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Abstract

Antimicrobial resistance (AMR) poses a threat to global public health. To mitigate the impacts of AMR, it is important to
identify the molecular mechanisms of AMR and thereby determine optimal therapy as early as possible. Conventional
machine learning-based drug-resistance analyses assume genetic variations to be homogeneous, thus not distinguishing
between coding and intergenic sequences. In this study, we represent genetic data from Mycobacterium tuberculosis as a
graph, and then adopt a deep graph learning method—heterogeneous graph attention network (‘HGAT-AMR’)—to predict
anti-tuberculosis (TB) drug resistance. The HGAT-AMR model is able to accommodate incomplete phenotypic profiles, as
well as provide ‘attention scores’ of genes and single nucleotide polymorphisms (SNPs) both at a population level and for
individual samples. These scores encode the inputs, which the model is ‘paying attention to’ in making its drug resistance
predictions. The results show that the proposed model generated the best area under the receiver operating characteristic
(AUROC) for isoniazid and rifampicin (98.53 and 99.10%), the best sensitivity for three first-line drugs (94.91% for isoniazid,
96.60% for ethambutol and 90.63% for pyrazinamide), and maintained performance when the data were associated with
incomplete phenotypes (i.e. for those isolates for which phenotypic data for some drugs were missing). We also
demonstrate that the model successfully identifies genes and SNPs associated with drug resistance, mitigating the impact
of resistance profile while considering particular drug resistance, which is consistent with domain knowledge.
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Introduction

Antimicrobial resistance (AMR) is a global public health chal-
lenge that is impacting the way infections are treated. Mycobac-
terium tuberculosis (MTB), which kills more people each year
than any other single pathogen, is not an exception. Timely
prediction of resistance or susceptibility of a bacterial sample
(or ‘isolate’) to anti-TB drugs is key to personalised treatment.
As bacterial AMR is usually genetically encoded. There are two
major ways to make a fast prediction of AMR for previously
unseen isolates using genetic data [1]: (i) making predictions on
the presence or absence of a defined catalogue of mutations or
(ii) developing computational models to map the genomic data
to phenotypes (e.g. resistance / susceptibility to drugs), and let
the output of the model determine the prediction. The former is
the route taken to date in clinical practice and depends entirely
on domain knowledge. While catalogues perform well for well-
studied drugs, they are necessarily less complete for less well-
studied drugs. Machine learning (ML) has been extensively inves-
tigated in the study of AMR to predict resistance phenotypes
directly from genotypes [2]. This has typically involved classic
models [3] such as support vector machines, logistic regression,
random forests and others, as well as deep learning models [4-6]
(incorporating stacks of layers of neural networks). These exist-
ing ML models focus on two issues: (i) improving prediction per-
formance and (ii) identifying the predictive genetic variables [7].
Conventional ML-based drug-resistance models are trained on
information about the presence or absence of genetic variables,
which assume genetic variations to be homogeneous and do
not differentiate between coding and intergenic sequences. They
also do not take into account that different genetic mutations in
the same gene are involved in coding for the same protein, or
that some genes contribute more than others to resistance to
a particular drug. The existing ML methods thus often identify
the most predictive variables (via association) instead of the
most interpretable ones. The most predictive mutations could be
those that are unlikely to be biologically related to a particular
drug. For example, we frequently see that resistance-associated
single nucleotide polymorphisms (SNPs) for one drug are ranked
as being important for resistance to another drug because pat-
terns of co-occurring resistance to drugs can emerge for epi-
demiological reasons. A classic example if this would be the
fact that rifampicin (RIF) resistance rarely occurs in the absence
of isoniazid (INH) resistance, even though the mechanisms of
resistance are unrelated. Consequently, predictive mutations of
the former also predict the latter yet in no way contribute to
the resistance. In practice, it is common that not all samples
are tested phenotypically for resistance to all drugs [8]. Samples
are often tested to first-line drugs and then only to second-line
drugs if resistance to the former is detected. Existing models typ-
ically involve the removal of samples with missing phenotypes
from analyses, which substantially reduces the number of exam-
ples available for multi-drug resistance analysis and reduces the
statistical power of the resulting conclusions. In this paper, we
propose a graph learning model based on heterogeneous graph
attention network (HGAT) [9] to model the full available dataset
with improved interpretability—yielding better understanding
of the link between drug resistance and factors with which it
is associated. (We note in passing that such methods do not
claim causality, which requires different approaches beyond the
scope of this paper.) This is the first study to format genetic
samples as a heterogeneous graph at the level of SNP granularity.
In comparison with existing ML models for predicting single-
drug resistance and antibiotic profiles, the proposed methods

show better prediction performance. Furthermore, the HGAT
model allows us to quantify multi-scale contributions of genetic
variables from gene and mutation levels for either individual
samples or across all samples. Importantly, it can accommodate
the large number of missing phenotypic information within the
dataset.

Materials and data
Phenotyping

Our dataset includes 13 402 isolates that were tested to up to 11
drugs, including four first-line drugs: INH, RIF, ethambutol (EMB)
and pyrazinamide (PZA). The drug-susceptibility testing (DST)
was performed in either liquid culture or on solid medium, or
both. All lineages were represented in [10, 11]. The phenotype
overview of four first-line drugs is shown in Table 1.

DNA sequencing and pre-processing

The details of DNA sequencing are provided in [10]. Nucleotide
bases were called using standard filters on sequencing and
alignment quality, as well as the number of reads for each
base. After filtering, the nucleotide bases at certain positions
that could not be called with confidence were denoted as null
calls and were not used in our analysis. We applied the same
pre-processing method as described in [12]. Each sample has
different number of genetic mutations.

Methodology

We propose a heterogeneous graph attention network to pre-
dict AMR (HGAT-AMR) to deal with the heterogeneous genetic
data with variable-length. Graph neural networks operate on
graph-structured data and can effectively capture the struc-
tural information encapsulated in graphs and generate more
effective embedding. The graph attention network is one of a
major branch of graph neural networks [13-16]. Attention in
deep learning [17] can be thought of as a vector of importance
weights, encoding which elements of a vector are learned as
being important within the function of the particular network
i.e. it encodes those elements of a vector the network is ‘paying
attention to’ in undertaking its task (such as classification).
This section starts with the introduction of the inputs, building
blocks and architecture for HGAT-AMR, and then introduces ML
comparators.

Construct input graph

The HGAT-AMR takes network-like data (i.e. a graph) as input,
in which graph nodes correspond to isolates and to SNPs, and
in which graph edges correspond to the relationship between
the isolates and SNPs. Each node has different number of neigh-
bouring nodes e.g. each isolate has different number of muta-
tions, and each SNP occurs different number isolates. We term
this undirected network-like input the ‘SNP graph’. In the MTB
dataset, there are 24 types of node including: (i) isolates and (ii)
SNPs of 23 types, where SNP nodes of the same type correspond
to SNPs in the same gene. Figure 1A shows an example of SNP
graph with an isolate node at the centre and its neighbours,
which are SNPs found in three different genes, katG, rpoB and
pncA. In this study, those 23 genes were investigated that con-
stituted the assembled SNPs catalogue for the available tested
drugs [11]. No edges were drawn between nodes of the same type
as the intra-type relationship was unknown (e.g. the relationship



Table 1. Phenotype overview of four first-line drugs
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INH RIF EMB PZA 4 1st-line
R 3361 2962 1558 1076 -
S 5393 5284 10515 3031 -
Tot. 8754 8246 12073 4107 3574

Note: R and S denote resistant and susceptible class, respectively. 4 1st-line means the four first-line drugs together i.e. INH, RIF, EMB and PZA.
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Figure 1. HGAT-AMR algorithm.

between isolates, and between SNPs in the same gene). During
training, the graph will be updated with edges between nodes in
light of evidence within the training dataset, as described later.

Construct a HGAT module

For any given isolate, different mutations within different genes
may carry information of varying importance when determining
drug-resistance. To capture this hierarchical importance at both
node—(SNP) and type—(gene) level, we applied a building block,
the HGAT module [9], to be described below, which uses a ‘dual-
attention’ mechanism within the graph (as shown in Figure 1B).

For an undirected and unweighted graph G = (V,E),v € Vand
e ¢ E represent nodes and edges, respectively. Let X € RIVI*9 be
a matrix containing the features of nodes, and x, € R? denotes

HGAT layer

features of the node v.If G is homogeneous, the adjacency matrix
is A’ = A+1with added self-connections, the degree matrix is M,
where M;; = > A}, and the symmetric normalised adjacency
matrix is A = M-2A'M-Y/2, If G is heterogeneous, where each
node is associated with its types, v € 7, so V = U 5 with
m types of nodes mathcalT = {z4,..., 7n}. Correspondingly, the
type-wise adjacency matrix is A, € RV*I+l is a submatrix of A,
whose rows represent all the nodes and columns represent their
neighbouring nodes with the type .

Type-level attention Given a specific node v, its hidden repre-
sentation at the Ith layer is hfp. Initially, hf,o) = X,. The neighbour-
ing node v € M, is with type r, whose hidden representation
vector is h). The hidden representation of the type 7 is defined
ash? =3, A, h?, which is the sum of the neighbouring node
of type 7. Then, the type-level attention scores of the same layer
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are defined as,
o =o(u] - [h) D). (1)

where ., is the attention vectors for the type 7, | means con-
catenation and o (-) denotes an activation function such as Leaky
ReLU. The type-level attention weights are to normalise the
attention scores across all the types with the softmax function,

exp(a.)
= =———""—"". 2
%oy exp(a) @
Node-level attention Given a node v with the type 7, and
its neighbouring node v’ € N, with the type 7/, the node-level
attention scores of the Ith layer are defined as,

by = o (7 - oo, [1011D)]). 3)

where ¢ is the attention vector. The node-level attention scores
are normalised with the softmax function,

exp(byy)

P = 5 explbn)

(4)

As shown in Figure 1B, for the centre node i, the type-level
attention is a vector of weights for different types of neighbours,
e.g o} ~ of, where each type is a joint representation of all
neighbours of the same type (such as the genes, or ‘colours’,
within our graph). The node-level attention is a vector of weights
for each neighbour e.g. B! ~ ¢, after calibration using the type-
level attention. Aggregately, the dual-level attention mechanism
is incorporated into the graph convolution networks [18] module
with the following layer-wise propagation rule:

HU = (3" B, -HO - W), (5)
€T

where B, represents the attention matrix, whose element in
the row vth and v'th column are By, wS” e R1"~a jg type-wise
transformation matrix and H” is a hidden representation of

neighbouring nodes of type r. Initially, HY = x,.

Architecture

Based on the HGAT module, we constructed a deep graph learn-
ing model, HGAT-AMR (as shown in Figure 1C). In each layer,
there are multiple different HGATs occurring in parallel, and, in
keeping with the ML literature, each is named a head (analogous
to the multiple ‘heads’ used in reading from/writing to tapes
and disks in classical computer science). Each head of a layer
was assumed to learn the different ‘aspects’ or ‘tracks’ of the
input with different associated model values and attentions.
This model structure was considered to account for the fact that
there might be different mechanisms for single- and multi-drug-
resistance within our AMR application. We used a two-layer
model, as shown in Figure 1C, for the purpose of illustration.
As shown, each head contains a two- connected HGAT, where
the output of the first block undergoes ‘drop-out’ randomly (i.e.
application of a random mask, as is common practice with deep
learning) before being passed as input to the second one. Before
the final layer, we concatenated the outputs of the second layer

#2 #1 G1
#2 #4 G2
#3 #1 G1
#3 #2 G1
#3 #3 G2
#3 #4 G2

(a)

(c)

Figure 2. Illustration of input for discussed models.

and the first layer, thus providing a ‘shortcut’ that connects the
first layer and the final layer. (That is, the final layer sees both
the outputs of the second layer and the corresponding outputs
of the first layer, where the latter acts as a ‘shortcut’.) Formally,

H = concat((H ... |H]),i=1,..L - 1. ©)

where D denotes the number of the heads. These shortcut and
multi-headed approaches are used in deep learning to avoid
numerical stability problems during model training, such as
‘gradient explosion’ (in which some components of the network
unduly dominate others) or ‘vanishing gradients’ (in which the
models become so deep that the model cannot associate small
changes in model parameter values with changes in perfor-
mance), but come at the expense of increasing computational
costs.

ML comparators

This study considers the current clinical standard (direct asso-
ciation, DA) and several conventional ML methods. The details
of the definition and implementation of the DA were the same
as described in Yang et al. [12] and which form a useful ‘real-
world’ comparator. The ML comparator models included, as
noted above, support vector machines, logistic regression and
multi-label random forests [19]. These methods were selected
as being representative as the current state-of-the-art. Unlike
HGAT-AMR, both the DA and conventional ML methods take
as input a binary vector per sample, named grid data. Figure 2
illustrates how to convert tabular raw data into network-like
input and grid input, respectively. The raw genetic data are
illustrated in Figure 2A, which shows that three isolates (indexed
by Iso1-3 as shown in the first column) have four SNPs (indexed
by SNP#1-4 as shown in the second column), who belong to two
genes (i.e. two types of SNPs denoted by G1 and G2 as shown in
the third column). On the one hand, the grid input represents
an isolate as a vector where each element corresponds to the
presence (1) or absence (0) of a SNP (as shown in Figure 1B);
the types of SNPs are not considered. On the other hand, the
network-like input constructs a graph for the full tabular data,
where the nodes’ colours denote their types. For example, orange
corresponds to isolate, blue is SNPs of gene G2, and green is
SNPs of gene G1. The SNP nodes’ types implicitly model the
information of genes (as shown in Figure 1C).



Experiment settings
Initialisation

The initialisation of HGAT-AMR involves two components:
(i) initialising SNPs’ embedding and (ii) initialising isolates’
embedding.

SNPs’ embedding initialisation. We compare genetic sam-
ples and mutation features to sentences and words in natural
language, respectively. In the MTB dataset, we consider SNPs as
equivalent to words and isolates (comprising SNPs) as equivalent
to sentences (comprising words). Like word embedding in natu-
ral language processing, we first compute the SNP co-occurrence
matrix based on point-wise mutual information (PMI). Then, we
factorise the matrix using sparse singular value decomposition.
The result of this procedure is an embedding vector of fixed
size for each SNP, where every element is continuous (please
see parameters of PMI-based embedding in Supplement B). We
note that this embedding vector for a SNP comprises real (scalar)
numbers, it being the result of factorising a matrix of PMI values
(themselves real numbers).

Isolates’ embedding initialisation. The vector for each isolate
is the aggregation of the embedding vectors for all of the SNPs
present in the isolate. Naturally, the number of SNPs within
an isolate will vary between isolates, and so the aggregator
will accordingly take varying numbers of embedding vectors for
different isolates. Common choices for the aggregator functions
used to combine the multiple embedding vectors for the isolate’s
SNPs into a single vector to represent that isolate include (i)
the average, (ii) minimum, or (iii) maximum. In this study, we
used an aggregator function of the maximum to initialise these
representatives ‘feature vectors’ for each isolate node in the
input graph. The evaluation of the other aggregator functions
could be explored in future work, although our experiments are
largely insensitive to such a choice.

Training models

ML comparators. For each model, the phenotypes to individual
drugs for the isolates were used for classification in single-
label learning, whereas those for multiple drugs were used for
classification in multi-label learning. The conventional ML mod-
els were optimised via conventional cross-validation methods
by choosing the values of the various hyperparameters using
grid search. All comparator ML methods were trained in a con-
ventional supervised manner (Please see Supplement C for the
details, which represent standard practice for such classes of
algorithms.)

HGAT-AMR. The output of Lth layer of HGAT-AMR, the
embeddings of isolate nodes are then fed to a softmax layer
for classification.

L
Z = softmax(HL),,)- %)

During the training, the cross-entropy loss over training data
with the L2-norm is applied.

K C
L= > b logZi +llell, ®)

k=1 i€Dyqpy j=1

where K is the number of multiple labels, C is the number
of classes, Dirain is the set of genetic samples for training, Y
is the corresponding label indicator matrix, © is the model
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parameters, and 75 is regularisation factor. For model optimi-
sation, we adopt the Adam optimiser. Two training modes
were considered: (i) transductive and (ii) inductive. The former
is standard supervised learning, whereas the latter is novel
for our work and is the development of semi-supervised
learning. In our MTB dataset, as noted earlier, isolates are
frequently not tested for resistance to all relevant anti-TB
drugs. The conventional way to cope with missing classes of
the samples is to remove all such samples, or alternatively
to split the unlabelled and labelled samples for conventional
semi-supervised learning. The latter involves switching between
‘supervised’ and ‘unsupervised’ learning according to whether
or not a sample (in our application, an isolate) has a complete
set of class labels (in our application, DST results for all
drugs). However, it typically produces substandard results in
applications where there are few complete data (as in our MTB
case), because unsupervised learning disregards any labels that
might be available in the incomplete-data case. We improve
upon this method for our HGAT-AMR model as described below
in a manner that permits us to capitalise on all available
labels, independent of their level of completeness (please
see Supplement D).

Results

Subsets for the supervised/transductive learning. We first con-
structed four different subsets of our database for individual
drugs (i.e. INH, RIF, EMB and PZA), which were used for single-
label learning; the HGAT-AMR model trained on these datasets
is termed as ‘HGAT-AMRs’ (noting the ‘s’ suffix). We then con-
structed a fifth subset, where all samples have complete pheno-
types of all four drugs, for multi-label learning; the HGAT-AMR
model trained on this dataset is named ‘HGAT-AMRm’.

Subsets for the inductive learning. We reconfigured the sub-
set for the above supervised multi-label learning by (i) randomly
removing the phenotypes of drugs of interest in the existing
training set and (ii) augmenting subsets (otherwise comprising
completely-labelled data) with any available incompletely-
phenotyped samples. The HGAT-AMR model trained in the
first experiment is named ‘HGAT-AMRI’ (for ‘inductive’),
whereas the second is name ‘HGAT-AMRI-E’ (for ‘Enhanced’).
In our later results, we indicate the ratio of the removed
phenotypes by the percentage following the HGAT-AMRI e.g.
‘HGAT-AMRIi-10%.

Data split and cross-validation. To evaluate various models,
we split each subset described above corresponding to exam-
ined drugs into training (40%), validation (40%) and testing sets
(20%). For multi-label learning, we performed stratified cross-
validation, which ensures that the proportion of the two classes
(resistant versus susceptible) for every label was approximately
the same in each fold. For the ML baseline models, as noted
earlier, cross-validation was performed to identify the optimal
values of the hyperparameters via standard grid-search that
led to the best classification accuracy (Please see details of the
hyperparameter set used for grid-search in Supplement B). The
DA method did not require training, it being a clinical ‘look-up
table’. An early-stopping criterion was applied while training the
HGAT-AMR model, such that when the best validation accuracy
of the model ceased increasing for at least ten training epochs,
training was stopped to avoid over-fitting. For all methods, 20
iterations of the experiments (of 5-fold CV) were carried out, with
the average performance of the resulting model being applied to
the held-out testing dataset reported, as is conventional practice.
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Table 2. Comparison of prediction for four first-line drugs

INH RIF

Models Sen Spec F1 AUROC Sen Spec F1 AUROC

DA 94.05(0.78) 97.76(0.41) 96.11(0.40) 95.90(0.43) 96.29%(0.77)  97.66(0.41) 96.84(0.43) 96.97(0.45)
LR 93.85(0.71) 97.91(0.42) 96.12(0.40) 98.51(0.26) 94.92(0.91) 98.66(0.38) 97.07(0.43) 99.03(0.28)
SVM 93.95(0.75) 97.81(0.41) 96.10(0.39) 98.00(0.35) 94.79(1.06) 98.87%(0.33)  97.17*(0.45)  98.92(0.31)
MLRE 93.57(1.19) 97.83(0.87) 95.48(0.68) 98.18(0.44) 92.58(1.43) 97.19(0.72) 94.17(0.92) 98.33(0.45)
HGAT-AMRs 94.46(0.95)  97.76(0.47)  96.28(0.42)  98.33(0.33)  95.17(1.11)  98.50(0.44)  97.05(0.45)  99.10%(0.21)
HGAT-AMRm 94.74(1.16) 98.32%(0.64)  96.60(0.63) 98.43(0.45) 95.21(1.78) 97.29(1.24) 96.30(1.19) 98.99(0.39)
HGAT-AMRi-10%  94.78(1.12)  98.13(0.61)  96.52(0.59)  98.43(0.42)  94.92(1.44)  95.86(1.89)  95.33(1.41)  98.76(0.44)
HGAT-AMRI-E 94.91%(1.06)  98.20(0.60) 96.62%(0.57)  98.53%(0.35)  93.39(1.37) 94.39(1.93) 94.02(1.44) 98.32(0.57)

EMB PZA

Models Sen Spec F1 AUROC Sen Spec F1 AUROC

DA 84.90(1.85) 94.91(0.47) 86.86(1.03) 89.91(0.99) 50.65(3.65) 95.02%(0.84)  75.43(1.90) 72.83(1.86)
LR 76.38(2.37)  97.90%(0.36) 87.37%(0.92) 96.68%(0.56) 74.15(2.78)  92.67(1.04)  83.95%(1.16)  93.70%(0.82)
SVM 75.30(3.00) 97.08(0.49) 86.96(0.99) 95.83(0.67) 72.68(3.10) 92.89(1.64) 83.55(1.45) 92.91(1.01)
MLRF 74.71(3.66)  90.79(1.35) 74.96(2.39)  93.17(0.87)  69.97(3.66)  91.93(1.26) 72.41(2.43)  92.61(0.87)
HGAT-AMRs 79.45(3.90) 96.31(0.64) 87.16(1.04) 96.50(0.46) 73.59(4.52) 91.10(1.66) 82.43(1.57) 92.21(0.94)
HGAT-AMRm 82.13(5.50)  88.97(2.34)  84.25(1.42)  93.88(0.80) 76.56(5.08)  89.53(1.93)  82.30(1.59)  92.80(0.89)
HGAT-AMRI-10%  92.76(2.62) 84.33(1.71) 84.64(1.30) 93.99(0.83) 89.79(3.89) 84.26(2.31) 83.08(1.64) 92.90(1.01)
HGAT-AMRI-E 96.60%(1.47) 79.50(2.04)  82.45(1.55)  93.62(0.90)  90.63*(2.75) 83.20(2.68)  82.58(1.77)  92.52(0.92)

Note: The P-value of performance measurement in bold compared to DA was obtained by Wilcoxon signed-rank test. * represents a P-value<0.05.

Prediction performance

Before going on to discuss the advantages offered by our pro-
posed method, we first consider the classification task, in which
each model aims to classify resistance/susceptibility for individ-
ual drugs. Table 2 shows the results of using eight models for
predicting phenotypes of the four first-line drugs individually.
The average (standard deviation) of sensitivity, specificity, F1-
score and AUROC are reported on held-out data over the 20
iterations described above.

Considering general classification performance, the ML
methods outperformed the DA approach for all four drugs
except for sensitivity in RIF and specificity in PZA. In the cases
of INH, EMB and PZA, the best sensitivities were obtained by
the HGAT-AMRI-E (i.e. 94.91, 96.60 and 90.63%, respectively).
For INH and RIF, the best AUROCs were obtained by two of
the HGAT-AMR models, 98.53% by HGAT-AMRI-E and 99.10%
by HGAT-AMRs. For the EMB and PZA, the LR generated the
best Fl-score of 87.37 and 83.95% and the best AUROC of 96.68
and 93.70%. In terms of specificity, the best values were 98.32%
of HGAT-AMRm for INH, 98.87% of SVM for RIF, 97.90% of LR
for EMB and 95.02% of DA for PZA,. The HGAT-AMRs showed
similar results as the LR, especially in the cases of EMB and
PZA. This is because they were trained in the same mode
i.e. supervised single-label learning. The multi-label learning
approach enabled the HGAT-AMR model to increase sensitivity
by 0.2% for INH and RIF, and by 3% for EMB and PZA. This
could be explained by the genetic patterns corresponding to
the resistance co-occurrence that are predictive for these cases.
Furthermore, inductive learning allowed the HGAT-AMR models
to continue the increment in sensitivity for INH, EMB and
PZA, but to decrease for RIF. The inductive learning essentially
loosened the dependence of resistance co-occurrence and
resistance prediction by introducing incomplete phenotypes
for all examined drugs. It implies that the resistance to all four
first-line drugs except for RIF could be predicted better if the
evidence of resistance co-occurrence is relaxed. For INH and

RIF, the differences in all performance measurements across
different methods were less than 4%. For EMB and PZA, the
significant improvement in sensitivity compared to the DA was
obtained by HGAT-AMRI-E, which were 12 and 41%, respectively.
This can be explained by (i) associations between SNPs and
the resistance to INH or RIF being nearly linear, and this is
consistent with the results obtained by the DA method, (ii)
associations between SNPs and the resistance to EMB or PZA
are more complex and (iii) patterns of resistance co-occurrence
mask those SNPs associated with EMB or PZA-resistance.

Attention interpretation

A key advantage of the proposed method, beyond any (modest
or otherwise) improvements in classification performance is the
interpretable nature of the resulting graph constructed during
the training of the HGAT. For the purposes of demonstration
and computational efficiency, we applied two-head attention
in the cases of INH, RIF and EMB, and four-head attention for
PZA. The reason for using four heads with PZA is that the use
of two heads was experimentally (not shown here for brevity)
found not to capture the resistance patterns associated with
PZA, which was assumedly masked by patterns of resistance
co-occurrence. Therefore, there are four sets of type-level and
node-level attention scores for each node for the two-headed
models (INH, RIF, EMB) and eight sets of attention scores for the
four-headed model (PZA). We index attention scores by head and
layer: for example, ‘1L1H’ refers to the 1st head of the 1st layer.
Averaged type-level attention scores. Figure 3 demonstrates
the averaged type-level attention scores obtained via multi-label
learning across all training isolates. Considering all four first-
line drugs jointly, the first head of the first layer recognised gidB,
katG and embB as the most interpretable genes, and that of the
second layer further identified rpoB to be the only dominant
gene. In contrast, the top two genes ranked by the second head
of the first layer were rpoB and embA. It is notable that the
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Figure 3. A demonstration of averaged type-level attention scores for all four
first-line drugs.

PZA-associated gene, pncA, is not shown in Figure 2. This can
be explained by (i) the genes being associated with the other
three drugs strongly dominant for the joint drug-resistance pre-
diction, and contributing to PZA-resistance prediction due to
drug-resistance co-occurrence; thus, the contribution of pncA
was masked and (ii) the samples resistant to PZA being relatively
fewer than others.

The plots of averaged type-level attention scores for each
drug via single-label learning are referred in Figure S3 of Supple-
ment E. For INH (as shown in Supplement E Figure S3A), the top
two genes ranked by both the two heads of the first layer were
the two main INH-associated genes, katG and fabG1, whereas
both the two heads of the second layer considered all genes to
be equivalent. It is also observed that all genes were scored the
same by the second layers in the case of EMB and PZA, and the
second head of the second layer when considering the four drugs
jointly. For RIF (as shown in Figure S3B), all heads and layers iden-
tified the main RIF-associated gene, ropB. This can be explained
by the gene of rpoB being sufficiently obvious to be identified
by all layers, and being sufficient for predicting RIF-resistance.
In Figure S3C, the top three genes ranked by the first layer were
embB, embA and katG. The first two genes were EMB-associated
genes but scored differently by two heads. The gene of katG was
also recognised due to resistance co-occurrence between INH
and EMB. In the case of PZA (Figure S3D), the first layer barely
recognised any particular genes. On the contrary, the second
head of the second layer identified katG and rpoB, which were
associated with INH and RIF resistance, respectively. This could
be because the drug-resistance co-occurrence patterns for INH
and RIF are also predictive for PZA resistance. Unlike the second
head, the third head identified pncA only, which is the key PZA-
resistance-related gene. It can be explained that different heads
discovered different ‘aspects’ or ‘tracks’ of genetic mutations
to predict PZA-resistance. Moreover, the different patterns of
attention scores across layers for different drugs also imply that
genetic variables contribute to drug-resistance prediction with
different ‘depth’.

Node-level attention scores. Figure 4 demonstrates the node-
level attentions for an exemplar isolates whose ids is 00-R0435,
who were resistant to all four first-line drugs according to the
DST. In the case of INH, the model ranked fabG1_G-17T as the
top-1 SNP, which was previously identified as being associated
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with INH resistance (as shown in Figure 4A). Similarly, only
rpoB_S450W was identified in the case of RIF, which was pre-
viously identified as being RIF-resistance-associated SNPs (as
shown in Figure 4B). In Figure 4C, the top-two SNPs are eis_C-
12T and embB_G406D for predicting resistance to EMB, where the
latter was previously identified to be related to EMB-resistance.
In the case of PZA, 2L3H identified a SNP in the gene of pncA,
pncA_Y103C.Itis worth noting that each head would identify dif-
ferent SNPs given the type-level attention scores for an individ-
ual isolate. Supplement E, Figure S4 provides another example
for demonstrating SNP-level attention.

SNPs ranking

Another key advantage of the proposed method is in identifying
structural associations between nodes in the graph and the
corresponding phenotypic labels. Table 3 lists the top-10 SNPs
ranked by averaged node-level attention scores with respect to
each drug, and to all first-line drugs jointly. Those previously-
reported SNPs for specific drug-resistance are represented in
bold. The presence of these highlighted items is encouraging, as
it represents the graph structure capturing those associations
that are known in the literature. For individual drugs, the dif-
ferent heads of the same layer often generate a different list of
interpretable SNPs, which again validated that the model ‘sees’
different aspects of the pattern for the prediction task. It is
notable that the number of heads of attention can be increased
(as described above, with our four-headed model for PZA) to
investigate different aspects of the input. Specifically, the seven
of the top-ten SNPs of pncA were previously recognised as asso-
ciated with PZA-resistance in the existing clinical (DA) catalogue.
For the four first-line drugs as a whole, the top-ten SNPs ranked
by the first layer include those relating to resistance of INH and
EMB, whereas the second layer paid more attention to those
related to RIF-resistance. This is also consistent with averaged
type-level attention in Figure 3B, where the gene of rpoB was
sufficiently robust to be identified by both of the two layers.

Inductive learning evaluation

This section evaluates the ability of HGAT-AMR to deal with
incomplete labels. We reconfigured the training set for trans-
ductive learning (trans-training set) by removing the phenotypes
gradually, as outlined earlier. During the training, the phenotype
of each of the four drugs could now be absent. For example, an
isolate could have been tested by INH and EMB, but not by RIF
and PZA. According to an imbalance ratio for a specific drug, the
trans-training set is resampled to construct a new training set.
The label-masking ratio gradually increased on each resampled
training set, and the model is trained for 100 times at each label-
masking ratio. The experiment compared baseline models (LR,
SVM) and HGAT. The examined models are verified on the same
test dataset with a class-imbalance ratio and label-masking
ratio. Performance evaluation measurements include sensitivity,
precision and AUPCR. It is worth noting that the baseline model
is trained with a single-label learning framework, whereas HGAT
is trained with multi-labels learning framework. Besides, the
optimal threshold for calculating sensitivity and precision is
determined by AUROC. Figures 5-7 are box-and-whisker plots of
the prediction performance for INH, PZA and EMB, respectively.
The performance of the RIF and INH models is similar. Please
see Tables (S4-S7) for detailed results. Figure 5A shows that HGAT
outperforms LR and SVM, except when the data are highly imbal-
anced (class-imbalance ratio (R:S) is 1:6). When the R:S ratio
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Figure 4. The isolate ‘00-R0435’: averaged isolate-level attention scores for (A) INH, (B) RIF, (C) EMB and (D) PZA.

is 1:3, HGAT’s area under the receiver operating characteristic
(AUPRC) has large interquartile range (IQR) (Q3-Q1); the AUPRC
of HGAT is as low as 84.4% at the high label-masking ratio (0.95).
This may be explained by the fact that the co-resistance related
pattern inferred by HGAT introduces errors in predicting INH-
resistance at high label-masking ratio. In Figure 5B, LR and SVM’s
sensitivity decreases as the training set shrinks to 80% or less,
whereas HGAT remains at about 95%. This shows that when
predicting INH resistance, HGAT performs better when the label-
masking ratio is high. In Figure 6, the sensitivity of HGAT is
always higher than that of LR and SVM. At the class-imbalance
ratio of 1:6, 1:2 and 1:1, HGAT’s AUPRC is better than LR and
SVM. At the ratio of 1:6 and 1:3, the precision of LR is higher.
This means that HGAT classifies less PZA-resistant samples to
be susceptible, whereas LR did better the other way around;
the former has a more significant error clinically. In Figure 6B,
LR and SVM’s performance decreases with the increase of the
label-masking ratio, and the sensitivity is as low as 60%. The
sensitivity of HGAT is always above 85%, and the precision and
AUPRC remain unchanged. This shows that HGAT is robust when
training with incomplete labels. In Figure 7A, HGAT’s AUPRC is
better than the other two methods except when the data are
relatively unbalanced (1:6 and 1:3). At the unbalanced ratio of 1:3,
the sensitivity of HGAT is higher than that of LR and SVM. When
the data are balanced, the average values of HGAT’s sensitivity,
precision and AUPRC are 93, 86 and 95%, respectively (nearly

15, 5 and 15% higher than the other two methods, respectively).
Figure 7B shows that the sensitivity of HGAT slightly increases,
but AUPRC remains unchanged whereas the label-masking ratio
reduces. In comparison, LR and SVM'’s sensitivity decreases from
86 to 66%, and the AUPRC decreases from 80 to 73%. The IQR of
AUPRC obtained by HGAT is relatively large, meaning that AUPRC
varies considerably over the different imbalance ratio. This can
be explained by the fact that the co-resistance feature is not
advantageous for HGAT when the data are strongly imbalanced.

Discussion
Performance explanation

In the evaluation of prediction performance, HGAT-AMRI-E out-
performs the others in terms of sensitivity for all four drugs
except RIF. This could be because the extra subset enables the
model to learn more patterns from data with incomplete pheno-
types. For RIF, the DA and conventional ML models outperform
the proposed models in sensitivity, specificity, and F1-score. This
can be explained by (i) ropB being the only gene related to RIF-
resistance among the considered genes and (ii) that most of the
RIF-resistance-associated SNPs in rpoB have been recognised.
In contrast, the proposed model considers all genes and the
performance was only lower than the best sensitivity, specificity,
and F1-score by up to 1% for RIF. This also testifies to the fact
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Table 3. List of the top-ranked SNPs for individual drug and all four first-line drugs jointly

INH EMB

1st-L 1st-H 1st-L 2nd-H 1st-L 1st-H 1st-L 2nd-H 2nd-L 3rd-H
’katG_S315T’, ’katG_S315T’, ’embB_M306V", ’embB_M3060’, "pncA_A102P’,
’katG_S315N’, ’katG_S315N’, ’embA_C-12T’, katG_I1248T’, ‘pncA_L4W’,
fabG1_C-15T’, fabG1_C-15T’, ’embA_C-16T, ’embA_G-76C’, ’pncA_V139L’,
"ahpC_C-54T’, 'fabG1_G-17T’, ’embB_Q497R’, ’'embA_Q1004P’, 'pncA_C14R’,
fabGl_G-17T, 'ayrA_G249G’, ’embB_M3060", ’embB_Q497R’, ’pncA_M175V°,
’fabG1_L203L’, "ahpC_C-54T’, ’embA_G-76C’, "katG_D448A’, 'pncA_V130G’,
'gyrA_G249G’, "fabG1_L203L’, ’embA_Q1004P’, ’embA_C-16T, ’pncA_V139G’,
"ahpC_G-48A’, 'rpoB_Q432K’, ’embA_C-8A’, ’embA_C-12T", 'pncA_V155G’,
'gyrA_D639A’, "ahpC_G-48A’, ’embB_G406S’, ’embA_E951D’, ’pncA_489_delC’,
’fabG1_T-8C’ 'gyrA_V374V’ ’embA_E951D’ ‘embA_C-8A’ 'pncA_V21G’
RIF Four first-line drugs

1st-L 2nd-H 1st-L 2nd-H 2nd-L 1st-H 1st-L 1st-H 2nd-L 1st-H
rpoB_V553V’, *rpoB_S450L’, 'rpoB_L731P’, fabG1_C-15T’, "rpoB_A286V",
'TpoB_S4S’, 'rpoB_D435V’, TpoB_A692T’, 'iniA_D549E’, 'rpoB_R827C’,
'rpoB_S1133S’, 'TpoB_P471P’, 'rpoB_I1106T’, 'gyrA_D641E’, 'rrs_C1474T’,
'rpoB_V359A’, 'rpoB_H445Y’, 'rpoB_Q409R’, 'embB_M306V’, 'rpoB_F503S’,
'rpoB_S431G’, 'rpoB_S1133S’, 'rpoB_R827C, fabG1_G-17T’, 'rrs_G368C’,
'rpoB_G-21C’, 'TpoB_V168A’, 'TpoB_S428R’, "’katG_S315T’, 'rpoB_I491F’,
"rpoB_H749Y’, 'rpoB_S4S’, 'rpoB_V170F’, ’embB_M3060", "rpoB_L430R’,
'rpoB_G876G’, 'rpoB_S450W’, 'rpoB_H445D’, 'gyrA_D94G’, 'rpoB_E481A’,
'rpoB_M434r’, "rpoB_L430R’, 'rpoB_H445C’, iniA_N88S’, ’rpoB_H445L’,
'rpoB_L430R’ 'rpoB_V553V’ 'TpoB_S431G’ 'gyrB_V210V’ 'rpoB_H445C’

Note: ‘L’ and ‘H’ denote layer and head, respectively.
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Figure 5. Inductive training performance of HGAT of for INH.

that the attention mechanism of the model is able to capture
the RIF-associated genes (equivalent to the type as described
in the model) and SNPs (equivalent to the node as described in
the model). Overall, the sensitivity was increased at the expense
of reducing specificity. F1-score is a harmonic mean of preci-
sion and recall. In the cases of EMB and PZA, the Fl-score is
lower because the sensitivities were lower and the trade-off
between sensitivity and specificity was larger than the cases of
INH and RIF. This can be explained by (i) the genetic pattern
of drug-resistance co-occurrence dominating the prediction of
EMB and PZA, (ii) the possible underestimation of the effect of
predictive SNPs associated with EMB and PZA or (iii) a greater
preponderance of phenotypic errors for EMB and PZA.
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Explanation of dual attentions

The layer-wise type-level averaged attention scores are able to
rank the interpretable genes for different drug-resistance pre-
dictions. The different attention heads capture different aspects
of the predictive genetic patterns. These scores would enable
researchers to (i) shortlist effectively the candidates of genetic
variables associated with specific drug-resistance by looking
into those highly ranked genes and (ii) efficiently identify the
candidates of contributed genes given all mutations, especially
when predicting drug-resistance without knowing the genes
associated with less-studied drugs. Furthermore, the pattern in
the layer-wise type-level attentions can be helpful in interpre-
tating genes when the isolates exhibit resistance co-occurrence.
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Figure 6. Inductive training performance of HGAT of for PZA.
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Figure 7. Inductive training performance of HGAT of for EMB.

For example, all layers and all heads that captured the gene rpoB
might explain the high probability that this gene is the only
RIF-resistance-associated gene, and the pattern of resistance co-
occurrence could minimally influence the RIF-resistance predic-
tion. Conversely, the EMB and PZA-resistance prediction could
be highly affected by considering whether the genetic pattern
corresponds to resistance co-occurrence.

Ranked SNPs

As with conventional feature selection in LR and RF methods, we
equivalently generated SNP ranking lists by averaging node-level
attention scores. Since the PMI initialisation has removed the
most frequent and least frequent words in the corpus (SNPs in all
samples), the proposed model will not consider those most and
least common SNPs, which aids in the discovery of informative
SNPs beyond the most dominant. With our two-level attention
structures, the proposed model was inclined to identify the SNPs
from the most dominant genes identified by the type-level atten-
tion. In the case of INH and EMB, the SNPs associated with resis-
tance were ranked higher by the first layer. For RIF, both the two
layers captured several subgroups of RIF-resistance-associated
SNPs. For PZA, only 2L3H identified PZA-resistance-associated
SNPs, whereas the other attentions captured the SNPs associated
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with other drugs due to drug-resistance co-occurrence. This list
is consistent with the type-level attention scores in Figure 2.
It is worth noting that increasing the number of heads would
allow discovery of more hidden patterns. This is because the
two-headed model, used for INH, RIF and EMB, cannot identify
the gene pncA, whereas the model was able to capture this gene
when its heads increased to four. We acknowledge that conven-
tional ML models along with the subset of selected SNPs could
improve the performance of prediction if that is the primary
factor of interest. Such subsets could include the most predictive
SNPs, although they may belong to genes that are unlikely to
contribute to resistance acquisition for the considered drug.
Here, we provide a way to rank the predictive SNPs from different
heads, which improves the model’s interpretability by "viewing”
the drug-resistance co-occurrence through different viewpoints
learned by the various heads.

Explanation of ‘transductive’ and ‘inductive’

Transductive learning is equivalent to standard supervised
learning, where each sample (i.e. the nodes in graph model)
in the training set has complete annotations. The inductive
learning is semi-supervised learning, where not all samples of



the training set have annotations and the unlabelled samples are
considered to be ‘silent’ for classification. In the framework of
multiple label learning, an advantage of the inductive learning
would be that each sample in the training set is allowed to
have incomplete annotations for all labels. In the context of
multiple drug-resistance predictions, the ‘inductive’ training
allows the isolates to have phenotypes missed randomly for
drugs. As we have discussed, it is common to have incomplete
phenotype annotations with respect to the full spectrum of
drugs. The inductive learning method allows those samples
with incomplete phenotypes to be used as much as possible
and reduce information loss. It can be generalised for less tested
drugs. For certain drugs, the predictive influence of resistance
co-occurrence can be mitigated by randomly removing the
phenotype of different drugs. In the case of INH, when the
data are highly imbalanced (1:6), the three models’ precision
and AUPRC decrease, but the mean and median remain higher
than 90% (as shown in Figure 4A). Meanwhile, the three models’
precision and AUPRC maintains at about 95% as the label-
masking ratio increases (as shown in Figure 4B). This may be
because there are very few genetic factors that distinguish INH-
resistant samples from non-resistant samples. For example,
if we do not consider the known INH-resistance-associated
genes, the sensitivity drops to 50%, and the precision is still
higher than 90%. In the case of PZA, it is worth noting that
the original data’s class ratio for PZA was around 1:3. In the
experiment, we down-sampled susceptible samples to make
the data more balanced and down-sampled resistant samples
to have more imbalanced data. It implies that (i) adding PZA-
susceptible samples helps improve the performance of HGAT,
but not for LR and SVM and (ii) reducing PZA-resistant samples
hurts all three models. In the case of EMB, all three methods’
performance is low when the imbalance ratio is 1:6 (as shown
in Figure 6A). It suggests that severe imbalance of data harms
both single-label and multi-label learning models. The HGAT
outperforms the other two models when the data are balanced.
This may be because HGAT is enhanced by multi-label learning,
and the inferred co-resistance pattern helps the prediction of
EMB-resistance.

Limitations

The proposed model uses full gradients of all nodes and the
entire adjacency matrix within the graph, and so one of its
limitations is high computational cost. It requires more efficient
methods than those used here to deal with whole-genome data
and much larger datasets. In this study, we only applied up
to three head attentions in each layer due to the computa-
tional cost. We demonstrated these scores on a new training set
by combining the original training and testing datasets, which
could lose the information in the validation dataset. Mean-
while, because the initialisation was carried on the entire dataset
in an unsupervised manner, this might be problematic if the
nodes were unseen in the training set. This could be resolved
by extending the model to the generative model.

Conclusion

In this work, we proposed HGAT for predicting MTB drug resis-
tance. By considering a different number of genetic variables
per genetic sample and the relationship between mutations
and corresponding genes, the HGAT can model genetic samples
with more interpretability. The dual-level attention scores offer a
better insight for understanding the resistance mechanism from
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the levels of mutations and genes for different anti-TB drugs. The
identified drug-resistance-related genes are correctly identified
for the examined anti-TB drugs. The most top-ranked mutations
are consistent with domain knowledge. The multi-label optimi-
sation scheme coupled with graph learning enables the model
to learn from the data with incomplete drug-resistance pheno-
types. The experiment results show that the proposed model is
more robust when the training data are highly imbalanced and
when more phenotypes are missing.
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