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Background: Methods of objectively measuring rotational knee laxity are either experimental or difficult to use in daily practice.
A new method has been developed to quantitatively assess rotatory laxity using an open MRI system and new tool, the KneeM
device.

Purpose/Hypothesis: To perform a preliminary evaluation of a novel knee rotation measurement device to assess knee kinematics
during flexion in an MRI field, in both anterior cruciate ligament (ACL)–deficient and healthy contralateral knees. The hypothesis
was that the KneeM device would allow in vivo reproduction and analysis of knee kinematics during flexion in healthy and ACL-
deficient knees.

Study Design: Controlled laboratory study.

Methods: Ten subjects (7 men and 3 women; mean age ± standard deviation, 32.3 ± 9.4 years) with ACL-deficient knees and contra-
lateral uninjured knees participated in thestudy. AnopenMRI was performed with the KneeM device ata mean4.9 months (range,3.0-7
months) after ACL injury. The device exerted on the knee an anterior drawer force of 100 N, with an internal rotation of 20�, through the
range of flexion (0�, 20�, 40�, and 60�). Both ACL-deficient and healthy contralateral knees were analyzed using the Iwaki method.

Results: There was no statistical difference of anterior translation in the medial compartment between intact and ACL-deficient
knees at all degrees of flexion. However, significant differences in the anterior translation of the lateral compartment were observed
between ACL-deficient and intact contralateral knees at 0� and 20� of flexion (P ¼ .005 and P ¼ .002, respectively). Between 20�

and 40�, the lateral plateau of ACL-deficient knees translated 7.7 mm posteriorly, whereas the medial compartment remained
stable, reflecting a sudden external rotation of the lateral plateau under the femoral condyle.

Conclusion: This preliminary study suggests that measurement of tibiofemoral movements in both compartments during flexion
using the KneeM device was useful for quantifying rotatory laxity in ACL-deficient knees. Moreover, this device seemed to allow a
‘‘mechanized pivot shift’’ and allowed reproduction of the ‘‘pivot’’ phase in the MRI field between 20� and 40� of flexion.

Clinical Relevance: This device could be used for diagnostic purposes or to investigate the outcomes of ACL reconstructions.

Keywords: knee; pivot shift; rotatory laxity; open MRI; MRI-compatible device

Anterior cruciate ligament (ACL) injuries induce sagittal
and rotatory instabilities.9,17,57 Rotational laxity corre-
lates with patient satisfaction, functional outcomes, and
degenerative evolution of the knee.5,25,26,32 The most
specific clinical test to evaluate rotatory instability is

the pivot-shift test.30 A positive pivot-shift test is indi-
cative of an ACL-deficient knee. However, this test
remains subjective and operator dependent and has a
poor interobservator reliability.11,22,38

Authors of clinical studies15,23,28 discussing results of
ACL reconstruction believe that a reliable and objective
method is necessary to evaluate the rotational laxity of
affected knees.55 So far, methods of measuring rotational
laxity are either experimental or difficult to use in daily
practice.

As the KT-1000 arthrometer became a reliable method
for measuring anteroposterior laxity,12 we believe that a
simple and reliable tool using open magnetic resonance
imaging (MRI) can be developed to minimize flaws and to
consistently quantify rotational laxity of the knee. Indeed,
MRI is a reliable method of documenting knee anatomy and
kinematics during flexion.49
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We developed a new tool for the purpose of quantitatively
assessing rotatory laxity using an open MRI system, the
KneeMRI (KneeM) device. This tool holds knees in the MRI
field and applies both an anterior draw and internal tibial
rotation force during knee flexion.

The purpose of this study was to perform a preliminary
analysis of in vivo kinematics during flexion in the MRI
field of both ACL-deficient and healthy contralateral knees
constrained by the KneeM device. The hypothesis was that
this MRI device would demonstrate a difference in knee
kinematics between normal and ACL-deficient knees.

MATERIALS AND METHODS

Patients

Ten patients (7 men and 3 women; mean age ± standard
deviation [SD], 32.3 ± 9.4 years) with an ACL-deficient knee
but contralateral uninjured knee participated in the
present study. Exclusion criteria included an associated
collateral ligament injury, a symptomatic contralateral
knee, fractures, grade III or IV radiological degenerative
changes, and/or the presence of hip or ankle pathology.
Patients had complete unilateral ACL rupture with or
without meniscal pathology less than 12 months prior to
testing and were symptomatically unstable and awaiting
reconstruction. ACL rupture was confirmed by clinical
examination and MRI. Clinically, rotatory laxity of the

knee was evaluated manually by 1 experienced clinician
using the pivot-shift test at a mean 4 months (range,
2.0-6.0 months) after ACL injury. All patients presented
a gross (þþ) or marked (þþþ) pivot-shift test at clinical
examination. KT-1000 arthrometer measurement at 134 N
demonstrated a mean difference of 6.4 mm (SD, 2.1 mm) in
anterior translation between the ACL-deficient and normal
knees for all patients. The study protocol was reviewed and
approved by the institutional review board, and all patients
gave their informed consent before they were included. The
mean time between ACL injury and the MRI was 4.9 months
(range, 3.0-7.0 months).

MRI Scanning Method

The in vivo measurement of rotatory laxity was performed
using the KneeM device placed in the open MRI field. The
subjects laid on the contralateral side in an open MRI
scanner (0.35-T Sigma Ovation HD; General Electric
Healthcare, Milwaukee, Wisconsin, USA). The custom-
built KneeM device strained the lower limb with 2 straps,
1 on the thigh and 1 on the calf, exerting a manual anterior
drawer force of 100 N measured by a dynamometer
(Figure 1). All measurements were obtained with the lower
limb in a fixed internal rotation of 20� and with the muscles
relaxed. The knee was successively flexed from full exten-
sion to 20�, 40�, and 60� of flexion. A rigid fixation in each
position was held by screws. Four MRI acquisitions were

Figure 1. The patient is tested using the KneeM device (A) in the open MRI. (B) The knee is anteriorly constrained by 2 straps, with
the lower limb fixed in internal rotation (20�). (C) Four degrees of flexion (0�, 20�, 40�, and 60�) can be adjusted. (D) A dynamometer
was used to exert an anterior drawer force of 100 N.
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performed in extension and at 20�, 40�, and 60� of flexion
(scan parameters: T2-weighted fast spin echo sequences,
40 slices of 0.6-mm thickness; field of view, 240 mm; matrix
size, 512 � 256; repetition time [TR], 6220 ms; echo time
[TE], 102 ms). Both injured and healthy contralateral knees
were successively analyzed. It took approximately 45 min-
utes for each patient to complete the scan, including the 8
sequences. The examination was painless and therefore
without risk of additional injury to the limb.

MRI Data Analysis

We used Osirix software (Pixmeo, Geneva, Switzerland) to
measure, according to the Iwaki method,20 the anteroposter-
ior tibial translation with respect to the femoral condyles
(distance ‘‘D’’) at all angles of flexion for both ACL-
deficient and healthy knees. The distance was recorded on
sagittal T1-weighted images scanned at each center of the
medial and lateral compartments by measuring the distance
between the tangent line of the posterior tibial cortex and
the center of a circle materializing the femoral condyle,
called the flexion facet center (FFC)20 (Figure 2). To deter-
mine the center of each compartment, we used an initial 3-
dimensional multiplanar reconstruction scan to choose the

slice that included the medial edge of the fibular head as a
landmark for the center of the lateral compartment and the
attachment of the medial head of the gastrocnemius for the
medial compartment. To determine the FFC, we took the cen-
ter of a circle that encompassed the posterior aspect of each
condyle, medial and lateral, that has been shown to have a rel-
atively circular form in the sagittal plane.53 The FFC can be
used as a reliable reference point for the position of each con-
dyle.20 The reference point for the tibia was the tangent line to
the posterior tibial cortex, perpendicular to a horizontal line
parallel to the tibial plateau. It is important to note that
according to the Iwaki method, the distance ‘‘D’’ is inversely
proportional to the anterior tibial translation. The distance
‘‘D’’ is smaller for ACL-deficient knees than for healthy knees.
Analysis by an experienced examiner took approximately 10
minutes for the 8 measures (2 knees� 4 angles).

Reproducibility

All images were measured 3 times by 2 senior orthopaedic
surgeons, who were blinded to the results of the physical
examination, with a minimum interval of 1 week between
each measurement.

Statistical Analysis

Analysis was conducted using the R software version 2.13.1
(R Foundation for Statistical Computing, Vienna, Austria).
The Mann-Whitney test was used to compare the anterior
tibial translation between the ACL-deficient knees and
intact knees in the lateral and medial compartments at all
degrees of flexion. A P value of �.05 was considered to be
statistically significant.

The intra- and interobserver reproducibility was assessed
using the intraclass correlation coefficient (ICC). A Bland and
Altman plot was also constructed for each compartment and
each knee (healthy or deficient) to visually assess the interob-
server agreement (Figure 3).

Figure 2. Measurement of the femorotibial relationship using
the Iwaki method. Distance ‘‘D’’ is measured in the lateral
compartment of an extended knee. Measurement of D is
taken from the flexion facet centers (FFCs) to the vertical line
drawn from the posterior tibial cortex.

Figure 3. Bland and Altman plot for interobserver agreement.
HKLC, healthy knee, lateral compartment.
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RESULTS

The results of the anterior tibial translation during flexion,
for both knees, are presented at the center of the medial
and the lateral compartments (Table 1 and Figure 4).

There were no statistical differences for anterior transla-
tion in the medial compartment between intact and ACL-
deficient knees at all degrees of flexion (Table 1). At 0� of
flexion in ACL-deficient knees, there was a nonsignificant
anterior tibial translation of 2 mm in the medial compart-
ment compaired with healthy knees that remained almost
stable during flexion, from 0� to 60� (Table 1). However, in
the lateral compartment, we observed significant differences
in the anterior tibial translation between ACL-deficient and
intact contralateral knees. At 0� and 20� of flexion, in
ACL-deficient knees, there was an excessive anterior trans-
lation of the lateral tibial plateau compared with that of
the healthy knee (7.1 mm, P ¼ .0005 and 7.6 mm,
P ¼ .0002, respectively) (Table 1). Between 20� and 40�, the
lateral plateau of ACL-deficient knees translated 7.7 mm
posteriorly, whereas the medial compartment remained sta-
ble, reflecting a sudden external rotation of the knee around
an axis of rotation that shifted medially (Figure 4). Between
40� and 60�, the tibia again began its internal rotation. How-
ever, in healthy knees, there was a progressive internal
tibial rotation around a medial axis of rotation during flex-
ion, especially from 40� to 60� (Figure 4).

For interobserver reliability, the Bland and Altman test
showed good agreement between the 2 observers (Table 2).
We had 16 conditions: 2 (healthy/ACL-deficient knees) � 4
(angles)� 2 (lateral/medial compartments). For each condi-
tion, the ICCs were homogeneous. The ICC was lower but
acceptable for the medial compartment measures of
healthy knees, between 0.8241 and 0.8638. The ICC was
good for all the other conditions (>0.90).

For intraobserver reproducibility, the ICC indicated good
agreement for all measurements, between 0.8523 and
0.9871 (Table 3).

DISCUSSION

Different devices have recently been developed to quantify
in vivo rotational knee laxity, reflecting the desire to mea-
sure rotational laxity of the knee for diagnostic purposes

and evaluation of surgical outcomes.35 Static devices41 such
as the Rotameter,36,37 the Robotic Knee Testing Device,7

and the Musahl and Tsai device43 are easy to use but do not
completely reflect the complexity of knee kinematics. More
complex dynamic systems were developed to evaluate knee

TABLE 1
Distance ‘‘D’’ for Each Angle of Flexion for Healthy and ACL-Deficient Kneesa

Medial Compartment, mm Lateral Compartment, mm

Flexion Angle Healthy Knee ACL-Deficient Knee P Valueb Healthy Knee ACL-Deficient Knee P Valueb

0� 17.8 ± 1.58 15.8 ± 3.12 .21 16 ± 3.8 8.9 ± 4.2 .0005
20� 17.7 ± 1.83 15.5 ± 2.75 .12 16 ± 3.8 8.4 ± 3.5 .0002
40� 18 ± 1.82 15.6 ± 2.6 .07 15.9 ± 3.5 16.1 ± 3.9 >.9999
60� 19.8 ± 1.68 18 ± 3.33 .16 13.9 ± 3.2 15.6 ± 3.9 .35

aValues are expressed as median ± interquartile range. Distance ‘‘D’’ is the anteroposterior tibial translation with respect to the femoral
condyles. ACL, anterior cruciate ligament.

bCalculated using the paired Wilcoxon signed-rank test.

Figure 4. Diagram of the femoral condyle overlaid with solid
lines representing the posterior tibial cortices at each degree
of flexion (0�, 20�, 40�, and 60�) of the healthy knees (A) and
the anterior cruciate ligament–deficient knees (B). The
Y-axis represents the average distances (mm) from the
ipsilateral posterior tibial cortex to the FFC (distance ‘‘D’’).
X, axis of rotation.
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laxity, such as computer-assisted surgical devices,27,56

dynamic Roetgen stereophotogrammetric analysis
(dynamic RSA),19 and dynamic radiostereometry (DSX).45

These dynamic knee laxity measurement devices allow for
3-dimensional femorotibial analysis with controlled loads
and motions but are often invasive,44 require expensive
laboratory environments, and expose the patient to radia-
tion.52 The KneeM device was designed to objectively and
accurately measure tibiofemoral kinematics based on a
reliable method available in daily practice, the MRI. The
hypothesis was that the KneeM device would allow in vivo
reproduction and analysis of knee kinematics during
flexion of healthy and ACL-deficient knees.

In vivo knee kinematics observed in healthy and
ACL-deficient knees with the KneeM device corroborated
the results already described in experimental studies. The
analysis of anterior tibial translation in each compartment
demonstrated that the medial plateau for both ACL-
deficient and healthy knees followed a nearly similar
pattern of movement during flexion from 0� to 60�. It
appears to be the stable compartment, as it was already
described in the literature.2,4,13,33,54 ACL deficiency had a
small impact on the medial compartment.

However, the lateral compartment of the ACL-deficient
knees allows more displacement, especially close to exten-
sion (0� and 20� of flexion). The absence of the ACL allows
unchecked internal rotation to occur following the applica-
tion of 100 N of anterior stress and 20� internal rotation
from the KneeM device. This internal rotation occurs
around a medial axis, close to the medial collateral liga-
ment, as already described.39,40,42 This medialization of the
rotational center in ACL-deficient knees magnifies the dis-
placement of the lateral tibial plateau.

The most interesting point was the lateral compartment
kinematic between 20� and 40� of flexion in ACL-deficient
knees. We observed a sudden external rotation of the tibia
when the knee exceeds 20� of flexion despite the internal
rotation and anterior tibial translation exerted by the
splint. This phenomenon could be interpreted as a begin-
ning pivot shift in the MRI. Various studies described the
pathologic motions of the pivot-shift test. Matsumoto40

used biplanar photography to analyze movements under a
valgus torque in 29 fresh cadaveric knees. He described the

pivot shift as a lateral tibial plateau relocation between 20�

and 40� after it subluxed anteriorly. Bull et al8 used an
electromagnetic device to measure movement of 10 knees
during ACL surgery. They found that between 0� and 25�

of flexion, there was a progressive anterior tibial subluxa-
tion with internal rotation that reversed suddenly around
a mean position of 36� ± 9� of knee flexion. This sudden
reduction of the lateral plateau, which was anteriorly sub-
luxed at the start of knee flexion, corresponded to the
‘‘pivot’’ phase of the pivot shift, therefore the tibia
translated posteriorly and rotated externally. Our results
documented that the ‘‘clunk’’ of the pivot shift could be
observed with the KneeM device during MRI. However, the
pivot shift is a dynamic and subjective clinical test. MRI
and the KneeM device only document successive static posi-
tions of the couple motions of the pivot shift. Between 40�

and 60� of flexion, ACL-deficient knees behaved like
healthy knees. The lateral plateau translated anteriorly,
unlike the medial plateau, which moved posteriorly, once
again causing an internal rotation of the tibia. This corre-
sponded to the physiological internal rotation that occurred
during knee flexion, which has been observed in previous
studies3,20,24 and accentuated by the KneeM device that
applied a fixed internal rotation of 20�.

The KneeM in vivo device based on MRI may be com-
pared with other in vivo methods. Accelerometers or elec-
tromagnetic tracking devices have been successfully used
to describe knee kinematics, but their accuracy is dimin-
ished by skin marker artifacts.6,31 Computer-assisted sur-
gery (CAS) also allows for dynamic clinical evaluation,
but it is an invasive procedure that requires bone fixation
to be accurate.44 The KneeM device is easy to use, provided
there is access to an open MRI. The problem of lack of space
in a conventional MRI1 was solved by using an open MRI.
The MRI-compatible devices of previous studies applied
neither an axial compression load, reproducing gravity
without additional stress,10,48,50 nor a sagittal force on the
knee.14,34 Logan et al33 and Al-Dadah et al2 assessed the
tibiofemoral relationship using weightbearing MRI. They
found that the most pronounced effect of the ACL deficiency
was the anterior displacement of the lateral tibial plateau
relative to the lateral femoral condyle compared with that
of the medial side. The medial tibiofemoral relationship
was unchanged compared with normal knees. But in these

TABLE 2
Interobserver Intraclass Correlation Coefficients (ICCs)

for Measurements by the 2 Observersa

Interobserver ICC, min-max

Healthy knee
Lateral compartment 0.9455-0.9715
Medial compartment 0.8241-0.8638

ACL-deficient knee
Lateral compartment 0.9243-0.9796
Medial compartment 0.9266-0.9585

aTo improve the readability of the table, only minimal and max-
imal ICCs are presented for all 4 angles for each condition (healthy
and ACL-deficient knees) and compartment (medial and lateral).
ACL, anterior cruciate ligament.

TABLE 3
Intraobserver Intraclass Correlation Coefficients (ICCs)

for Measurements by the 2 Observersa

Intraobserver ICC, min-max

Observer 1 Observer 2

Healthy knee
Lateral compartment 0.9671-0.9871 0.9134-0.9761
Medial compartment 0.8523-0.9146 0.8902-0.9689

ACL-deficient knee
Lateral compartment 0.9677-0.9851 0.9519-0.9691
Medial compartment 0.9394-0.9642 0.9274-0.9714

aACL, anterior cruciate ligament.
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studies, no rotational force was applied. Knee kinematics
were first studied with MRI under rotatory loads using the
Slocum anterior lateral rotary instability test to stress the
tibia rotating anteriorly and internally at 10� of flexion in
an open MRI scanner.21,46,47,51 They found significantly
increased displacement of the tibia in the lateral compart-
ment in ACL-deficient knees. But in their study, the stress
was applied manually, thus altering the displacement.
Haughom et al18 and Kothari et al29 upgraded their device
with a custom-built walking boot that allowed internal or
external torque to the foot. Espregueira-Mendes et al16

evaluated both anteroposterior translation and rotatory
laxity of the knee with their Porto-knee testing device
(PKTD) that applied forces on the posterior proximal calf
region using inflating cuffs. The PKTD allowed internal/
external rotation by a footplate, but their first published
study16 was only performed at 30� of flexion in neutral rota-
tion. None of these studies evaluated knee kinematics
under combined loads during flexion. To our knowledge, the
KneeM device is the first device that allows in vivo femoro-
tibial kinematic evaluation applying anterior and rota-
tional loading on ACL-deficient knees at different degrees
of flexion (0�, 20�, 40�, and 60�) in an open-field MRI scan.

This study had some limitations that should be
considered when interpreting the results. First, we did not
compare the KneeM device to a gold standard device. Sec-
ond, the reproducibility of different trials using the KneeM
device was not evaluated. This protocol documented the
reproducibility of the measurements but not the technique.
Third, the evaluation was not performed in acute injuries.
In this situation, apprehension and muscle spasm due to
pain may significantly alter the measurements. Fourth, the
MRI scanning was a series of different static positions
rather than a true dynamic evaluation. Nonetheless, the
static nature of the measure was not an obstacle since the
results were equivalent to those of truly dynamic studies.
Fifth, the pivot shift remained a subtle and subjective
clinical test, and was therefore difficult to reproduce and
objectively measure. It would be pretentious to say that we
re-created exactly the pivot shift in the MRI but we tried,
with this combined loading, to analyze the complex move-
ment of the pivot shift in the MRI field. Moreover, all the
patients had a grade 2 or higher pivot shift that made discri-
minant analysis of the pivot-shift grade between 20� and 40�

of flexion impossible. Sixth, 4 flexion angles were examined
at 20� increments rather than the entire range of flexion.
Finally, the number of patients was small, even if it was a
preliminary study before clinical implementation.

CONCLUSION

This preliminary study suggests that measurement of
tibiofemoral movements in both compartments during
flexion using the KneeM device was useful for quantifying
rotatory laxity in ACL-deficient knees. Anterior translation
in the lateral compartment was significantly increased at
0� and 20� in ACL-deficient knees compared with the con-
tralateral intact knees. Moreover, this device seemed to
allow a ‘‘mechanized pivot shift’’ and to reproduce the

‘‘pivot’’ phase in the MRI field between 20� and 40� of flex-
ion. Future studies including a larger sample size and
patients with various pivot-shift grades will allow the
determination of threshold values for the side-to-side differ-
ence of anterolateral translation that correlate with the
clinical grade of the pivot-shift test. Thereby, we could use
this device to investigate the outcomes of ACL reconstruc-
tions using various surgical techniques.
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