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Abstract The safety of traditional Chinese medicine (TCM) is a major strategic issue that involves human
health. With the continuous improvement in disease prevention and treatment, the export of TCM and its related
products has increased dramatically in China. However, the frequent safety issues of Chinese medicine have
become the ‘bottleneck’ impeding the modernization of TCM. It was proved that mycotoxins seriously affect
TCM safety; the pesticide residues of TCM are a key problem in TCM international trade; adulterants have also
been detected, which is related to market circulation. These three factors have greatly affected TCM safety. In this
study, fast, highly effective, economically-feasible and accurate detection methods concerning TCM safety issues
were reviewed, especially on the authenticity, mycotoxins and pesticide residues of medicinal materials.
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1. Safety issues of traditional Chinese medicine (TCM)

1.1. Safety issues of adulterants and toxic TCM in the market

Various TCM materials are confusing because of historical and
geographical reasons and this confusion brings enormous danger
to the TCM safety. Potent toxic substances, including aconite,
aristolochic acid, anticholinergic, podophyllin, grayanotoxin, pyr-
rolizidine alkaloids, matrine, gelsemine, teucvin and strychnine1–4,
were easily misidentified, erroneously substituted with other herbs
or intentionally adulterated for greater benefit. Traditional identi-
fication methods recognize materials by the morphological char-
acteristics of TCM; such methods mainly depend on the expertise
of the person who identifies. Once misidentified, the TCM can
cause serious toxicity problems5–8. The problem is, however, that
we are facing the lack of the experts in TCM identification. At
present, the most commonly used detection platforms are based on
analytical laboratory instruments. These approaches fail to meet
the purpose of rapid on-site analysis in the quarantine clearance of
quarantine-related departments.

1.2. Mycotoxin-related safety problems of TCM materials

Medicinal plants are the main raw materials in TCM production.
These plants may be infected by fungi and mycotoxins during their
growth in fields or in the process of harvest and storage, thereby
increasing the odds of significant health problems induced
by TCM (e.g., teratogenesis, immunotoxicity or even cancer)9.
Currently, 500 different mycotoxins have been recognized, among
which the most common and of particular interest are aflatoxins
(AFs), ochratoxins, fumonisins and deoxynivalenol (DON). Med-
icinal plants, such as platycladi seed and raw malt, are often
infected by AFs10. The positive rate of AFs present in Nelumbo
nucifera (Gaertn.) is up to 70%, in which the content of 30% AF
B1 samples and the total content of 25% AF samples both exceeds
the standard limits of 5 μg/kg and 10 μg/kg, respectively11. Moldy
licorice samples are infected by both AFs and ochratoxin A
(OTA), and their infection levels are relatively high12,13. In OTA
investigations of 57 medicinal material samples distributed in six
regions in China, the results showed that the positive rate of
molded samples by storage is 74%, and that of un-molded samples
is only 8%. The OTA content of partial samples exceeded the
standard limit set by the European Union, implying serious
undetected toxicity for clinical drug use14. Furthermore, Semen
Coicis listed in the ‘Medicine Food Homology’ could be easily
infected by zearalenone (ZEN) besides DON, and Baohe pills
made from the powder of Semen Coicis are also easily infected by
DON15,16. In recent years, foreign scholars reported that 5% OTA
in licorice root was transferred into boiling tea, and 1% OTA was
transferred into impregnated tea17–19. The above results demon-
strate the urgent need for the monitoring of mycotoxin residues
during TCM production.

1.3. Pesticide-related safety problems of TCM materials

More than 12,000 pesticides exist throughout the world. The
pesticides mainly found in TCM materials include organochlorine,
organophosphorus, pyrethroid and carbamate pesticides20,21.
Although organochlorine pesticides have been banned for many
years, their residues may still exist in TCM because of their stable
nature. Moreover, these residues are uneasy to decompose and can
be stored in water, soil or biological organisms for a long time.
Long-term use of TCM may lead to exposure to pesticide residues
beyond safety limits, resulting in bioaccumulation and poisoning.
Some cause-and-effect relationships of pesticides (e.g., arsenide
and organochlorine) have been clearly established. Epidemiologi-
cal investigations showed that the risk of cancer is increasing in
rural areas, including leukemia, malignant brain tumor, testicular
cancer, multiple myeloma and lymphoma. Washing methods can
be used to remove residual water-soluble pesticides from the plants
successfully. However, to remove most fat-soluble pesticides,
which possess high biological attachment coefficient, strong pene-
trability, and can easily enter plant, washing is much ineffective.

In view of the above, the establishment of accurate, rapid and
simple methods for safety monitoring of TCM materials is
urgently needed.
2. New rapid detection methods of the safety monitoring of
TCM materials

2.1. Rapid detection of authenticity

2.1.1. DNA barcode
DNA barcode was proposed for the first time by Canadian
zoologist Paul Hebert in 200322. It is a new molecular diagnostic
technology that identifies species using a recognized standard short
sequence in the genome. Gregory23 believed that global DNA
barcode innovation research would become a “big science”
program after the human genome project. Miller24 explained and
popularized DNA barcoding in “the Renaissance of DNA barcode
and taxonomy”. DNA barcode has become a global research
highlight and direction for biological taxonomy in both academic
journals and lay media. DNA barcoding technology has super-
ceded the limitations imposed by traditional morphological identi-
fication methods. By establishing a TCM identification database,
the digitalized DNA barcode moves TCM identification methods
from morphological identification to molecular identification25.

Based on standardized DNA barcodes and universal primers,
the DNA barcode method is universal. By comparing sequences
among species, identification can be easily processed without the
taxonomic knowledge of a specialist. DNA barcoding is not
restricted by morphological characteristics and physiological
conditions. Researchers can accurately determine the information
of a species by analyzing DNA sequences. Chen et al.26 first
developed ITS2 as a DNA barcoder of medicinal plants, estab-
lished a plant barcode identification system that was mainly based
on ITS2, and used psbA-trnH as a complementary barcode. This
system has high identification efficiency in Rosaceae, Asteraceae,
and many other families or genera27–33. Chen et al.34 also
developed an animal barcode identification system, which was
mainly based on CO1, and used ITS2 as acomplementary barcode.
Chen et al. completed the construction of a standardized DNA
barcode database of TCM materials and identification website
(http://www.tcmbarcode.cn/en/). With this platform, rapid identifi
cation of original plants, pills, powder, tissues, or cells can be
realized. The TCM barcode database will become permanent data
that can be improved by adding new research sequences from
taxonomists. Based on the database of the TCM barcode, Chen
et al. designed the DNA barcode identification software for many
companies to meet their requirements of rapid detection. Chen's
research35,36 proposed a new perspective for potential universal
barcode sequence identification of all land plants, stimulating wide
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discussion. The proposed barcode ITS2 has become a hotspot in
international plant barcode research.

DNA barcoding can achieve rapid, accurate and automated
identification of species without material specificity. In basic
laboratories, researchers use DNA barcoding to detect and identify
a large number of samples of herbal materials. The whole process
of rapid identification can be completed within 4 h, which meets
the requirement of entry-exit inspection and quarantine where
identification demands a rapid, high-throughput, sensitive, accurate
test for TCM materials. DNA barcoding has very good application
potential in toxic TCM identification. Our group have developed a
special molecular method which could identify all the materials
containing aristolochic acid (AA), and we have also designed
special primer to identify all the TCM materials containing
retronecinetype and otonecine-type pyrrolizidine alkaloids (PAs).

On the other hand, authentication of TCM and their adulterants
were widely carried out by using species-specific PCR and
microarray37–39. With the dramatic reduction in the cost of high-
throughput sequencing, full-length sequencing of the chloroplast
gene sequences can be used to find one suitable sequence as a
DNA barcode or the entire chloroplast genome can be used as the
ultra-barcode40,41. Another alternative is the application of the
single nucleotide polymorphism (SNP) method42.

2.1.2. SNP identification
Based on DNA barcoding analysis, Chen et al.42 detected two
stable SNPs for Panax ginseng and Panax quinquefolius authenti-
cation, whereas Liao et al.43 obtained two SNPs for identifying
Panax notoginseng. With the development of DNA barcoding,
increasing amounts of SNPs have been discovered. A series of
detection methods for SNPs has been explored, such as single-
strand conformation polymorphism (SSCP) and invader assay with
dual-color fluorescence polarization detection. However, all these
methods have some shortcomings, such as complex methodology,
time-consuming steps, and expensive instruments, all of which
discourage wide implementation. Therefore, microarray-in-a-tube,
gold nanoparticles (GNPs), and nucleic acid test strips have good
potential for fast detection of SNPs.
2.1.2.1. Microarray-in-a-tube. Microarray-in-a-tube is a novel
DNA microarray technique in which specific nucleic acid probes
are immobilized on the inner surface of a converted Eppendorf
tube cap. Different from conventional glass microarray, the probes
are arranged on a plastic substrate by agarose film. An inner vessel
to store the hybridization solution is placed in the sealed tube.
After amplification, the tube can be inverted and hybridization can
be performed without contamination44. Liu et al.45 successfully
detected single-base mutations of HIV-1 resistance through
microarray-in-a-tube. Considering the quenching ratio, single base
mismatch discrimination ratio, and time-cost, Wang et al.46 proved
that this method has an advantage over the traditional chip.
Moreover, Liu et al.47 detected four respiratory tract viruses using
microarray-in-a-tube accompanied with reverse transcription-PCR.
The sensitivity of the system for virus detection can reach 102

copies/μL. Liu et al.45 prepared kits for several viruses.
Microarray-in-a-tube can be used in the detection of similar
clinical respiratory viruses, such as distinguishing the SARS virus
from other viruses. The major advantages of the method are multi-
virus detection and elimination of contamination.

Currently, microarray-in-a-tube is a fast and feasible technology
in the detection of SNPs. Based on the theory, SNPs in TCM can
be detected through microarray-in-a-tube. Investigations on SNP
detection kits for P. ginseng, P. quinquefolius, Ophiocordyceps
sinensis, and other expensive medicinal materials are currently
underway.
2.1.2.2. GNP technology. GNP is an SNP detection method
based on color reaction. It is based on a method in which single-
or double-stranded DNA has different electrostatic interactions
among the GNPs. GNP is based on the characteristic that DNA
bases are strictly complementary paired and hybridized to form
double-stranded DNA; it uses the color change or aggregation
condition as the signal to determine whether the detected sequence
of a target gene has mutations or not48. Given that GNPs have
unique physical and chemical properties, this methodology can
improve the accuracy and stability of biological detection.

In recent years, the use of GNPs for gene mutation detection
and analysis of SNPs has shown rapid development in the research
field. Many scholars have contributed to the methods of gene
mutation and SNP detection by GNPs49–56. For example, Rothberg
designed a new method according to the dynamics of double-
stranded DNA melting, and their results showed that the method
can detect a minimum of 100 fmol of target DNA within 5 min.
Their probes did not need thiol modification and the PCR products
did not require purification, so the detection steps were further
simplified and the cost was reduced. Bao's studies57 have shown
that GNP probes combined with gene chip have many advantages,
such as simple operation, short operating time, specificity and high
sensitivity. GNP technology is convenient in gene mutation
detection and SNP analysis.

GNPs are easily prepared and stored. Their advantages include
high detection sensitivity and simple observation. With this
technology, the herb-specific detection probes, complementary
target sequence, and oligonucleotide DNA with single-base muta-
tion sequences can be designed according to SNP sites. At room
temperature, detection probes are hybridized between complemen-
tary sequences and single-base mutation sequences in the sequence
buffer. With the addition of NaCl solution, the GNP solution
produces distinctly different color changes in two hybridization
solutions. Thus, the authenticity of medicines can be identified in a
fast, effective, and stable manner. GNPs do not require special
markers, such as fluorescent dye or expensive equipment, so this
technology can achieve low-cost, high-throughput, high sensitivity
and high automation detection58. This method can be used for on-
site testing of TCM materials.
2.1.2.3. A nucleic acid amplification test strip method. Isother-
mal nucleic acid amplification is a methodology that extends the
length of target DNA sequences or increases their copy numbers at
a specific temperature. Compared with PCR, this technique can
conduct amplification in an isothermal period, thereby eliminating
the requirements for instruments. Moreover, the temperature
control system can be operated by a heating module, water bath,
or other simple instruments. Hangzhou USTAR Bio-tech Limited
developed a fast detection technique for SNPs. This technique
contains one-step PCR and a nucleic acid test strip, which is a
detection method for specific extension products. In this technique,
the regions containing SNPs are amplified unspecifically at first.
The SNP sites are then specifically amplified by allele-specific
PCR. Finally, the specific amplification products are detected by a
nucleic acid test strip59.

Wang et al.60 designed a suite of loop-mediated isothermal
amplification primers for the sequences of the exogenous gene
Cry1ab/ac in Bt-transgenic crops. Given the method's high
reliability, specificity and stability, it can be used in the rapid
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on-site detection of Bt-transgenic crops. Qin et al.61 established
cross-priming amplification for the rapid detection of Vibrio
cholerae, and the method was proved to have high specificity
and stability. Wang et al.62 developed a new method for the rapid
detection of mtDNA G1178A mutation based on the SNP test
strip; the result of the SNP test strip was identical to that of DNA
sequencing. Zhang et al.63 used this method to detect Mycobacter-
ium tuberculosis in sputum, and found that this method is fast
(within 2 h), sensitive, and easy to operate (it does not rely on
expensive equipment). Zhang et al.64 developed a nucleic acid test
strip method to detect Bursaphelenchus xylophilus, and proved
that the method can be applied in the rapid identification of B.
xylophilus in entry-exit inspection and quarantine. The test strip
technique has also been reported in other fields of biology65–68.

The author's research group has established a sophisticated
database of the DNA barcode of TCM plants. More and more SNP(s)
have been discovered for identification. Using specific-primer
isothermal PCR combined with nucleic acid test strip technique,
we can design specific rapid detection kits for some TCM
materials, allowing the direct detection of amplification results
without electrophoresis, PCR, and other expensive equipment.
Therefore, fast on-site detection can be conducted.
2.1.3. Information platform for geographic traceability of TCM
Chinese herbal medicine traceability technology permits circula-
tion information on herbal medicines to be recorded and traced69.
This technology ensures the safe use of herbal medicines. Barcode
technology is presently the main technology for traceability. A
barcode is a set of graphics arranged by certain encoding rules for
storing information, and it can be divided into 1D and 2D
barcodes. Each code system has its own specific character set
and validation functions70. Compared with the 1D barcode, the 2D
barcode is extensively used in many fields because it can store
large data and encode numbers, letters, and characters. The 2D
barcode systems have become popular for media, traceable
security system, business cards, social networking, marketing,
and electronic payments in China71,72. Several studies have
applied the 2D barcode in food traceability70,73–75. 2D barcode
not only can be used for the origin traceability of food and herbal
medicine, but also can be used in tracking entire production
progress76. Yan et al.77 applied the 2D barcode for GAP
production progress of herbal medicine, and developed 2D
barcode-based GAP production patterns. Jin et al.78 provided a
new method of medicinal slice warehousing by 2D barcode-based
medicinal slice logistics management. Liu et al.79 successfully
converted DNA barcoding information into 2D barcodes. We have
developed an automated process of DNA barcode sequences by
converting them into colorful 1D barcodes and 2D barcodes. Users
can conveniently use mobile terminals, such as mobile phones, to
obtain DNA barcode sequences by scanning barcode images, and
submit the sequences to the world's largest DNA barcode database
of TCM (http://www.tcmbarcode.cn/en/) for analysis. Barcode
traceability technology is often combined with databases and
networks. The barcode acts as a carrier for information transfer
and network as a bridge in information flow, and the database acts
as a warehouse for traceable information storage. Information of
each phase of circulation is stored in a database through the
network and converted into a 2D barcode, whereas traceability
information can be obtained by scanning a 2D barcode image and
searching the database. This combination is convenient for
recording and management of information, and can achieve rapid
transmission and information retrieval. Considering the popularity
of smartphones, 2D barcode traceability technology no longer
needs to rely on a specific barcode reading machines or software.
The advantages and disadvantages of these fast identification
methods were listed in (Table 1).

2.2. Rapid detection technology of mycotoxins

To ensure the quality, safety and efficacy of different products,
various analytical techniques have been applied for the detection
of mycotoxins in foodstuffs, medicinal plants and their derivative
products. Conventional analytical methods of mycotoxin detection
involve chromatographic analyses, such as TLC, HPLC, GC, and
more recently, techniques such as LC/MS and GC/MS. Most of
these methods have high sensitivity, and they were developed for
quantitative and qualitative analyses of mycotoxins. To monitor
and control the contamination of mycotoxins, rapid detection
technology has become the research focus because of its relative
simplicity, convenience, accuracy, and efficiency.

2.2.1. Gold immunochromatographic assay (GICA)
GICA is a solid-phase marker immunoassay technique that
combines colloidal gold labeling technology and immunoassay,
with chromatography analysis technology. The technique not only
has the characteristics of good stability and low-cost but also has
intuitive and reliable results, suitable for semi-quantitative and
quantitative rapid detection of mycotoxins. Nowadays, gold
nanoparticles have been extensively employed as immobilizing
different biological receptors, e.g., enzyme, DNA, antigen/anti-
body and other biomolecules. Wang et al.80 found that colloidal
gold immunochromatographic dual strip can rapidly and accurately
detect samples containing zearalenone and fumonisin B1. The limit
of detection (LOD) for fumonisin B1 is 1.0 ng/mL. Multiple
testing based on immune colloidal gold test strip has become a
new trend for the detection of mycotoxins by immunological
methods81.

GIGC is an ideal selection in biotechnological systems because
of its inherent advantages (e.g., easy preparation and good
biocompatibility). However, owing to the limitation of antigenic
epitope on the small biomolecules and a narrow linear range,
innovative and powerful techniques are being developed for the
amplification of detectable signal. The present limitations of GICA
include the small size of the biomolecule as epitope and narrow
linear range of assays.

2.2.2. Biochip technology
Biochip is a new technology developed through life science and
microelectronics in recent years. It has incomparable advantages
compared with conventional methods including high-throughput,
multi-parameter synchronization analysis; fully automatic, rapid
analysis; high accuracy and sensitive analysis. In antibody chip
technology, various mycotoxins and other hazardous chemicals
can be monitored simultaneously, thereby greatly reducing the
time of sample extraction and detection and improving efficiency.
Wang et al.82 designed an immunochip to simultaneously quantify
the contents of AFB1, AFM1, DON, OTA, T-2 toxin, and ZON
and the present LODs majorly showed relatively lower.

Although biochip technology has a lot of advantages in
advanced optical biosensors for sensing analytes, this technique
is expensive in analytical cost, and requires complex labeling
process and professional technicians with specialized equipment.



Table 1 Comparison of advantages and disadvantages of different detection methods.

Identification method Advantage Disadvantage Scope of application in TCM

DNA barcoding Sequence-based Require advanced equipment All medicinal plants and animals
Very high accuracy Need comparison in database
Universal
Primer-based
High universality
Rapid
Low cost

Microarray in a tube SNP detection Need specific primer Some closely related species
On-site detection Not universal
Not require advanced equipment
After method have been established,
single test cost lower than CNY 2.00
Database-free
Can be developed into a species specific kit

Nano-Au High accuracy Need specific primer Some closely related species
SNP detection Not universal
On-site detection
Not require advanced equipment
Low cost
Database-free
Can be developed into a species specific kit

Nucleic acid
amplification
test strip

High accuracy Need specific primer Some closely related species
SNP detection Not universal
On-site detection
Not require advanced equipment
Low cost
Database-free
Can be developed into a species specific kit

Traceability system High accuracy Need database All medicinal plants and animals
High universality
Very rapid
Not require advanced equipment
Low cost
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2.2.3. Biosensor technology
Biosensor technology, a prominent technique for preliminary
screening of the toxicity of samples, can be defined as having a
sensing element for the selective detection of a target and method
to transduce the interaction as a measureable signal83. The
biosensor's high sensitivity, selectivity, low cost, simplicity,
miniaturization, portability and integration in automated devices
make it a reliable and usable alternative for monitoring
mycotoxins84.

Numerous types of biosensors have been developed. Sapsford
et al.85 detected the content of AFB1 employed by Array
Biosensor, and reported a low LOD of 0.3 ng/mL. Wang et al.86

presented a novel suspension array technology for quantifying
AFB1, DON, T-2 toxin and ZEN simultaneously and quantita-
tively in corn and peanut, and the levels of LOD were better than
those obtained using HPLC. Yuan et al.87 designed a surface
plasmon resonance biosensor to detect OTA directly, and reported
a dramatically improved LOD of 0.042 ng/mL.

In conclusion, these biosensors can achieve the sensitivity and
selectivity required for the very strict regulatory limits from
legislation. Nowadays, its stability, reproducibility and life-time
coupled with the differences in tested samples, less species and
instability of antibody, many studies on the biosensors are still at
the experimental stage.
2.2.4. Aptamer identification technology
Aptamers, single-stranded oligonucleotides of DNA or RNA
sequences, can specifically bind to target molecules in a complex
matrix. Aptamer technologies have been widely applied in the
analysis of mycotoxins. Yang et al.88 presented the colorimetric
detection of OTA using OTA's aptamer and unmodified GNPs. In
addition, Wang et al.89 developed a new type of structure-
switching aptasensor to simultaneously detect OTA and FB1.

Aptamers have the ability under certain physicochemical
conditions to fold into defined three-dimensional conformations,
which facilitate specific interaction with target molecules having
high affinity constants. Based on novel, molecular recognition,
aptamer identification technology has great potential for applica-
tion in the rapid detection of mycotoxins because of high accuracy,
precision and specificity. The combination of aptamer recognition
techniques and novel nano-materials has been used in various
optical and electrochemical analytical methods for mycotoxin
analysis.

Consequently, aptamers have emerged owing to inherent
advantages compared with antibodies, such as non-requirement
of immunization from animals, more chemical and thermal
stability, and less variability. Particularly, aptamers are not
susceptible to denaturation in the presence of solvents commonly
used in the extraction of mycotoxins.
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2.3. Rapid detection technology of pesticide residues

Classical instrumental analytical techniques for the determination
of pesticides in a large number of samples have been developed.
These methods involve GC and LC coupled with various
detectors90–92, GC-MS93,94, or LC-MS91,95. In recent years,
GC-MS/MS has been intensively used for the determination of
pesticides96,97. Although chromatography-based methods are sen-
sitive and reliable, they require sophisticated equipment, skilled
analysts, and time-consuming sample preparation steps. Moreover,
organic solvents used in the detection process may lead to
environmental pollution.

2.3.1. Immunological assay technology
As a promising method for selective and sensitive analysis,
immunoassays have become indispensable analytical tools in a
wide range of applications. Immunological methods, which are
suitable for both laboratory and field analyses, provide a unique
opportunity to screen large numbers of samples quickly and
effectively.

Traditional immunoassays, such as enzyme-linked immunosor-
bent assay (ELISA), are commonly used in the field. ELISAs are
invariably considered the gold standard for single analyte mea-
surement. The sensitivity of ELISA is relatively high, but these
methods have some drawbacks, including numerous washing and
preparation steps, large sample volumes, small surface area, and
long diffusion times required for antigen-antibody binding98.

In particular, immunoassay techniques would be a specific,
sensitive, rapid and economical analytical tool, but they require
extensive pipetting, washing, and incubation. Thus an immunoassay
is time-consuming and has limited application in fast detection.

2.3.2. Biosensor technology
Biosensors typically consist of a biological receptor in intimate
contact with an electrochemical, optical, gravimetric, or thermal
transducer. Biosensors may provide solutions to some of the
problems encountered in the measurement of pesticides. As an
alternative, a variety of biosensors, biological receptors with
selective affinity toward a specific pesticide, have been
developed99.

Ferentions et al.100 developed a novel artificial neural network
combined with a bioelectric cellular biosensor to detect and
classify correctly the presence of investigated pesticide groups
with an overall success rate of 83.6%. Qie et al.101 reported that
thermometric biosensors evidently simplify sample pretreatment,
and exhibit a potentially powerful capability for fast quantitative
analysis of pesticide residues. The short assay time per sample of
biosensors makes them suitable for the fast detection of large-scale
samples.

Biosensor offers a variety of benefits including high selectivity
and rapid test. However, in order to get wide use of biosensor
technology, its stability, accuracy, and repeatability remains to be
further improved.
3. Conclusions and prospects

The quality control of medicinal materials has always been a weak
link in the Chinese medicine industry, and it has affected the
sustainable development of the TCM industry. Low-cost, on-site
fast detection of TCM with the capability of easy operation and
large-scale implementation is an urgent must, which depends on
not only the availability of portable equipment, but also simplify-
ing the techniques and promoting new detection principles. The
future development of the rapid testing of Chinese medicine have
three goals: (1) exploring mobile species identification systems
and developing kits for SNP detection based on GNPs, microarray-
in-a-tube, and nucleic acid amplification test strip; (2) establishing
a fast detection system for mycotoxins and pesticide residues of
Chinese medicine; (3) establishing a TCM traceability system in
China, using some specific kits unlimited from the environment
and infrastructure, which can satisfy the requirements for fast
detection in remote and undeveloped areas.
3.1. Setting up mobile species identification system (2D DNA
barcoding)

Given the rapid development in DNA barcoding, all species are
expected to have a unique DNA barcode in the future. Hence, the
technique of DNA barcoding has enormous potential applications.
The application of handheld rapid species identification equipment
will bring great convenience in entry-exit inspection and quar-
antine work. Compared with traditional DNA sequences (about
200–600 bp) the 2D code has larger information capacity and
adjustable size, which is suitable for direct labeling of samples.
The 2D code contains more DNA information. Moreover, it will
be easier to operate and be more convenient to collect and conduct
remote authentication for 2D code using a communication terminal
camera with scanner function and wireless communication func-
tion. A species identification system within a mobile application
will make authentication more convenient and rapid. The DNA
barcode for species identification is a global method that enables
the identification of TCM to form a unified international standard.
It can greatly improve the identification level of Chinese medicinal
materials by establishing a Chinese herbal medicine DNA barcode
database. Moreover, this global method can speed up the process
of modernization of TCM, and provide a scientific basis for the
control of raw TCM materials. This method is of great significance
to the internationalization of the Chinese herbal medicine identi-
fication standard.
3.2. Setting up a fast detection system of mycotoxin and
pesticide residue in the production of TCM

The design of a rapid detection platform is the primary problem
in the quality control of TCM. To set up a fast detection system
of mycotoxins and pesticide residues in the production of TCM,
the management of TCM supervision departments and other
relevant units should select different methods for analyzing
various mycotoxins according to their detection technology and
detection means to control the quality and safety of TCM. Future
research should focus on the identification and quantification of
AFs (AFG2, AFG1, AFB2, AFB1), OTA, DON, ZEN, fumonisins
(FB1, FB2) and citrinin. According to their detection technology
and detection means, the selection of different analytical methods
of pesticide residues for the control of the quality and safety of
TCM should meet the social demand for rapid identification of
medicinal species. Analytical methods must meet the drug test,
customs, security functions, and companies' demands for rapid
identification of medicinal species, which will ensure the safety
and efficacy of TCM.
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3.3. Setting up the traceability of TCM

Blind transplanting of medicinal materials has led to the decline in
medicinal quality and counterfeit medicines in production or sales,
which may increase the risk of accidents in TCM102. Establishing
herb medicine traceability can not only protect the authenticity of a
drug, but also manage the information of seed, planting, proces-
sing, and marketing. A traceable system has great application
potential in the Chinese herb medicine industry. In consideration
of cost and rapidity, barcode traceability can be considered a main
technology tool. Once safety problems occur, potential problems
can be traced and further characterized by molecular biology or
fingerprinting.
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