urine and electrolyte excretion and

suggest a direct tubular action of endogenous carbon monoxide.

1. Introduction

Metabolic degradation of heme by heme oxygenase (HO)
yields three products; biliverdin, ferrous iron, and carbon
monoxide (CO) [1]. Currently, two major isoforms of the
HO enzyme have been recognized, the inducible HO-1 and
the constitutive HO-2. Both isoforms have been reported to
be present in the kidneys [1-3]. Several biological stressors,
such as oxidative stress, ischemia, and hypertension, are
known to increase HO-1 levels [4—6]. In contrast, the HO-
2 isoform is constitutively expressed and is present in high
concentrations in the kidney, as well as in other vascular beds
and tissues [7]. Alterations in HO levels have been demon-
strated to alter CO concentration, in addition to having pro-
found effects on vascular tone [8, 9].

Current literature supports both an endothelial-depend-
ent vasoconstrictor effect of CO and an endothelial-inde-

pendent vasorelaxation [10, 11]. CO-mediated vasoconstric-
tion is via inhibition of nitric oxide synthase (NOS) [11, 12].
CO also promotes endothelium-independent vasodilation
through the activation of soluble guanylyl cyclase, stimu-
lation of K channels, and inhibition of the cytochrome-
P450-dependent monooxygenase system in vascular smooth
muscle cells [10, 13]. Increases in endogenous CO levels
produce a decrease in blood pressure in several forms of
hypertension, while HO inhibition increases arterial blood
pressure [4, 14—17]. Regional differences in renal blood flow
(RBF) have been demonstrated with increases in the medulla
without significant increases in cortical blood flow during
heme-induced increases in CO [13]. Other studies have not
shown significant alterations in renal vascular resistance
during alterations in CO levels, thus controversy does exist
in the literature as it relates to the ability of CO to regulate
renal vascular resistance [18].
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Increases in HO activity via heme administration pro-
mote vasorelaxation and produce diuresis and natriuresis
[19]. In addition, several studies have identified an antiox-
idant role for bilirubin and biliverdin during stress [20,
21]. However, the mechanisms of HO-mediated effects on
renal function have yet to be elucidated. Because the HO-
mediated diuretic and natriuretic effects were observed
concomitantly with an increase in RBE, it is possible that
alterations in renal hemodynamics mediate the increase in
UF and sodium excretion. It has also been reported that renal
medullary HO plays a key role in the regulation of pressure
natriuresis and, thus, the control of arterial blood pressure
[22]. Macula densa cells have been reported to express HO-
1 and HO-2, and stannous mesoporphyrin, an inhibitor
of HO, was shown to augment tubuloglomerular feedback
in both in vitro and in vivo studies [23]. In addition, we
recently reported that CO inhibition promotes antidiuresis
and antinatriuresis independent of vascular or systemic
changes [24]. Therefore, we hypothesized that increased
levels of endogenous CO promote natriuresis and diuresis
independent of inhibition of nitric oxide synthase (NOS)
and alterations in RBE. To examine this hypothesis, the
potential direct tubular effects of a heme precursor, delta-
aminolevulinic acid (DALA), which drives HO activity, were
studied using a dose of DALA that does not elicit changes
in renal hemodynamic function in control and L-NAME
treated rats.

2. Methods

2.1. Materials. DALA was purchased from Frontier Scientific
(Logan, UT, USA). Inactin (thiobutabarbital sodium), N-
Nitro-L-Arginine Methyl Ester (L-NAME), bilirubin, and
para-aminohippuric acid (PAH) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Albumin was purchased
from EMD Biosciences Inc. (San Diego, CA, USA). Inulin
was purchased from Fresenius Kabi UK Ltd. (Runcorn,
Cheshire). Plasma Renin Activity (PRA) kits were purchased
from Diasorin Inc. (Stillwater, MN, USA). Biliverdin was
purchased from MP Biochemicals, LLC (Solon, OH, USA).
All other chemicals were purchased from Fisher Scientific
(Houston, TX, USA). DALA stock solution (800 mmol/L)
was prepared in saline on the day of the experiments. L-
NAME (50 mmol/L) was dissolved in saline immediately
before intraperitoneal injection. All other solutions were
freshly prepared on the day of the experiment.

2.2. Animals. Male Sprague-Dawley rats (250-350g; n =
146, Harlan, Indianapolis, IN, USA) were used (n = 32).
This protocol was approved by the Tulane School of Medicine
and University of Louisiana at Monroe Institutional Animal
Care and Use Committee. Prior to experiments, rats were
housed in a controlled environment and had free access to
commercial rat chow and tap water. Subsets of animals were
chronically treated every 12 hours for four days with an
inhibitor of NOS [25], L-NAME (50 mg/kg, IP). To minimize
postprandial sodium excretion variability, animals were de-
prived of food for 12 hours before experiments.
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Subsets of animals were chronically treated with L-
NAME every 12 hours for four days. After anesthetization
with Inactin and surgical preparation, rats were allowed to
stabilize for 45 min. After this initial stabilization period,
a 30-minute control period was performed and urine was
collected. L-NAME-treated and -untreated animals were
then acutely administered DALA (80 ymol/kg, IV), biliverdin
(20 mg/kg, IV), bilirubin (30 mg/kg, IV), or vehicle (1 mL
saline, IV), and an additional 30-minute treatment period
was performed. The doses of biliverdin and bilirubin were
chosen from previous studies where an antioxidant effect
was observed [20, 21]. Mean arterial pressures (MAP), heart
rates (HR), and RBF were measured during both the 30-
minute control and treatment periods. After the experimen-
tal protocols were completed, renal vascular resistance (RVR)
was calculated as the pressure to flow ratio and expressed as
“mmHg/(mL/min)”.

2.3. Experimental Procedures. Rats were anesthetized with a
single injection of thiobutabarbital sodium (120 mg/kg; IP),
and a tracheal tube was inserted to maintain an open airway.
Fluid filled catheters (PE-50 tubing filled with heparinized
saline) were inserted into a carotid artery and a jugular vein
to allow for continuous monitoring of MAP and HR, and for
intravenous administration of drugs, respectively. The arte-
rial catheter was connected to a pressure transducer (model
TSD104A, Biopac Systems, Santa Barbara, CA, USA), and
the venous catheter was connected to a Sage microinfusion
pump (Orion Research, Inc., model M361, Boston, MA,
USA) set at 1 mL/hr saline infusion rate. A bladder cannula
was inserted to allow urine collection for determination of
urine flow and concentrations of sodium and potassium
(Flame Photometry; Instrumentation Laboratories, IL 943).
A flank incision was made to expose the left kidney and renal
artery. RBF was measured with a renal flow probe (Transonic,
Ithaca, NY, USA) placed around the renal artery and con-
nected to a Transonic-T206 synchronized flow meter coupled
to a polygraph system (model MP100, Biopac System).

2.4. Glomerular Filtration Rate. In a subset (n = 24) of anes-
thetized rats, the experiments were repeated with an addi-
tional catheter inserted into the right femoral vein to infuse
inulin, para-amino hippuric acid, and albumin. Plasma and
urine sodium and potassium concentrations were deter-
mined by flame photometry, and inulin concentrations were
measured colorimetrically to determine glomerular filtration
rate (GFR) [26]. RVR and fractional sodium excretion (FEy,)
were calculated according to standard formulas. The renal
excretion data from this subset of animals were not included
in the final measures due to the different handling of these
animals (additional catheter, and albumin, PAH, and inulin
infusion). However, the excretory data from these animals
followed the same trends as the reported data.

2.5. Plasma Renin Activity. Plasma renin activity (PRA) was
measured with a commercially available assay kit (Gamma
Coat PRA Assay Kit) [27]. Briefly, DALA (80 yumol/kg; IP)
was infused into L-NAME- (50 mg/Kg; IP) pretreated or
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untreated rats and PRA was measured to determine if altered
CO levels had any effect on the renin-angiotensin system.
PRA was determined by the radioimmunoassay generation of
angiotensin I. Given the noted experimental difficulties with
measuring PRA in whole animals, we did not perform clear-
ance measurements or CO measurements in these animals.

2.6. Determination of the Effect of DALA to Increase CO
Excretion. A subset of awake Sprague-Dawley rats (n = 12)
that did not receive any surgical treatments were infused
with DALA (80 ymol/kg, IV) to increase HO activity, both
with and without chronic L-NAME pretreatment every 12
hours for 4 days. Animals were placed in an acrylic airtight
chamber with the outflow leading to a heated mercuric oxide
bed coupled with a gas chromatograph (Peak, Mountain
View, CA, USA) for the determination of CO concentration,
detailed elsewhere [28, 29]. The chamber was continuously
purged with purified air and the outflow sampled for CO
concentration at 2 min intervals. After a 10 min equilibration
period, the average of four measurements was used to
calculate the CO excretion rate for the whole animal.

2.7. Determination of Renal HO-1 Levels. In a subset (n =
14) of similarly treated anesthetized animals, the experi-
mental protocols were repeated to determine the ability of
DALA infusion to alter renal HO-1 levels. Renal HO-1 levels
were measured by commercially available ELISA kits pur-
chased from Stressgen. Kidneys from L-NAME-pretreated
and untreated rats were removed and flash frozen in liquid
nitrogen and suspended in 1X extraction reagent and pro-
tease inhibitor. Once the kidney tissues were homogenized,
the ELISA sandwich immunoassay was preformed and the
level of HO-1 protein present in the kidney was determined.

3. Data Analysis

Data were expressed as mean + SEM. Data were analyzed
by analysis of variance (ANOVA) followed by orthogonal
contrast when appropriate (SYSTAT). Bonferroni correction
was employed in the final analysis of completed series (a =
0.05) [30].

4. Results

4.1. Whole Animal CO Excretion. Acute administration of
the heme precursor, DALA (80 ymol/kg, IP), to untreated
animals produced a significant increase in expired CO levels
(A63.9 + 1.6%, n = 3) (Figure 1). This effect was similar
to a higher dose of DALA (800 ymol/kg, IP) (Jackson et al,
unpublished results). This increase in expired CO was not
affected by L-NAME (50 mg/Kg; IP) pretreatment (A67.6 +
1.9%, n = 3) (Figure 1).

4.2. Renal HO-1 Levels. Acute administration of DALA
(80 ymol/kg, IV) in untreated and L-NAME-pretreated
anesthetized rats produced a significant increase in renal
HO-1 levels in untreated (A50 = 0.56%, n = 7) (Figure 2)
and L-NAME-treated (A60 = 0.64%, n = 7) (Figure2)
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Ficure 1: DALA (80umol/kg; IV) infusion acutely increased
expired CO levels in L-NAME-treated and -untreated awake rats.
Values are mean =+ SE; n = 6 each.
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FIGURE 2: In anesthetized rats, DALA (80 umol/kg; IV) acutely
increased renal HO-1 levels in vehicle (left) and L-NAME-treated
(right) rats. (* P < 0.05, pre- versus 30 min post-DALA; n = 6 each).

rats. L-NAME pretreatment produced a significant increase
in renal HO-1 levels, as compared to untreated animals
(Figure 2); however, DALA increased renal HO-1 levels
to a similar extent as in untreated animals. There were
no significant differences in hematocrit pre- and post-
DALA administration in both the L-NAME-pretreated and
-untreated animals.

4.3. Renal Functional Responses. The subsequent values were
obtained during the 30 min experimental period following
administration of DALA (80 ymol/kg; IP), biliverdin (20 mg/
kg), bilirubin (30 mg/kg), or vehicle in L-NAME- (50 mg/kg;
IP) treated and untreated animals. In animals without pre-
treatment, DALA did not exert significant systemic or renal
hemodynamic effects (Table 1), but there were significant
increases in urine flow and sodium and potassium excretion
(A108.8 +0.28%, 172.1 = 18.4%, and 165.2 = 45.9%: n = 20)
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TasLE 1: Effects of DALA (80 ymol/kg, IV), biliverdin (20 mg/Kg, IV), and bilirubin (30 mg/Kg, IV) administration on heart rate (HR),
mean arterial pressure (MAP), renal blood flow (RBF), and calculated renal vascular resistance (RVR).

HR MAP RBF RVR
N (bpm) (mmHg) (ml/min) (mmHg/ml/min)

No pretreatment

Control 385 +0.13 110 = 0.06 5.6 £0.12 19.6 + 0.14

Vehicle 8 395 £ 0.16 114 +0.08 5.8 +0.14 19.7 £ 0.11

DALA 8 382 +£0.12 118 +0.09 5.9 +0.16 20.0 = 0.18

Biliverdin 8 396 + 0.25 113 £ 0.04 6.1 +0.15 18.6 +0.21

Bilirubin 8 398 +0.18 109 = 0.15 54+0.14 20.1 £0.24
Chronic L-NAME

Control 398 +£0.19 153 +£0.05 5.5+0.14 27.8 +0.28

Vehicle 8 400 = 0.23 150 £ 0.12 5.2 +0.18 28.8 +0.20

DALA 8 403 £ 0.14 155 +£0.24 5.8 £0.21 28.2 +0.38

Biliverdin 8 396 +0.19 158 = 0.15 5.5+0.14 28.7 +0.47

Bilirubin 8 399 +0.24 152 +0.05 5.1+0.14 29.2 £0.32

(Figure 3). Biliverdin (20 mg/kg) and bilirubin (30 mg/kg)
did not cause significant systemic or renal hemodynamic
effects (Table 1) and any significant changes in urine flow
or sodium, and potassium excretion (Table 3). In rats pre-
treated chronically with L-NAME, there was a significant
increase in MAP (100 mmHg versus 150 mmHg) but DALA
administration had no significant effects on MAP, HR, RBF,
or RVR (Table 1). However, DALA significantly increased
urine flow and sodium and potassium excretion (A109.4 +
0.29%, 187.3 +£26.9%, and 197.2 +45.7%: n = 20) (Figure 4).
Biliverdin (20 mg/kg) and bilirubin (30 mg/kg) did not exert
significant effects on MAP, HR, RBE, or RVR (Table 1)
and any significant effects on urinary volume, sodium and
potassium excretion (Table 3). There were no significant dif-
ferences between the urine flow and electrolyte excretion in
the L-NAME-untreated and -treated animals. Vehicle treat-
ment had no effect in either group. DALA had no effects
on glomerular filtration in either L-NAME-treated or -un-
treated rats (Table 2: n = 24).

4.4. Plasma Renin Activity. In untreated rats given DALA,
no significant differences in plasma renin activity (PRA)
were evident (Figure5; n = 25). Similarly DALA did
not significantly alter PRA in L-NAME-pretreated animals
(Figure 5; n = 21).

5. Discussion

The present study investigated the role of increases in
endogenous CO on renal excretory function. The heme pre-
cursor, DALA, increased expired CO levels in both L-NAME-
treated and -untreated animals. DALA, which promotes the
generation of endogenous CO, increased volume and elec-
trolyte excretion in both L-NAME-treated and -untreated
animals. Acute increases in endogenous CO formation were
not accompanied by any significant differences in systemic or
renal hemodynamic function in that a low dose of DALA was
specifically chosen to avoid alterations in renal or systemic

hemodynamics. There were also no significant changes in
GFR with DALA infusion in L-NAME-treated or -untreated
animals.

Increases in heme oxygenase activity, promote an equim-
olar elevation in carbon monoxide, iron, and biliverdin [31].
Biliverdin is quickly converted to bilirubin [31]. Current lit-
erature would support an antioxidant role for both biliverdin
and bilirubin [20, 21]. To examine the potential role of these
heme products to alter renal excretory function, a subset of
animals was given biliverdin or bilirubin and the study was
repeated. However, no significant differences in renal or sys-
temic hemodynamics were observed and, similarly, no signif-
icant differences in renal excretory function were observed,
thus, suggesting that the observed increases in urine flow
and sodium and potassium excretion were due to carbon
monoxide. The negative results observed with biliverdin and
bilirubin suggest that they are not involved in the heme-
oxygenase-mediated diuretic effects; however, the current
study cannot rule out the importance of these metabolites
in the kidney in that renal intracellular concentrations of
biliverdin and bilirubin were not measured.

DALA has been previously shown to increase HO activity
in rats [32]. We have reported that DALA also increases
expired CO levels, as well. Thus, DALA, a substrate that
drives heme formation and increases HO activity, can
produce significant increases in endogenous CO formation.
DALA administration was observed to significantly increase
HO-1 levels both in the presence and absence of an intact
NO system. L-NAME administration increased baseline HO-
1 levels, perhaps due to the observed elevation in MAP.
Importantly, the ability of DALA administration to increase
HO-1 levels was not affected by L-NAME.

The current study used DALA to drive CO formation in
that iron loading can lead to effects on the vasculature that
are independent of the CO system. Iron loading can occur,
when one increases CO formation via heme administration
or CO releasing molecules [32]. The current data support the
hypothesis that CO increases water and electrolyte excretion
independent of changes in systemic or renal hemodynamics.
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TaBLE 2: Effects of increases in endogenous CO (DALA 80 ymol/Kg, IV) on glomerular filtration rate (GFR), urine flow (UF), sodium
excretion (Uy,V), fractional excretion of sodium (FEy, ), and urinary potassium (UxV).

UF GFR UnaV FEna UxV
N (pl/min) (ml/min) (ymol/min) (%) (pmol/min)
No pretreatment
Control 6 6.49 + 0.47 1.11 + 0.05 0.59 +0.15 0.50 = 0.03 0.14 = 0.04
Vehicle 6 6.49 + 0.48 1.10 £ 0.08 0.61 +0.08 0.51 £0.16 0.15 + 0.03
Control 6 6.51 £ 0.50 1.12 £ 0.11 0.60 +£0.11 0.53 £0.12 0.14 £ 0.01
DALA 6 13.99 + 1.84* 1.10 = 0.06 1.19 + 0.03* 0.78 + 0.01* 0.90 + 0.13*
Chronic L-NAME
Control 6 7.37 +0.73 1.11 = 0.02 0.68 = 0.13 0.50 = 0.01 0.23 +0.13
Vehicle 6 7.43 +0.78 1.15+0.18 0.68 + 0.04 0.49 + 0.05 0.23 +£0.02
Control 6 7.51 +£0.54 1.12 £ 0.17 0.67 +0.11 0.50 +0.02 0.24 + 0.04
DALA 6 14.37 = 0.41* 1.11 £0.10 1.22 +0.02* 0.80 +0.12* 1.09 + 0.19*

TasLE 3: Effects of biliverdin (20 mg/Kg, IV) and bilirubin (30 mg/Kg, IV) administration on urine flow (UF), sodium excretion (Uy,V) and

urinary potassium (UgV).

UF UnaV UxV
N (ul/min) (umol/min) (umol/min)
No pretreatment
Control 6 2.50 = 0.30 0.17 = 0.02 0.49 + 0.06
Biliverdin 6 2.10 +0.12 0.16 + 0.01 0.46 = 0.05
Control 6 2.80 +0.15 0.19 +0.12 0.46 + 0.01
Bilirubin 6 2.90 £ 0.21 0.16 = 0.04 0.41 = 0.09
Chronic L-NAME
Control 6 3.40 = 0.25 0.15 +0.02 0.41 + 0.06
Biliverdin 6 3.30 +0.39 0.17 = 0.02 0.40 + 0.35
Control 6 3.20 = 0.51 0.18 = 0.02 0.46 + 0.05
Bilirubin 6 3.30 £ 0.37 0.18 £ 0.02 0.45 +0.03

The increases in urine flow and electrolyte excretion were
still present during NOS inhibition by L-NAME, indicating
once again that the CO effects on urine flow and electrolyte
excretion are not simply due to alterations in the nitric
oxide (NO) system. Furthermore, DALA administration did
not significantly alter PRA, thus CO enhancement of renal
excretion was not via suppression of the renin angiotensin
system. We recently reported that inhibition of endogenous
CO increased PRA in untreated rats [24]. This increase in
PRA was abolished by L-NAME pretreatment [24]. However,
endogenous CO effects on the juxtaglomerular cells could be
maximal even at basal conditions; therefore, increasing CO
formation by DALA would not affect PRA.

In previous research, an increase in CO concentration
elicited through heme administration was shown to decrease
RVR, increase RBE, and urine flow and sodium excretion
[33]. Similar results can be observed with CO releasing mol-
ecules. Pretreatment with the HO inhibitor, SnMP, abolished
the diuretic and natriuretic effects of heme but did not affect
the increases in RBE. The heme-induced changes in renal
hemodynamic parameters could perhaps be attributed to
differences in agents (DALA versus heme) and/or concentra-
tions. Regional differences in HO activity in the kidney have

been reported, where medullary heme oxygenase contributes
to pressure natriuresis and arterial blood pressure in the
absence of any significant changes in cortical HO activity
[22]. As previously stated, low concentrations of DALA were
employed to avoid hemodynamic changes in the present
study. Therefore, DALA-induced increases in urine flow and
electrolyte excretion were not accompanied by any changes
in renal hemodynamic function. However, medullary blood
flow was not measured and we cannot exclude the possibility
of small increases in medullary BF to the diuretic and
natriuretic responses. Collectively these data suggest that CO
alters water and electrolyte excretion independent of changes
in NO and renal hemodynamic function and suggests that
this response is due to a direct renal tubular effect.

Previous studies have demonstrated CO’s ability to pro-
mote vasoconstriction via inhibition of NOS [19, 34]. How-
ever, in the present study, such an interaction between
the two systems in acutely regulating water and electrolyte
excretion was not observed. Thus, it is possible that in organ
systems with a large capacity to autoregulate, such as the
brain, heart, and kidney, CO inhibition of NO does not play
a major role in establishing normal basal vascular tone. CO
was able to promote water and electrolyte excretion without



10
*
=
£
27
=5}
=)
0
Control Vehicle Control DALA
(a)
0.6
=
-2 0.4
E
°
E
>
Z
Z 0.2
& 0
0 -
Control Vehicle Control DALA
(b)
1.2
0.9 —
E
E
°
E 0.6
>
>
9
=)
0.3
Control Vehicle Control DALA

(c)

FIGURE 3: In anesthetized rats, DALA (80 umol/kg) IV infusion
acutely increased urine flow and sodium and potassium excretion
in untreated rats. Values are mean + SE; n = 20. *P < 0.05 versus
control (vehicle infusion).

affecting renal hemodynamics, which suggests an alternate
pathway for CO regulation of renal excretory function.
Thus, CO could have direct effects on the tubules to alter
water and electrolyte excretion. As a low dose of DALA
was administered to avoid altering renal hemodynamics, the
results suggest that the alterations in renal excretory function
are most likely mediated via a direct tubular effect to inhibit
sodium transport in that sodium and potassium excretion
were enhanced during DALA administration.
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FI1GURE 4: In anesthetized rats, acute IV infusion of DALA (80 ymol/
kg) increased urine flow, urinary sodium, and urinary potassium
excretion in L-NAME-pretreated animals. Values are mean + SE;
n =20. *P <0.05 versus control (vehicle infusion).

6. Significance of the Study

Previous studies have demonstrated that increases in HO
activity can promote significant diuresis [33]. Since heme
administration was accompanied by a significant increase in
blood pressure, it could not be established if the observed
diuresis was due to a direct tubular action or simply due
to an increase in perfusion pressure. In addition, it was not
shown if the diuresis was due to CO or one of the other HO



International Journal of Hypertension

10 - Effects of increased CO levels on PRA

-

/] T

Plasma renin activity (ng Al/mL/hr)

Vehicle DALA Vehicle

Control

DALA

L-NAME
50mg/Kg; IP

FIGURE 5: Acute administration of DALA (80 ymol/kg; IP) did not
exert significant effects on plasma renin activity (PRA) in L-NAME-
pretreated and -untreated rats. Vehicle and DALA changes in PRA
were observed for 30-minute periods. Values are mean + SE; n = 46.

metabolites. In the current study, we demonstrate a direct
tubular action of HO induction in the absence of alterations
in renal hemodynamic function. Furthermore, the negative
results with biliverdin and bilirubin administration suggest a
tubular role of CO as a novel diuretic and therapeutic target
to treat hypertension.

7. Conclusion

In summary, the present data indicate that an induction in
HO-1 increases water and electrolyte excretion in the absence
of alterations in renal hemodynamics, PRA, GFR, or NO
production, thus, suggesting a direct tubular role for endoge-
nous CO in the control of sodium excretion.
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