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Virtual Contrast for Coronary Vessels Based on Level
Set Generated Subvoxel Accurate Centerlines

Ingmar Bitter,1 Robert Van Uitert,1 Ivo Wolf,2 Efstathia Tzatha,3 Ahmed M. Gharib,3

Ronald Summers,1 Hans-Peter Meinzer,2 and Roderic Pettigrew3

1 Diagnostic Radiology Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892-1182, USA
2 Division of Medical and Biological Informatics, German Cancer Research Center, Heidelberg 69120, Germany
3 National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-2281, USA

Received 31 January 2006; Revised 30 May 2006; Accepted 6 June 2006

We present a tool for tracking coronary vessels in MRI scans of the human heart to aid in the screening of heart diseases. The
vessels are identified through a single click inside each vessel present in a standard orthogonal view. The vessel identification results
from a series of computational steps including eigenvalue analysis of the Hessian of the MRI image followed by a level set-based
extraction of the vessel centerline. All identified vessels are highlighted using a virtual contrast agent and displayed simultaneously
in a spherical curved reformation view. In cases of over segmentation, the vessel traces can be shortened by a click on each vessel
end point. Intermediate analysis results of the vessel computation steps can be displayed as well. We successfully validated the tool
on 40 MRI scans demonstrating accuracy and significant time savings over manual vessel tracing.
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1. INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes
of mortality and morbidity in the USA and other industri-
alized nations [1]. Although conventional cardiac angiogra-
phy remains the “gold standard” for the evaluation of CAD,
it is an invasive procedure that is associated with morbid-
ity (1.5%) and mortality (0.15%) risks [2]. Coronary CT an-
giography (CTA) is emerging as a promising noninvasive al-
ternative [3]. However, this technology requires patient ex-
posure to substantial amounts of radiation [4] and poten-
tially nephrotoxic contrast agents as in conventional angiog-
raphy. As a result, coronary magnetic resonance angiography
(CMRA) provides a more patient friendly option for CAD
assessment [5] without the use of contrast agents and radia-
tion. Unfortunately, currently the MRI image signal-to-noise
ratios and the maximally achievable resolution are not as
high as for CTA. This complicates the process of identifying
the vessels and MRA targeted vessel segmentation and analy-
sis tools usually fail. Thus, the common solution is still time
consuming, manual vessel tracing. Our research presents an
MRI coronary identification software tool that is able to track
and intuitively display the MRI data along all three main
coronary vessels. A typical screenshot of the software is pre-
sented in Figure 1.

A core component of the system is the computation of a
centerline for each vessel. As the vessels are only a few vox-
els thick, it is important to compute the vessel centerlines at
subvoxel accuracy. They must also be inherently smooth to
yield a smooth display of the vessel in the spherical curved
reformation view.

The next section describes the technical background of
our methods followed by related work and a description of
the novel methods used in our system. We conclude with
showing and discussing results acquired with our software.

2. BACKGROUND

Many automatic and semiautomatic skeletonization tech-
niques compute the centerline of an object on the voxel grid
with optional subsequent smoothing [6–16]. These discrete
centerline solutions are inappropriate for vessels that are only
a few voxels thick. Subsequent smoothing may displace the
centerline from the vessel center and is thus inappropriate
as well. Another method [17] computes the centerline as a
minimum cost B-spline. This delivers an inherently smooth
centerline, but is computationally expensive due to the ex-
plicit global optimization. The same holds for [18], which
iteratively computes a globally optimized NURBS curve that
locally minimizes the vessel cross sections perpendicular to
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Figure 1: A screenshot of the MRI coronary vessel tracking tool
with axial (red), sagittal (green), coronal (blue), and spherically fit-
ted “thin plate spline” (yellow) 3D views showing all three main
coronaries virtually enhanced.

the curve. In contrast, our prior centerline algorithm effi-
ciently and automatically extracts a smooth, continuous cen-
terline directly at subvoxel precision [19]. Our algorithm is
based on level sets. Level set methods evolve an isosurface
in the direction of the surface normal [20]. In its general
form the evolution speed can depend on position, normal
direction, curvature, and shape; and the isosurface can cross
over the same point multiple times. In our centerline method
the evolution speed is always positive and depends only on
position. Hence, its boundary front moves only outwards.
With these restrictions the isosurface can be represented by
an Eikonal equation:

|∇T|F = 1, T = 0 on Γ, (1)

where T is the arrival time function, F is the speed of evolu-
tion function, and Γ is the initial isosurface at time zero.

An efficient method to numerically evaluate the solution
to the Eikonal equation is the fast marching method [20]. It
processes the voxels in a sorted order based on increasing val-
ues of T . The fast marching method calculates a time cross-
ing map, which indicates for each pixel how much time it
would take for the level set front to arrive at the pixel loca-
tion. The evolution only needs to be computed on a recti-
linear grid. However, values at nongrid locations can be in-
terpolated from these grid positions properly to simulate the
true propagation value.

Several other centerline methods based on level sets have
been previously presented [10–12]. One approach [10] com-
putes centerlines by first detecting medial axis points at the
locations where the level set fronts collide and form sharp
discontinuities. However, the level sets are only computed
on two dimensional cross-sections of the three dimensional
data, which are not identical to the 3D discontinuities. Next,
the algorithm performs topological thinning and filling in
of gaps with voxels along straight lines which may not re-
sult in positions on the skeleton. Other methods [11, 12]

make use of the full 3D data in its level set propagation and
guarantee a minimum cost, discrete solution, but as pointed
out before, do not extract the centerline with subvoxel ac-
curacy. In addition, algorithms [6–10] require a segmenta-
tion of the vessel as input. In our images it is very difficult
to segment the vessels accurately and completely. Hence, we
were looking for an algorithm that does not require a seg-
mented vessel as input. An algorithm that is subvoxel accu-
rate and does not require vessel segmentation is presented
in [21]. It directly traverses the centerline along ridges in
a Hessian medialness measure, but it performs a sequence
of local greedy decisions that do not guarantee a globally
optimal solution. The methods in [11–17, 21] use Hessian
matrix analysis to track a vessel with having to segment its
boundaries first. Computing the Hessian at different scales
proved to be beneficial for vessels varying greatly in thick-
ness, but was not necessary for our data. Table 1 lists the
prior methods and classifies them according to the main al-
gorithm ideas. In [22], 94 vessel extraction algorithms are
compared: only 50% of them do compute an explicit cen-
terline, only one uses level set methods, but not for cen-
terline tracking and only one uses Hessian eigenvalues, but
not in combination with level sets. Our proposed algorithm
combines the benefits of the previous methods without their
shortcomings. It can find minimum cost, subvoxel accurate
centerlines of thin vessels without the need of first segment-
ing them.

2.1. Subvoxel accurate centerline algorithm

The most closely related prior algorithm is our input seg-
mentation dependent, subvoxel accurate centerline algo-
rithm [19]. It uses a level set segmentation of the vessel
to obtain a subvoxel accurate surface and a Euclidean dis-
tance transform of the object. This distance transform is
then used as a speed image in a fast marching level set
method with propagation starting at the global maximum
point of the distance transform. The fast marching method
propagation is augmented to calculate the geodesic dis-
tance in addition to the time crossing map. The furthest
geodesic point from the global maximum point is used as
the start point of the vessel centerline and the remaining
points of the centerline are determined by performing a gra-
dient descent on the time crossing map with a subvoxel step
size.

The algorithm presented in this paper is an extension of
this previous method, which handles the absence of vessel
segmentation and improves upon the computation speed of
the level set propagation.

2.2. Vessel enhancement

In order to track thin vessels without an explicit represen-
tation, we found it necessary to process the MRI images
using vessel enhancing image filters. Given the eigenvalues
λ3 ≤ λ2 ≤ λ1 of the 3 × 3 Hessian matrix for each 3D image
pixel, it is possible to compute a likelihood of the pixel being
part of a linear structure [23, 24]. This measure, which we
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Table 1: Comparison of ideas used in various vessel centerline computation methods. “+” stands for the best idea within a group, “0” for
average, and “−” for the least desirable idea in a group.

Vessel centerline computation reference [6–10] [11] [17] [18] [12] [13] [14, 15] [16] [19] This paper

2D − −
2D and 3D + + + + + + + +

Prior vessel segmentation required − −
Vesselness from intensity only −
Vesselness from Hessian eigenvalues + + + + + + +

Path cost from segmentation distance map − −
Path cost from vesselness 0 0 0 0

Path cost from multiscale vesselness + + + +

Discrete cost propagation − − − −
Level set wave cost propagation + + + +

Centerline extraction as minimum cost B-spline 0

Centerline as minimum vessel cross-section NURBS 0

Discrete centerline, optional post smoothing − − − − − −
Smooth centerline (wave gradient decent) + +

Computation only for the most obvious path +
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and α = 1/4 and γ = 1/2.
This vesselness υ has been used before to improve visual-

izations of linear structures [23, 24], but we are using it to as-
sist in vessel tracking. However, other similar equations have
been used for vessel identification before [25].

2.3. Curved reformation vessel view

A good vessel centerline can be used to create a curved ref-
ormation vessel view. One such method is to stretch the ves-
sel and display its surroundings with as little distortion as
possible [26]; however this is not appropriate for a view that

is supposed to include multiple vessels. The “soap bubble”
method [27] allows projection of multiple vessels to a plane,
preserving the relationship of the vessels to each other, but
for roughly spherically arranged vessels, the projected vessels
may overlap or surrounding tissue may be severely distorted.
We use the spherical curved reformation method [28], which
eliminates the problems of the “soap bubble” method for the
specific case of coronary vessels. It achieves this through pro-
jecting a spherical approximation of the heart onto the ves-
sels with little distortion, followed by a standard globe un-
rolling onto a rectangular view as done for any world map.
The minimal distortion is the consequence of minimizing the
energy of a “thin plate spline” being fit to the vessel points
[28].

3. METHODS

While the system is designed to look at all vessels at once,
processing is done one vessel at a time. The user identifies
each vessel initially by clicking on one landmark point for
each vessel.

3.1. Vessel centerline computation

The vessel centerline computation results from a series
of computational steps (Figure 2). Initially, noise removal
is performed on the MRI data by using edge preserving
anisotropic diffusion filtering. Next, the intensities are nor-
malized through a sigmoid window whose parameters are
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(1) Remove noise

(2) Place landmark A inside vessel

(3) Normalize intensities

(4) Compute vesselness

(5) Sigmoid vesselness to speed image

(6) Propagate wave to spearhead start

(7) Propagate spearhead wave

(8) Autocreate landmark B at end

(9) Back trace partial centerline to A

(10) Intensify speed image on centerline

(11) Propagate wave to spearhead start

(12) Propagate spearhead wave

(13) Autocreate landmark C at end

(14) Back trace full centerline to B

(15) Create spherical reformation

(16) Crop vessel end points to D and E

(17) Repeat for other vessels

Figure 2: Steps of the algorithm needed to track and display vessels.

A
B

D

C

E

Figure 3: Landmark A is initially manually placed inside the ves-
sel. Landmarks B and C are automatically placed by the algorithm.
Vessel end points D and E are manual corrections of points B and
C which are placed on the curved view without the need to scroll
through multiple images.

determined from the MRI intensity I at the first landmark
point (A in Figure 3) which must be inside the vessel and is
assumed to be the maximum intensity in the local neighbor-
hood. The width of the sigmoid window is equal to I and the
center is at I/2. Subsequently the vesselness, υ, is computed
for each pixel in the image by (2) from the Hessian matrix
of the image. The partial derivatives that form the Hessian
matrix are a result of convolving the smoothed MRI image
with the derivatives of a Gaussian with 3σ covering 2 mm,
which is the median of the expected vessel diameter. This
vesselness map is then normalized using a sigmoid window.
Again the window parameters are relative to the landmark
point (width = õ, center = õ/2), which maximizes the con-
trast in the transition region. Values in the normalized ves-
selness map are clamped to zero if they are less than 33%
of the maximum value. The clamp threshold and σ were de-
termined empirically for a single dataset and applied for all
others.

This resulting vesselness map (middle image in Figure 4)
is used as a speed function for a fast marching level set
method that starts at the initial vessel landmark point A.
However, instead of computing the fast marching through
the complete image or at least until the entire vessel is covered
(as in [11]), the computations are stopped when a point 1 cm
from the landmark point is reached. Due to the nature of the
vesselness computation, the highest speed values are found
in the center of the vessel, and thus the point first reached
at 1 cm distance (larger than the vessel radius) must be cen-
tral to the vessel. This point is then defined as the “spearhead
point.” The fast marching method is now continued, but only
newly discovered points that are within 1 cm of the “spear-
head point” are allowed to be added to the evolving sur-
face of the fast marching method. Each time a new furthest
geodesic distance point is found, the “spearhead point” is up-
dated. Consequently, only a small band of voxels along the
vessel is involved in the computation. When the modified fast
marching method has processed all of the points in the con-
nected object, the final “spearhead point” is the most distant
trackable vessel point. This becomes the second, automatic
landmark point (B in Figure 3). The steepest gradient decent
from the second to the first landmark point yields a partial
vessel centerline. This centerline is not based on local greedy
decisions, but is the minimum cost path with respect to the
given vesselness speed image. Next, the speed image is inten-
sified along this partial vessel. With the updated speed image,
the above described fast marching method is started from the
second automatic landmark. Again, only a small band of vox-
els along the vessel are involved in the computation. When
the second fast marching method algorithm completes, the
resulting “spearhead point” becomes the third, automatic
landmark point (C in Figure 3). Intensifying the speed im-
age along the first partial centerline is necessary to guarantee
that the initial path of the second fast marching does not de-
tour into a vessel branch. Finally, the steepest gradient decent
from the third (C) to the second (B) landmark point yields
the complete vessel centerline (Figure 5).

Once the centerline is computed, a virtual contrast
dataset can be created. The virtual contrast dataset has the
original data as its basis, but each pixel is intensified that is
within 2 mm (expected vessel radius) of the computed cen-
terline and also has at least 33% of the maximal vesselness
intensity in the initial speed image.

The above process can be repeated for each of the de-
sired vessels. After the centerline for each vessel has been
computed, a new spherical curved reformation can be gen-
erated from all current vessel centerlines. The length of
each of the vessels is displayed on the graphical user in-
terface. In order to be able to bridge areas of stenosis or
low signal, short (< 1 cm) sections of low vesselness (be-
low 33% of the maximum intensity value) are allowed, as
long as the tracking can be continued with more obvi-
ous vesselness pixels after the gap. Unfortunately, this some-
times also causes the tracking to go beyond the vessel ends
into other nearby vessels or to jump onto the edge of the
heart, which may not be totally suppressed in the speed im-
age. In this case, the curved reformation view can be used
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(a) (b) (c)

Figure 4: Three key steps along the processing pipeline: smoothed image, vesselness map speed image, and virtual contrast image.

Figure 5: Spherical reformation with superimposed vessel center-
line.

to allow the user to manually relocate the second and/or
third landmark point to the desired vessel endpoint(s) (D
and E in Figure 2). The system then adjusts the centerline
to only cover the vessel between these updated vessel end
points. System validation was based on visual assessment of
completeness of the tracked vessels, partial success was de-
fined as a section of the vessel being visible in the scan,
but not tracked. The scanning protocols used for the vali-
dation were (A) standard imaging parameter, (B) shortened
acquisition window, (C) isotropic acquisition voxel resolu-
tion, (D) short-axis plane aligned with the right coronary
artery.

4. RESULTS

The algorithm presented was validated on 40 MRI cardiac
scans with volume sizes of 512×512×100 to 512×512×300
containing 0.5× 0.5 mm images with 0.5 to 1 mm spacing in
the z-direction. The data came from 10 volunteers scanned
each with four scanning protocols. The right coronary artery
(RCA) was found completely for 90% of the volunteers on
two protocols (A, B), for the other protocols 80% (B) and
70% (D) of the MRI scans had completely tracked vessels.
For the incomplete scans it was possible to complete them
by treating the missed vessel section as a new vessel. Figure 3
shows some intermediate and final results.

Completing the interactive part of the vessel tracking was
accomplished within one minute. On a professional medi-
cal image analysis workstation a trained radiologist took 2.5
minutes to hand segment a vessel via coarse contours on ev-
ery third slice that were then interpolated by the system.

5. DISCUSSION

The results in Figures 1, 3, and 5 show spherical curved refor-
mations of the three main coronary arteries. In this example
for two arteries joined near the aorta a single landmark was
sufficient, but for the third both endpoints needed to be cor-
rected. In either case, the user interaction time required is
minimal when compared to manual vessel tracking.

All numerical parameters listed in this algorithm degrade
gracefully. A 10% change of the parameter value has only a
small impact on the final result, but doubling or halving it
usually significantly shortens the identification of vessel seg-
ment.

The novelty of this research is two fold. First, it lies in
the creation of a time saving tool that combines the idea
of semi-automatic tracking with spherical curved reforma-
tion. Second, it improves over prior work on the method
of finding the vessel centerline. Due to the low signal-to-
noise ratio on the MRI input images, the vesselness map is
a network of mutually connected vessels and pseudovessels.
Following all branches as done in [10] frequently results in
automatically found vessel end landmarks that are very far
from the intended vessel end. The restriction of expand-
ing the fast marching only near the “spearhead point” al-
lows for a much more intuitive behavior of the algorithm.
The manual clipping of the traced path to only the por-
tion within the vessels is easily performed on the spherical
curved reformation view and no scrolling through slices is
needed.

6. CONCLUSIONS

This paper has presented a semi-automatic algorithm for de-
termining centerlines of the main coronary vessels and its
application to creating virtual contrast enhanced MRI scans
that are displayed in an intuitive spherical curved reforma-
tion view. The method can track vessels even in the pres-
ence of low signal-to-noise ratios, is subvoxel accurate, and
is more computationally efficient than previous methods.
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