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Abstract

The role of climate change in enhancing bio-invasions in natural environments needs to be

assessed to provide baseline information for effective species management and policy for-

mulations. In this study, potential habitat suitability maps were generated through Ecological

Niche Modeling for five problematic alien and native species in current and future climate

simulations for the periods 2050s and 2070s under RCP2.6, RCP4.5, and RCP8.5 emission

scenarios. Projected current binary suitability maps showed that 67%, 40%, 28%, 68%, and

54% of the total study area ~ 3318 Km2 is suitable for C. decapetala, L. camara, O. stricta,

S. didymobotrya and S. campylacanthum species, respectively. Assuming unlimited spe-

cies dispersal, two of these species, C. decapetala and S. didymobotrya, were observed to

have consistent gradual increase in potential habitats and no habitat losses under the three

RCPs by the end of the 2050 and 2070 future periods. The highest recorded relative poten-

tial habitat increase was observed for O. stricta at ~205% under RCP2.6 and ~223% under

RCP8.5. Although L. camara and O. stricta were observed to have habitat losses, the losses

will be very low as compared to that of S. campylacanthum. L. camara and O. stricta relative

habitat losses were predicted to be between ~1% under RCP2.6 to ~4.5% under RCP8.5 by

2070 while that of S. campylacanthum was between ~50% under RCP2.6 to ~68% under

RCP8.5 by the year 2070. From this study we conclude that the target study species are

expected to remain a big threat to inhabited areas as well as biodiversity hotspot areas

especially in the Mt. Kenya and the Aberdare forest and national park reserves under cli-

mate change. The information generated through this study can be used to inform policy on

prioritizing management of these species and subsequent determination of their absolute

distributions within the area.

Introduction

According to Richardson et al. [1], naturalized plants are alien plants that have consistently

reproduced with no human intervention over many growth periods while invasive plants are
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naturalized plants that are able to produce many reproductive offspring at considerable dis-

tances from parent plants. Many alien invasive plant species have profound negative impacts

on forest resources, water resources, and agricultural ecosystems [2–4]. In some instances,

alien invasive species may be beneficial to new environments e.g. supporting local fauna in

their habitats, reducing carbon footprint, and provision of firewood [5].

Invasive species are considered a nuisance if they are expanding in range and causing habi-

tat transformations [6]. Although proliferation of alien invasive species in new environments

may be attributed to lack of natural enemies inhibiting their survival [7], changes in climatic

conditions such as temperature and precipitation may render any of the alien taxa to an extinc-

tion trajectory or may enable its spread and survival [1]. In most cases, alien invasive species’

wide tolerance to changing environmental conditions from historical norms gives them a

competitive edge over less tolerant native species in persistence and expansion in geographical

range [8, 9]. A study by Early et al. [10] reported that 15% of land area in parts of African,

South American and Asian countries with low-Human Development Index values have a high

risk of alien species invasions. In these regions, the establishment of these species is mostly

enhanced by overlapping factors such as total imports and airport capacity, increased agricul-

tural practices, and climate change-driven distribution shifts, among others. Despite the per-

ceived threats of invasive species in sub-Saharan Africa, there are still limited capacities in

dealing with this phenomenon, which may be attributed to existing knowledge gaps regarding

the current status of alien invasive species and their control strategies [10]. To bridge these gaps,

predictions of plant invasions in the African region, especially under global climate change, are

very important to support development of policies and management programs for invasive spe-

cies [9]. Exploring potential distributions of invasive species during temperature overshoot peri-

ods, i.e. periods with temperature increases of more than 1.5˚C above the reference period

(1986–2005) baseline in the course of the 21st century, would help determine species survival

boundary limits so as to guide management strategies. It is expected that warming temperatures

of over 2˚C above the reference period (1986–2005) baseline will exacerbate risks brought about

by spread of invasive plant species if warming was maintained at 1.5˚C and below [11]. To

model the temperature rising scenarios, the Intergovernmental Panel on Climate Change

(IPCC) 5th Assessment Report [12] presents this in time-dependent projections of atmospheric

greenhouse gas (GHG) concentrations in Representative Concentration Pathways (RCPs): the

stringent mitigation scenario (RCP2.6) denoting a peak and decline of temperatures below

1.6˚C, the intermediate stages (RCP4.5 and RCP6.0) denoting a stabilization without overshoot,

and the higher GHG emission scenario (RCP8.5) denoting rising temperatures [9 p60, 12].

Risk assessments for invasive plant species range changes under changing climate can be

done through building ecological niche models (ENMs) [13]. The approach taken by ENMs to

determine potential species habitat changes is usually through deriving an empirical relation-

ship between species distribution and abiotic factors such as climate [9] at various bio-

geographical scales [14–16] and then projecting the relationship to a given environment.

Although projecting the models to the future time slice would require an accurate climate sim-

ulation for that given area, such site-specific climate models may not be available and instead

bias-corrected global climate models are popularly used in ecological niche modeling studies

with high levels of reliability [17]. The outputs from ENMs, usually risk maps, serve as baseline

information for invasive species conservation management policy formulation [18, 19] so as to

avert their spread and to apply appropriate eradication measures [13] as well as providing esti-

mates of community-level species populations for immediate management prioritization,

especially for well-established species [20].

There have been concerted efforts among researchers to document the status of invasive

species in sub-Saharan Africa. Examples of existing work include that carried out by Witt et al.
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[6], whose output contributed greatly to the documentation of current status of invasive spe-

cies occurring within the East African region. Among the species that were reported in their

regional study included Lantana camara L., Opuntia stricta (Haw.) Haw, and Acacia mearnsii
De Wild, which are all among the species listed in the land plant category of 100 worst invasive

alien species [21]. Shackleton et al. [19] outlined that L. camara is a prevalent species in most

parts of East Africa and has caused biodiversity and livelihood losses in some parts of Uganda

while O. stricta has been found invasive mostly in arid and semi-arid areas of East Africa. In

Laikipia County, a region in Kenya characterized by mostly rangeland land use, O. stricta has

invaded about 17% of the area [22], and in the greater northern rangelands of Kenya, Opuntia
spp. have been projected to increase in potential habitat range from ~183,000ha to ~206,900ha

by the year 2070 [23]. In highland protected areas of Rwanda, A. mearnsii has survived as an

understory species in pine and eucalyptus plantations and has generally done well in altitudes

above 1200m including those outside natural forests [24]. Other species of interest that have

been reported across the East African region include Caesalpinia decapetala (Roth) Alston,

Senna didymobotrya (Fresen.) H.S. Irwin & Barneby and Solanum campylacanthumHochst. ex

A. Rich. C. decapetala is an alien species invading the East African highlands such as those in

Kenya and Tanzania [25]. S. campylacanthum and S. didymobotrya, on the other hand, are both

considered native species to tropical Africa and have been classified as among “problematic”

species within the East Africa region due to their expansion in range [6]. They are both regarded

as “bush encroachers” [26] or “extra-limital species” [6]. These terms are used to refer to native

plant species which have become invasive. S. didymobotrya has been introduced elsewhere, e.g.

in Australia and parts of America [26], for ornamental and medicinal purposes. It proliferates

well in disturbed areas, along roadsides, riparian zones, bushland, savannas and wasteland habi-

tats where it can form dense large stands, thereby resulting in displacement of native vegetation

and restricting animal movement [25]. S. campylacanthum has widespread presence across East

African countries in habitats such as roadsides, savanna grasslands, disturbed areas, and pro-

tected areas [25, 26]. Where the species has increased in density, other native species are dis-

placed. In addition, its fruits are poisonous to grazing animals such as sheep and goats [25].

In Nyeri County, Kenya, where two of the most important biodiversity-rich ecosystems, i.e.

Aberdare national park and the Mt. Kenya national park and forest ecosystem [27], as well as

productive agricultural areas are located, there are limited studies on how climate change

might affect the spread of invasive species in these habitats. For example, proliferation of inva-

sive species such as C. decapelata, S. campylacanthum, L. camara, Datura dothistroma, Resinus
communis, Fraxinus pennsylvanica, A. mearnsii and Rubus steudneri within the Mt. Kenya and

Aberdare forest ecosystems has been reported by the Kenya Forest Service [28]. Inaction on

management of invasive species may lead to costly habitat restoration efforts in invaded areas.

For instance, uncontrolled spread of invasive species has already led to degradation of natural

habitats in Kenya e.g. Mt. Marsabit forest, where the impact of invasive species has resulted in

loss of forest cover from an initial 18,363 hectares in 1973 to 11,000 hectares by 2013 [29].

The objective of this study was therefore to explore different habitat suitability predictions

for the periods 2050s and 2070s from different General Circulation Models (GCMs) and RCPs

2.6 (optimistic scenario), 4.5 (stable intermediate scenario) and 8.5 (pessimistic scenario) for

the five studied invasive species in Kenya.

Materials and methods

Study area

This study was carried out in Nyeri County in central Kenya covering an area of ~ 3318 Km2.

It is strategically located between Mt. Kenya ecosystem to the east and Aberdare ecosystem to
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the west within latitudes 0˚ 38’ 45” S and 0˚ 0’ 42” S and longitudes 36˚ 35’ 28” E and 37˚ 18’

29” E (see protected areas in Fig 1). These two ecosystems and other isolated forest hills play a

vital role in the climate of the area and serve as wildlife habitats, forest reserves and water

catchment areas [30]. Nyeri County is comprised of Kieni, Othaya, Mathira, Mukurwe-ini,

Tetu and Nyeri Town sub-counties (Fig 1). It has five agro-climatic zones: Humid (I), Sub

humid (II), Semi humid (III), Semi humid to Semi-arid (IV) and Semi-Arid (V). Kieni sub-

county falls in zones II, III, IV & V, Othaya, Nyeri Town and Tetu sub-counties fall in zones I

& II, while Mathira and Mukurwe-ini sub-counties fall in zones I, II and III [31]. On average,

annual rainfall in Nyeri ranges between 1200 – 1600mm and 500 – 1500mm during long and

short rains, respectively, while the monthly mean temperatures range between 12–21˚C [30].

Species occurrence records

Field survey records for five selected invasive species, namely C. decapetala, L. camara, O.

stricta, S. didymobotrya and S. campylacanthum, were collected along selected road networks

between October 2019 and February 2020 using a handheld GPS receiver (±3 m accuracy).

Fig 1. Study area map showing distribution of invasive species occurrence records. Data sources: (Administrative boundary layer: GADM database (www.

gadm.org) under CC BY 4.0 license (https://gadm.org/license.html); Species presence data: GBIF.org (https://doi.org/10.15468/dl.v2peyj) and own roadside

survey field work in Nyeri County under CC BY 4.0 license; Forest/tree cover layer: SERVIR GLOBAL data catalog [32] (https://servirglobal.net/Data-and-

Maps) under CC BY 4.0 license.

https://doi.org/10.1371/journal.pone.0275360.g001
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Roadside surveys provide a cheaper alternative to estimate target species occurrence within

a given area [33]. Furthermore, transport routes have been associated with introduction and

eventual spread of invasive species [34, 35] and therefore act as a factor influencing dispersal

[20]. Our target species also invade roadside habitats [25] and therefore probability of sight-

ing them along survey routes was considered very high. Since forest edges provide favour-

able biotic and abiotic conditions for alien invasive species introduction and eventual

spread to fragmented forest interiors [36], routes leading to forest edges were also

considered.

As we drove along survey routes, target species occurrence locations were collected at

approximately 2 to 5 km successive intervals. We selected a maximum of 5 km sampling inter-

val to increase sampling intensity. The choice of interval was subjective as there are no refer-

ence standard intervals. For instance, Thapa et al. [37] and Henderson [38] used 5-10km while

Wabuyele et al. [39] considered a 25km interval, indicating the subjective nature of the selec-

tion of intervals. A shorter interval of 2km was considered on routes with steeper terrain to

account for vegetation diversity changes as elevation increases [37]. At each stop, species

occurrence locations were collected on both sides of the road and in the adjacent habitats if

any of the target species was sighted. The number of raw records collected within Nyeri

County for individual species were as follows: 37 for C. decapetala, 141 for L. camara, 17 for O.

stricta, 43 for S. didymobotrya and 72 for S. campylacanthum. Broennimann and Guisan [40]

suggested fitting ENMs with a pool of data from a wide environmental range to avoid uncer-

tainties when predicting species’ full invasion potential, more so in future climate scenarios.

Therefore, to supplement our field data, we searched for existing presence records of the target

species from GBIF.org [41]. We considered a pool of available presence data in selected East

African regional countries, including Kenya, Ethiopia, Uganda, Rwanda, Burundi and Tanza-

nia to capture the dominant environmental conditions in which the study species thrived.

Regional models may perform better than continental or global models in capturing a species’

range margins [42]. The number of records that remained within the selected East African

regional extent and the Nyeri County extent after rarefication were as shown in Table 1 and

can be seen in S1 Appendix.

Table 1. Description of study species in terms of species scientific name and family and common name, life form, origin (adopted from Witt & Luke [25]) and the

number of records used in ENM.

Species and Family name Common

name

Life form Origin Class Species presence

records (raw field

data + GBIF data)

Rarefied records

within the Selected

East African region

extent

Rarefied species

data within Nyeri

county extent

Caesalpinia decapetala
(Roth) Alston (Fabaceae)

Mauritius or

Mysore thorn

Evergreen

shrub /

climber

Native of Asia (India,

Sri Lanka, China, Japan

& Malaysia).

Alien 1384 1096 36

Lantana camara L.

(Verbenaceae)

Lantana,

tickberry

Tree or shrub Subtropical and tropical

America.

Alien 4467 3083 94

Opuntia stricta (Haw.) Haw.

(Cactaceae)

Erect prickly

pear

Succulent tree

or shrub

South-east USA, eastern

Mexico and some

Caribbean Islands.

Alien 695 291 15

Senna didymobotrya
(Fresen.) H.S. Irwin &

Barneby (Fabaceae)

African senna Tree or shrub Tropical Africa Native 1494 1101 44

Solanum campylacanthum
Hochst. ex A. Rich.

(Solanaceae)

Bitter apple,

Sodom apple

Shrub Africa, Middle East and

India.

Native 2654 2113 72

https://doi.org/10.1371/journal.pone.0275360.t001
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Preparation of presence and background data

Rarefying presence samples. We used the SDMtoolbox 2.4 for ArcGIS 10.5 [43] to spa-

tially rarefy individual species occurrence data. Spatially clustered points introduce environ-

mental biases and tend to affect a model’s ability to predict given new data [43]. We used 1 km

Euclidean distance so as to match the 1 km2 spatial resolution of the predictor variables [44].

Respective records per species that were retained for model fitting are shown in Table 1.

Generating background data. Our species data lacked true absences and therefore back-

ground data or pseudo-absence data were generated randomly within the model fitting area

for estimation of species-climate relationships. Barbet-Massin et al. [45] recommended the

same number of pseudo-absences as available presences for machine learning methods and

therefore, based on the number of rarefied species presence data (Table 1), a ratio of 1:1 for

presence/pseudo-absence data for all the target species were used to fit models with the Ran-

dom Forest (RF), Classification Tree Analysis (CTA) and Generalized Boosted Models (GBM)

methods. On the other hand, the MAXENT method requires a large amount of background

data as indicated by Phillips and Dudik [46], as it works by contrasting the environmental pro-

file of the model fitting area against the environmental profile of available presence data and

therefore background data was set to 10,000 for all the species. We also used 10,000 pseudo-

absences for Generalized Additive Models (GAM) as suggested by Barbet-Massin et al. [45].

Data partitioning. Ecological niche models were calibrated and evaluated using all avail-

able species location data within the defined East African regional model fitting area (see S1

Appendix). We used the R package “blockCV” [47] to generate spatially separated training and

testing folds to account for spatial autocorrelation inherent in species location data. Spatially

separated blocks were generated using a specified size determined using the “spatialAuto”
function provided in the package. The resulting blocks were then randomly assigned to five (5)

cross-validation (cv) folds and set to output into a “DataSplitTable”, biomod2 format, for sub-

sequent use in a model fitting and evaluation cross-validation procedure. In this procedure, all

species presence records and pseudo-absences are treated together within generated blocks

and are subsequently assigned to the respective selected cv folds with allocation of locations to

training or testing data [47]. Iterations for assigning of blocks to folds was set to 100 whereby

the most evenly dispersed number of training and testing records was returned.

Modelling predictor variables

We considered a set of predictor variables consisting of bioclimatic and topographic variables

as described in Table 1 in S2 Appendix. The 19 standard WorldClim bioclimatic variables

derived from averaged climate data for the period 1970–2000 [48] at a spatial resolution of 30

arc seconds (~1 km2) were downloaded from WorldClim (https://worldclim.org/). Digital Ele-

vation Model (DEM) data at a spatial resolution of 12.5 x 12.5m were downloaded from the

Alaska Satellite Facility [49]. Slope, aspect, plan and profile curvatures and topographic wet-

ness index (twi) were derived from the DEM data. All predictor variable layers were resampled

to 30 arc seconds spatial resolution and masked to the model fitting area extent (S1 Appendix)

and to the Nyeri County extent (Fig 1).

Future climate data representing emission pathways for the period 2050s (2040–2069) and

2070s (2060–2089) [17] at 30 arc seconds spatial resolution were downloaded from (http://

www.ccafs-climate.org/). We considered six Coupled Model Intercomparison Project Phase 5

(CMIP5) GCM data sets: BCC-CSM1.1(m), GFDL-ESM2G, Hadgem2-ES, IPSL-CM5A-MR,

MIROC-ESM-CHEM, and NCAR-CCSM4 under the RCP2.6, RCP4.5 and RCP8.5. More

information about these CMIP5 GCMs is presented in the work of Navarro-Racines et al. [17].

According to McSweeney et al. [50], these GCM models’ performance ratings on replicating
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timings for annual precipitation and temperature cycles are relatively similar with no signifi-

cance differences in the Horn of Africa region within which our model calibration area lies.

Predictor variables multi-collinearity analysis

A total of 25 model predictor variables (Table 1 in S2 Appendix) were subjected to multi-col-

linearity tests using Pearson’s correlation coefficient (r) and variance inflation factor (VIF).

Calculation of VIF was as shown in Eq (1). Assessing and removing collinear variables con-

forms with statistical assumptions in regression models [51].

VIF ¼
1

ð1 � R2
j Þ

ð1Þ

where R2
j is the coefficient of determination derived from model variables j [52].

We implemented this in R statistical software [53] and the ‘usdm’ package [54]. We used

the rarefied presence records for individual species to extract predictor values from all predic-

tor variables and converted them into a matrix data frame for multi-collinearity testing.

Uncorrelated predictor variables were identified through a stepwise procedure provided in the

‘vifcor’ function. The function finds a pair of predictor variables with maximum linear correla-

tion (r> 0.70 [55]), and then excludes one of the variables having greater VIF value (VIF> 10

[56]). This procedure is repeated until the correlation coefficient between one remaining pre-

dictor variable and another is not greater than threshold. The remaining predictor variables

were as shown in Table 2.

During the model fitting procedure, relative predictor variable importance was computed

for analysis of the possible effects of changing climatic conditions on the study species. This

Table 2. Retained noncollinear predictor variables and their relative importance.

Species C. decapetala L. camara O. stricta S. didymobotrya S. campylacanthum
Explanatory Variables Aspect Aspect Aspect Aspect Aspect

bio12 bio12 bio12a bio13 bio12

bio13 bio13a bio14 bio14a bio13

bio14a bio14a bio15a bio18 bio14a

bio18 bio15a bio18 bio19 bio18

bio19 bio18 bio19 bio2a bio19

bio2 bio19 bio4a bio4 bio4

bio4 bio2 bio7 bio5 bio5a

bio5 bio4 bio9 Elevationa bio7

Elevationa bio5 Plan curvature Plan curvature Plan curvature

Plan curvature Elevation Profile curvature Profile curvature Profile curvature

Profile curvature Plan curvature Slope Slope Slope

Slope Profile curvature twi twi twi

twi Slope

twi

twi, topographic wetness index; bio2, Mean Diurnal Range (mean of monthly (max temp–min temp)); bio4, Temperature Seasonality (standard deviation × 100); bio5,

Max Temperature of Warmest Month; bio7, Temperature Annual Range; bio9, Mean Temperature of Driest Quarter; bio12, Annual Precipitation; bio13, Precipitation

of Wettest Month; bio14, Precipitation of Driest Month; bio15, Precipitation Seasonality—Coefficient of Variation; bio18, Precipitation of Warmest Quarter; bio19,

Precipitation of Coldest Quarter
aPredictor variable with a relative variable importance of score (1 –correlation) > 0.20 obtained in three or more ENM methods. Pearson correlation (cor) between

model predictions obtained with shuffled predictor dataset and the reference dataset is used to obtain the predictor variable relative importance. Higher scores indicate a

variable with high importance in a given model.

https://doi.org/10.1371/journal.pone.0275360.t002
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was done through analysis of 2D plots of the ecological niche models’ response curves in the

biomod2 package [57]. In ecological niche studies, it is important to determine the relationship

between a given bioclimatic predictor and the species response especially in light of changing

climate conditions [58].

Current and future species distribution modelling

Model fitting. ENMs were generated and evaluated using R statistical software [53] and

the ‘biomod2’ package [59]. ENMs were built with 5 selected model fitting methods that are

available in biomod2. Among these methods, the Random Forest (RF) algorithm has gained

popularity in ecological niche modelling due to its good performance as reported in Zhang

et al. [60] and by Shabani et al. [15] while the Maxent algorithm is popular due to its higher

predictive power than traditional logistic regression [14] regardless of available species sample

size [18]. The list of all methods used was as follows: one regression method (GAM, general-

ized additive models), three machine learning methods (Maxent [61]; RF, Random Forest;

[62]; and GBM, generalized boosted models) and one classification method (CTA, classifica-

tion tree analysis). Further details on the individual methods can be found in the work of

Thuiller et al. [59]. All these methods are commonly used in ecological niche modelling as

they use both species presence records and pseudo-absence/background data generated from

noncollinear predictor variables [61, 63]. During model fitting, each presence observation and

generated pseudo-absence point was assigned the same importance [57].

A data split table containing the training and testing records selected in the block cross-vali-

dation procedure was used for model training and model evaluation purposes. It should be

noted that using all datasets may cause model overfitting and consequently fail to provide gen-

erality of the model for future time predictions [64]. To assess the predictor variables’ impor-

tance, we set the repetitions to 3 where the results were later used to obtain the average score

per predictor variable. The other default settings for the individual model fitting methods were

retained as provided in the biomod2 package [57].

Model evaluation. Test data selected through the block cross-validation [47] technique

were used for model accuracy evaluations. However, it should be noted that ENM predictive

accuracy cannot be truly estimated due to lack of independent validation data [65]. Model

evaluation metrics used were limited to those provided in the biomod2 package. In biomod2
some of the provided metrics include threshold-independent metrics such as the area under

the receiver operating characteristics (ROC) curve (AUC) [66, 67] and the Boyce Index, which

provides a reliable measure of presence-only methods for the fitted ENMs [68], and threshold-

dependent metrics such as the True Skill Statistic (TSS) [69]. Although the ROC/AUC metric

is often used as a measure of SDM model performance, it requires true presence-absence spe-

cies data which is not usually available for building ENMs [15]. Readers are referred to work

by Lobo et al. [70] discussing ROC/AUC applicability in model performance comparative

analysis. They argued that the ROC/AUC metric should be avoided and pointed out the need

to evaluate appropriate statistics to use for a given ENM application. Considering our study’s

main aim, which was to predict environmentally suitable areas with available species presence

data, a threshold-based metric, the TSS, was deemed appropriate to compare model perfor-

mances and to transform continuous predictions to binary maps. As described by Allouche

et al. [69], TSS combines both sensitivity and specificity of predictions to account for both

commission and omission errors.

TSS values range from -1 to +1, where +1 indicates perfect agreement between observed

values and predicted values while values of zero or less indicate a prediction no better than ran-

dom chance [69]. Going by a classification of the model evaluation metric values outlined in
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the work of Zhang et al. [71], TSS values were interpreted as follows: < 0.4 were regarded as

poor, 0.4–0.8 were regarded as moderate and > 0.8 were regarded as excellent.

The fitted species models were combined through ensemble modeling after excluding mod-

els with TSS values of< 0.6 for the study species C. decapetala, L. camara, O. stricta, and S.

didymobotrya, while for S. campylacanthum, the threshold for model exclusions was set

at< 0.5 following initial model result evaluations. The median probabilities algorithm was

chosen to calculate the median values given by the models since it is less influenced by outliers

[57]. In addition our species datasets were relatively large as we had considered all field and

downloaded presence species records within the East African region as compared to the Nyeri

County area [57]. Binary transformations were done using the cutoff value that maximizes the

model’s accuracy according to the TSS statistics selected automatically within the biomod2
model fitting procedure. This procedure was applied across all the chosen models for each of

the retained model runs.

Model projections. Species potential habitats under current and future climate scenarios

were projected across the Nyeri County geographical extent. Future species habitat suitability

maps were produced using predictor variables of individual GCM (“individual GCM data”) as

input to the fitted ecological niche models and using an ensemble of values for a given predic-

tor variable, obtained by taking a simple average of corresponding projected values for that

variable from the selected GCMs (“ensemble GCM data values”) prior to ecological niche

modelling. As suggested in literature, the use of an ensemble of values from selected GCMs

accounts for differences in climate predictions of individual GCM data [72, 73]. Individual

plots of species range changes for each of the resulting species’ predictions from individual

GCM data enabled visual exploration of the accrued prediction uncertainties. The function for

building clamping masks for future predictions as provided in the biomod2 package [57] was

used to identify areas where predictions were uncertain due to out of range values that were

not seen during model calibration. For easier comparison of the estimated clamping mask val-

ues, all the output masks values were scaled to a range of between 0–1. This information aimed

at providing a basis for interpretation of the reliability of the models in predicting species

potential habitat suitability.

Change distribution analysis. Species potential range change distribution analyses

between the current and predicted future binary output maps were estimated using the bio-
mod2 package [59]. The relative number of pixels representing the potential habitats either

gained, lost or stable for the prediction time periods were calculated and used for analysis of

the expected species potential habitat turnover within our study area. To analyze differences in

uncertainties from either taking a simple average of individual GCM data future predictions

versus prediction from an ensemble of GCM data values as predictors, we presented the results

from the two approaches in bar graphs to assess their relative levels of prediction uncertainty

for our area of study. With reference to the current potential habitat suitability, the percentage

gain and loss of habitat suitability was computed and the overall species habitat change com-

puted by taking the difference between percentage gain minus percentage loss. Regarding the

species’ ability to colonize new sites, it is well known that this kind of analysis would take into

account factors such as the species’ dispersal ability to overcome geographical barriers and

biotic interactions among co-occurring species [74]. We recognize that it is possible to model

species potential spread through a user-defined time slice as provided in the “MIGCLIM” R

package [75], where species dispersal simulations are done through defining parameters such

as dispersal distances and kernels, geographical barriers, species propagule production and col-

onization of the predicted suitable habitat. However, there are limitations with defining reli-

able parameters, e.g. the respective species’ dispersal-related parameters such as the kernel

distance, unless extensive field experiments for the study species have been conducted [75]. By
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the time this manuscript was completed, we had not come across such information to serve as

parameters for our target species dispersal simulations in the MIGCLIM package. To simplify

our simulations and respective analysis, we opted to go by two assumptions, namely the no dis-

persal and full/unlimited dispersal scenarios provided in the biomod2 package [57].

Results

Ecological niche model performance

Predictive performance of the fitted ENMs over the entire area was based on the TSS evalua-

tion metric. Model performance per individual ENM method per individual species for the

five folds cross-validated model runs and associated standard deviation is shown in Fig 2A.

TSS evaluation metric values for O. stricta (0.36) and S. didymobotrya (0.34) obtained with the

CTA and Maxent methods, respectively, were below useful values. However, model perfor-

mances based on the TSS metric for the other species were above the “useful” value of�0.4.

The highest TSS values were returned by the GBM method for C. decapetala.

Model performance can be influenced by the respective modelling method and the species

being modelled. According to these model evaluation results, we find that for our target spe-

cies, C. decapetala and L. camara were calibrated well with all the ENM methods. The worst

results were obtained from CTA models for O. stricta. Maxent models performed poorly for S.

didymobotrya as well. In summary, based on these metric results, RF, GBM and GAM methods

can be regarded as the most reliable in terms of robustness of the built models for all of our

study species.

Fig 2. Bar graph plots of evaluation metric accuracies for the study species per ENM method and ensemble binary predictions.

https://doi.org/10.1371/journal.pone.0275360.g002
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Predictive performance of the ENMs in terms of the median ensemble binary predictions

are shown in Fig 2B. The average values of the evaluation statistics from all the 5 cross-vali-

dated folds are indicated together with their standard deviations. The threshold-dependent

values for TSS ranged between 0.56–0.78 (±SD 0.021–0.054). From these results, we see that

there was moderate to very good discrimination of presences from absences for the resulting

ensemble binary suitability maps of the study area.

Relative importance of predictor variables

Results of relative predictor variable importance are summarized in Table 2 and a graphical

representation per ENM method for individual species is shown in S3 Appendix. As per the

criteria we applied (relative variable importance with a score (1 –correlation)> 0.20 in 3 or
more ENMmethods) to identify those that were relatively important during model fitting, not

more than three explanatory variables were selected per ENM method for all study species.

The variables selected as important varied among the species. They included: Annual Mean

Diurnal Range (bio2), Temperature Seasonality (standard deviations) (bio4), Max Tempera-

ture of Warmest Month (bio5), Annual Precipitation (bio12), Precipitation of Wettest Month

(bio13), Precipitation of Driest Month (bio14), Precipitation Seasonality (coefficient of varia-

tion) (bio15), and Elevation. Precipitation of Driest Month (bio14) was identified as important

for C. decapetala, L. camara, S. didymobotrya and S. campylacanthum, an indication that these

species are influenced by precipitation during the driest period of the year. The occurrence

probabilities of these species’ increases in areas having precipitation values of ~12–25 mm dur-

ing the driest month. The distribution of L. camara is affected in areas having more than 50%

of monthly precipitation variability over the course of the year (bio15) while the response of O.

stricta increases in areas with variability of between ~50 to ~60% followed by a decrease in

response beyond ~60% of variability. As such, O. stricta can thrive well in areas with high

annual temperature variations (above ~1.5˚C of standard deviations–bio4) and in areas with

relatively low annual precipitation (bio12) within values of between ~500–750 mm, while pre-

cipitation of wettest month (bio13) values of between ~100 – 300mm and above increases the

probability of L. camara occurrence, signifying its ability to persist in high precipitation condi-

tions during the year. S. didymobotrya shows a steady increase of probability of occurrence

starting at ~9˚C of mean of the monthly temperature ranges (bio2). Max Temperature of

Warmest Month (bio5) values of between ~20–27˚C increases the probability of occurrence of

S. campylacanthum followed by gradual decrease in higher values up to ~40˚C. High probabil-

ity of occurrence of C. decapetala and S. didymobotrya species occurs in areas with elevation of

between ~1000–2000 m above mean sea level and gradually decreases beyond 2000m above

mean sea level.

Current habitat suitability maps

Projected binary species potential suitability maps showed that 67%, 40%, 28%, 68%, and 54%

of the total study area (~ 3318 Km2) is suitable for the species (a) C. decapetala, (b) L. camara,

(c) O. stricta, (d) S. didymobotrya and (e) S. campylacanthum, respectively (Fig 3). O. stricta
had the least current suitable area among study species, occupying mostly parts of Nyeri

Town, and in the semi-humid to semi-arid area of Kieni sub-county. C. decapetala, S. didymo-
botrya, and S. campylacanthum were predicted to have over 50% of the study area as suitable,

mostly within the inhabited areas of all six sub-counties. L. camara suitable area covered

mostly the southern parts of the study area and touched parts of all five of the sub-counties

other than in Nyeri Town, where almost the whole area was predicted as suitable. Through

visualization of the predicted current climate habitat suitability maps and an overlaid shapefile
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of forested areas, it was noted that potential species habitat occurred mostly on the periphery of

the two major protected areas, i.e. the Mt. Kenya national reserve (areas to the north east of the

study area) and the Aberdare national reserve (areas to the west of the study area), and within

other fragmented forest areas around inhabited parts of the study area (see S4 Appendix).

Future habitat suitability outputs

Model uncertainties. Future prediction maps are presented in S5 Appendix together with

a measure of ensemble model extrapolation uncertainties, “clamping masks”. We visually ana-

lyzed the “clamping masks” based on the individual GCM data. The following notations were

used to represent the full name of the GCM data: bcc, BCC-CSM1.1(m); esm2g,
GFDL-ESM2G; hadgem2, Hadgem2-ES; ipsl, IPSL-CM5A-MR; miroc, MIROC-ESM-CHEM;

and ncar, NCAR-CCSM4. Uncertainty in model predictions with all GCMs for C. decapetala,

L. camara, and S. didymobotrya in the 2050s and 2070s were very low as compared to those

obtained for O. stricta and S. campylacanthum. Notably, the L. camara model showed the low-

est levels of extrapolation uncertainties among the study species with all the GCM climate

data. This was an indication that future climate values provided by the GCM data were com-

paratively within the range of the values seen during model calibration of these species. A

small section within Othaya sub-county had environmental values out of range for S. didymo-
botrya under miroc model data in all three RCP scenarios in both future time periods. Simi-

larly, model predictions for S. campylacanthum with bcc, esm2g and miroc data under all RCPs

in both future periods were uncertain in some areas, especially in the southeastern parts of

Othaya and Tetu sub-counties and on the eastern side of Mathira sub-county.

Although future prediction maps for O. stricta were still generated despite the indication of

model uncertainties in some areas as identified by the clamping masks, we observed that the

Fig 3. Species current potential ensemble probability suitability maps and respective median binary maps. Suitable areas on the scale are represented by

red colour (1) while unsuitable areas are represented by blue colour (0). The black outline denotes the Nyeri sub-county boundaries labelled as follows: i, Kieni;
ii, Tetu; iii, Othaya; iv, Nyeri Town; v, Mathira; and vi, Mukurwe-ini Sub-counties and individual species as follows: (a), C. decapetala (Roth) Alston; (b), L.

camara; (c), O. stricta (Haw.) Haw.; (d), S. didymobotrya; (e), S. campylacanthum. Data Source: (Administrative Boundary Layer: GADM database (www.gadm.

org) under CC BY 4.0 license (https://gadm.org/license.html).

https://doi.org/10.1371/journal.pone.0275360.g003
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species presence data were the fewest among the study species (Table 1 and Fig 1 in S1 Appen-

dix) and perhaps inadequate to identify the complete environmental space of the species

within our model calibration area as compared to the rest of the species. In summary, predic-

tion models for C. decapetala, L. camara, and S. didymobotrya with hadgem2, ipsl and ncar
GCM data had the lowest uncertainties while that of O. stricta was the highest.

Species future potential habitat changes. The results for the potential habitat changes

based on individual GCM data for the future periods 2050s and 2070s can be seen in Fig 1 in

S6 Appendix, while those from the ensemble of the six GCM data values used as predictors are

shown in Fig 4. Based on the simple average of outputs from individual GCMs (Fig 2 in S6

Appendix), assuming unlimited species dispersal, C. decapetala will have an overall habitat

change (percentage gain minus percentage loss) of between ~ 44 to ~47% under the three RCP

scenarios RCP2.6, RCP4.5 and RCP8.5. L. camara will have an overall habitat change of ~56 to

~59% under RCP2.6 and ~45% under RCPs 4.5 and 8.5 in both future periods. This indicated

a slight decrease of the potential habitat gain under the RCP4.5 and RCP8.5 scenarios. O.

Fig 4. Predicted potential habitat gain, loss and overall habitat changes obtained from the predicted outputs from an average of bioclimatic variables of

all GCM data. -2 represents habitat loss, -1 represents suitable and stable in future, 0 represents not suitable, 1 represents habitat gain. Species labels are as follows:
(a) L. camara; (b) C. decapetala (Roth) Alston; (c) O. stricta; (d) S. didymobotrya; (e) S. campylacanthum Hochst. ex A. Rich.). Data Source: (Administrative

Boundary Layer: GADM database (www.gadm.org) under CC BY 4.0 license (https://gadm.org/license.html).

https://doi.org/10.1371/journal.pone.0275360.g004
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stricta will have an overall habitat change of between ~203% to ~220% in both future periods,

the highest among the study species. S. didymobotrya overall habitat change will remain the

same at ~46% under all RCPs and in both future periods, an indication that changes in climatic

conditions will have little effect on habitat suitability of the species within the area of study. S.

campylacanthum will have a negative overall habitat change of ~ -23% to ~ -50% under

RCP2.6 in the 2050s and RCP8.5 in the 2070s, respectively. This is an indication that the spe-

cies’ potential habitat will be lost gradually as temperature conditions change under the three

RCP scenarios. Results of the ensemble predictions differed slightly, especially for the 2070s

period, from those obtained by taking a simple average of the six GCM outputs per RCP sce-

nario. Nonetheless, the trends in the predicted results show that the transformed environmen-

tal conditions will bring about significant increase in potential suitable areas for C. decapetala,

L. camara, O. stricta, and S. didymobotrya as opposed to a reduction of their potential suitable

areas. S. campylacanthum is shown to be on a significant potential habitat decline by the year

2070.

Species dispersal. If there is no migration of the species (Fig 5A), which in this case is

equated to the current occupied area that will remain occupied in the future, it was observed

that, other than S. campylacanthum, which showed a decline of its current potential suitable

areas, the rest of the species’ current potential habitats will largely be unaffected in the future

environmental conditions. The trend seen with the assumption of unlimited species migration

as shown in Fig 5B was that the C. decapetala, L. camara, O. stricta and S. didymobotrya poten-

tial habitat ranges will increase to new areas while S. campylacanthum will decrease in its pre-

dicted suitable areas.

Discussion

Previous research has shown that climate change causes alterations to the current environmen-

tal parameters of a given area [76], which in turn causes expansion of invasive species’ suitable

areas [72]. Our study shows that current predicted habitat for C. decapetala, O. stricta, and S.

didymobotrya will persist and expand significantly to potential new habitats, followed closely

by L. camara, whose suitable habitats will expand steadily but slowly into the surrounding

uninhabited areas, especially into the Aberdare and Mt. Kenya national forest reserves. Instead

of climate change enhancing range expansion, species may be subjected to an extinction trajec-

tory. In our case, S. campylacanthum has the largest range contraction among the study

Fig 5. Predicted suitable areas under changing climate scenarios assuming no dispersal and full / unlimited dispersal of the species.

https://doi.org/10.1371/journal.pone.0275360.g005

PLOS ONE Distribution changes of selected native and alien invasive plant species under changing climatic conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0275360 October 3, 2022 14 / 23

https://doi.org/10.1371/journal.pone.0275360.g005
https://doi.org/10.1371/journal.pone.0275360


species. Despite S. campylacanthum being a native species and presumably well adapted to its

environment, the impacts of changing climatic conditions will likely exacerbate its suitable

habitat decline and perhaps result in a possible shift to new environments outside our study

area. On the contrary, distributions of alien invasive species such as L. camara, C. decapetala,

and O. stricta will likely persist under these climatic changes. Our findings suggest that inva-

sive species adapt well in diverse habitats under varying climatic conditions [8]. Although

ENM outputs may give an underestimation or an overestimation of potential suitable areas of

a given study species due to difficulties in predicting a species’ ability to evolve and adapt

under changing conditions [76], our results suggest that climate change has a role to play in

enhancing bio-invasions in natural environments [77].

Although changing climatic conditions will play a major role in reducing native species

potential habitats in the future, continued decline and complete extinction is more likely to be

influenced by habitat fragmentation over a longer period of time [78]. Land-use changes or

habitat fragmentation influence species’ biological processes as much as climate change does

[37, 76]. On the other hand, implying native species habitat decline as due to co-occurring

alien invasive species may not suffice [79] unless a more practical framework such as a six-

threshold framework outlined in the work of Downey and Richardson [78] is used to assess

the role of alien plants in native plant extinctions. As indicated in the work of Bradley et al. [9],

global increase in plant resources such as carbon dioxide (CO2) and nitrogen (N) favors the

survival of invasive species and not native species whose survival depend on low nitrogen con-

ditions in both disturbed and undisturbed areas. Daehler [80] also indicated that alien invasive

species may perform relatively better than natives if there is high availability of light, nutrients

or water resources and possibly due to inability of natives to produce adequate seeds to match

that of invaders. On the other hand, most natives may persist under natural disturbance

regimes, although there could be some alien invasive species which may outperform them in

such regimes [80]. This means measuring the net effect of invasive species impacts on native

species may require understanding the resource availability for a specific site, which in our

case has not been quantified.

Contrary to perceived negative impacts in terms of habitat transformations by alien and

native species as outlined in the work of Witt et al. [6], one of the listed problematic native spe-

cies, S. didymobotrya, has benefits in African traditional medicine as demonstrated through

research. Examples of such work on the species is Jeruto et al. [81], who found that its stem

and root extracts have high efficiencies in inhibiting fungus growth, and Jeruto et al. [82], who

found that the species’ root bark extracts possess phytochemical properties that inhibit bacte-

rial pathogen growth. From a conservation point of view, making policies that aim at conserv-

ing S. didymobotrya especially in the wild would sustain availability of materials for

development of such alternative sources of medicine. As we have established through this

study, S. didymobotrya has a wide ecological niche as indicated by the future suitability maps

which show potential habitat range covering the whole of Nyeri County including national

protected areas. Owing to its importance in traditional medicine, more studies on the species’

current and future habitats for multiple counties should be prioritized to determine the abso-

lute species distribution. As far as the other target study species are concerned, their negative

impacts on natural habitats may outweigh their positive benefits. Many studies have advocated

for urgent control measures for species such as L. camara due to its negative impacts on socio-

economic livelihoods and biodiversity [2, 19]. This is because allelopathic action of L. camara
individuals on co-occurring or neighboring plants [83] allows them to become better coloniz-

ers within introduced environments and enables their persistence where invasion has taken

place [84]. In Nyeri County and the wider model calibration area (Table 1 and S1 Appendix),

it is evident that L. camara is the most prominent species based on the number of presence
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records. L. camara proliferation, as observed during field data collection, is pronounced within

isolated forest conservation areas such as the Muringato nursery, Nyeri municipality and

Nyeri forest conservation areas, all of which fall within Nyeri Town sub-county (Fig 1) and

mostly along land boundary hedges, road reserves and around homesteads. The species’ poten-

tial suitable habitat is predicted to persist through climate change scenarios, hence enabling

the species to potentially migrate to neighboring uncolonized suitable areas, especially into the

interior of the Aberdare and Mt. Kenya forest reserves. The populace in Nyeri County has con-

tinued to use L. camara as a suitable material for hedges around their parcel boundaries and

homestead areas without knowing the dangers of the species to the natural environment. This

kind of activity may be the leading cause of increased L. camara propagule production poten-

tial year-round and hence enhancing its dispersal by various agents to the uninhabited climati-

cally suitable areas within the study area. The main vectors where these species occur and

dispersal agents such as birds and other animals might determine the species’ dispersal pat-

terns and distance, which in our case has not been assessed. For instance, in Kruger National

Park in South Africa, rivers were identified as the main vectors by which L. camara generally

travels, thereby informing on the spread dynamics of the species for better management [85].

Shackleton et al. [22] suggested urgent intervention measures on O. stricta in Laikipia

County due to its impacts on annual economic losses per household among other negative

impacts on rangelands. We foresee a similar scenario within our study area as the species’

potential habitat gain is the highest. In our study area, Kieni sub-county consists of mainly

rangeland areas which are shown as potentially suitable. If the species’ propagules reach the

Kieni sub-county rangelands, its invasion may affect pastoralism and wildlife conservation. A

similar study by Ouko et al. [23] conducted within the northern rangeland areas including

Nyeri County’s neighbor, Laikipia County, indicated a similar trend in potential habitat gain

for this species, hence supporting the importance of performing habitat suitability in other

areas. Although the number of presence records were limited for O. stricta and the resulting

uncertainties reported in our results, the current study serves as a source of baseline informa-

tion on the status of this particular species especially when prioritizing invasive species for

management.

S. didymobotrya, a native plant species, shows good adaptability to warming climatic condi-

tions. Its gain in habitat includes areas within the Mt. Kenya national park and forest reserve

and the Aberdare national park and forest reserve (S4 and S6 Appendices). Extrapolation of a

climate envelope [76] to the entire study area for the current climate shows predicted species

suitable areas extend to the unsampled protected areas i.e. the Aberdare and Mt. Kenya

national reserves shown in Fig 1 (S4 Appendix). Threats posed by alien plant invasion in high

conservation areas are usually significant [78] and as observed from our future species habitat

suitability maps, there will be continued proliferation of C. decapetala, L. camara, and S. cam-
pylacanthum within protected areas. These species were cited as a nuisance in these protected

areas in a report by the Kenya Forest Service [28]. Although S. campylacanthum will likely

experience a decline in suitable habitats in future environments, most of the habitat loss will be

within the inhabited areas of the study area while habitat gains will be expected within the pro-

tected areas of the Aberdare and Mt. Kenya ecosystems (Fig 1e in S6 Appendix). However, this

apparent range contraction may require a long time to take effect [76]. These results support

the focus on S. campylacanthum which might continue being a nuisance within conservation

areas. In a five-year research study by Pringle et al. [86] focusing on the effects of different

sized mammalian herbivores including elephants, impala and dik-dik on S. campylacanthum
populations within Mpala Research Centre in central Kenya, results indicated a complemen-

tary effect. It was indicated that, while dik-dik reduced much of the S. campylacanthum foliage,

the impala and elephants contributed to seed dispersal hence complementing each other in
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sustaining the species’ population. Our study shows climate change will enhance the habitat

range for S. campylacanthum in some parts of the Mt Kenya and Aberdare national reserves,

and the species’ dispersal may be fast in these areas due to availability of seed dispersers. Refer-

ring to this case of S. campylacanthum, we infer that while ENMs may provide an understand-

ing of the potential habitat dynamics of invasive species, studies on other drivers of species

population distribution are equally important.

Ecological niche modeling depends on additional biotic factors (e.g. ability of species to

compete for nutrients) and dispersal factors of a given species [74], which were not available to

consider for our ENM predictions. Due to unavailability of such biotic and dispersal data,

most researchers have used the readily available standard bioclimatic variables (mostly temper-

ature and precipitation) as the only predictor variables for calibrating models for species future

predictions, e.g. Ashraf et al. [87], especially in predicting risks of invasive species within a

given region under changing climate conditions [9]. With increasing greenhouse gas emis-

sions, it is expected that changes in global temperature and precipitation patterns will influ-

ence probability of occurrence of invasive species in a given area [9]. We noted that fewer

bioclimatic variables were selected as important (Table 2) for our study species possibly

because the calibration area had lower climate variation than perhaps that of a global spatial

scale [51]. Other than bioclimatic variables, topographic variables such as elevation also play

an important role in identifying conditions for species’ probability of occurrence [88]. For

example, elevation was selected among the most important variables to determine species

response for two of the study species, C. decapetala and S. didymobotrya, and therefore should

not be ignored in ENM studies. Efforts geared towards determining the main driving factors

for a given species’ response in a particular geographical area include analyzing the species’

responses to variations in precipitation values, temperature values and topographical attributes

so as to provide information to conservation managers about areas meeting such conditions.

We recognize that changes to species’ potential suitable habitat dynamics may be influenced

by other factors not considered in the modeling process, such as changes of land use and land

cover as well as nutrient deposition in soils, carbon dioxide levels [9] and the ability of the spe-

cies to colonize newly predicted suitable climate space in consideration of dispersal limitations

[75].

Future climate scenarios are captured through complex simulations referred to as General

Circulation Models (GCMs) under different greenhouse gas emission pathways [74]. In our

present study, we recognize that GCM data is a source of uncertainty in ENMs [72, 74]. From

our initial selection of the “appropriate” GCM data for our model calibration region based on

the findings of McSweeney et al. [50], our assessment of the ensemble model predictions using

individual GCM data indicate different levels of model uncertainties in future habitat predic-

tions and depending on a given species (S5 and S6 Appendices). Future predictions for O.

stricta in all the selected GCM scenarios indicate higher model prediction uncertainties than

any of the other study species. Therefore, further investigation is needed to determine its habi-

tat suitability within the study area. Potential habitat changes presented in Fig 4 show that tak-

ing an average of the GCM data as ensemble predictors in future model predictions may not

necessarily yield the same results as taking a simple average of individual GCM data model

predictions (Fig 2 in S6 Appendix), hence indicating possible uncertainties related to climate

data considered for modeling. However, a number of researchers have adopted the ensemble

approach, e.g. [73], to account for the differences in GCM data. In our case, we adopted a sim-

ple average of the predicted outputs from the selected set of GCMs to quantify our species hab-

itat range changes as opposed to the results from an ensemble of GCM data values. The

rationale being, the differences were significant in absolute values and in predicted maps (see

Figs 1 and 4 in S6 Appendix). Therefore, it is important to understand the effects of a given
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individual GCMs on future species predictions before taking an ensemble of GCMs data values

for an ensemble of predictions.

In conservation planning, one of the main goals is to establish biogeographical patterns of a

given species, often through ENMs. Such efforts enable identification of species invasiveness,

sites that need prioritization for rehabilitation as well as re-introduction of threatened species

[76]. The present study’s habitat suitability estimates for the current and future time periods

serve as preliminary information for devising policies on effective management and monitor-

ing actions in identified threatened habitats [51]. We have provided baseline information on

potential distribution and range changes of study species within Nyeri County, a major mile-

stone in moving towards maintaining healthy natural habitats and preventing climate change

vulnerabilities such as the reduction of survival of endemic species and adverse effects on agri-

cultural systems and water catchment areas brought about by uncontrolled spread of invasive

species [89].

Conclusions

Our study has provided baseline information on where and which invasive plant species will

lose or gain suitable habitats and where the present climatically suitable areas will persist in

future time periods. Immediate actions are needed to avert possible irreversible habitat trans-

formation in predicted suitable areas especially for the habitat range expanding species C. dec-
apetala, L. camara, O. stricta and S. didymobotrya if their migration reaches these areas. These

invasive species are expected to remain a big threat to biodiversity hotspot areas especially in

the Mt. Kenya and the Aberdare forest and national park reserves. The information generated

through this study can be used to inform policy on prioritizing management of these species

and determination of their absolute distributions within the area. These could be targeting

small forest conservation areas or the entire geographical extent of the wider national reserve.

Moving forward, we intend to improve on this work by developing a mapping framework that

utilizes species’ unique spectral indices to enhance rapid estimation of fractional cover maps as

well as derivation of essential biodiversity variables from remote sensing imagery for building

subsequent species distribution maps.
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