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Summary Using the PorcineSNP80 BeadChip, we performed a genome-wide association study for seven

reproductive traits, including total number born, number born alive, litter birth weight,

average birth weight, gestation length, age at first service and age at first farrowing, in a

population of 1207 LargeWhite pigs. In total, we detected 12 genome-wide significant and 41

suggestive significant SNPs associated with six reproductive traits. The proportion of

phenotypic variance explained by all significant SNPs for each trait ranged from 4.46%

(number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were

located within known QTL regions for swine reproductive traits, such as corpus luteum

number, stillborn number and litter size, of which one QTL region associated with litter size

contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376

functional genes contained or were near these significant SNPs. Of these, 14 genes—

BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI,

GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproduc-

tive traits based on their critical roles in embryonic development, energy metabolism and

growth development. Our findings contribute to the understanding of the geneticmechanisms

for reproductive traits and could have a positive effect on pig breeding programs.
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In pig production systems, reproductive traits, such as total

number born (TNB), number born alive (NBA), litter birth

weight (LBW), average birth weight (ABW), gestation

length (GL), age at first service (AFS) and age at first

farrowing (AFF), play key roles in production efficiency and

economic profits. Traditional breeding technologies based

on best linear unbiased prediction (Holm et al. 2004) is

limited for significant genetic improvement of these repro-

ductive traits due to their low heritability (Chen et al. 2003).

In addition, piglet records can be collected for sows only

later in life. Thus, for improved breeding programs, it is

essential to better understand the genetic determinants of

these traits. Candidate genes and quantitative trait loci

(QTL) for reproductive traits were identified in previous

studies (Onteru et al. 2009). Until now, a total of 405 QTL

had been found on different swine chromosomes for TNB,

NBA, LBW, ABW and GL (http://www.animalgenome.org/

cgi-bin/QTLdb/SS/index, Apr 27, 2017).

Compared with previous methods, genome-wide associa-

tion studies (GWASs) provide a more powerful strategy for

genetic dissection and have been performed with domestic

animals for various economic traits (Zhang et al. 2013). To

date, several GWASs for pig reproductive traits, such as

number of teats (Verardo et al. 2016), litter size (Sell-Kubiak

et al. 2015) and ovulation rate (He et al. 2017), have been

conducted, but knowledge about the complex genetic

mechanism for reproductive performance still remains

insufficient. Therefore, the aim of this study was to detect

novel genetic variants and identify candidate genes for

reproductive traits by performing a GWAS in a Large White

pig population.

A total of 1207 Large White pigs from the Beijing

Shunxin Agriculture Co., Ltd. and Beijing Liuma Pig

Breeding Technology Co., Ltd. pig breeding farms (Beijing,
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China) were genotyped using the GeneSeek PorcineSNP80

BeadChip. Using PLINK software (Purcell et al. 2007), DNA

samples with genotyping call rates less than 90% were

removed, and we also excluded SNPs with call rates less

than 90%, minor allele frequencies less than 0.03 or

Hardy–Weinberg equilibrium P-value < 1.00E-06 in SNPs

with no position information or located on sex chromo-

somes were also excluded from the dataset. Missing geno-

types were imputed using BEAGLE v4.0 (Browning &

Browning 2009) based on information from remaining

SNP genotypes using, and SNPs with R2 > 0.3 (Browning &

Browning 2007) were retained. After quality control, 1198

individuals and 51 443 SNPs qualified for the study.

The phenotypic data for first parity were collected from

2010 to 2015, and statistics for the phenotypes of seven

reproductive traits were calculated (Table S1). TNB, NBA,

LBW, ABW and GL were approximately normally dis-

tributed, but for AFS and AFF, phenotype values were

converted using the rntransform function in the GENABEL R

package (Aulchenko et al. 2007).

To better control population structure, we first conducted

a principal components analysis to reduce spurious associ-

ations derived from the presence of individual relatedness.

All autosomal SNPs were pruned using the indep-pairwise

option in PLINK software, using a window size of 25 SNPs, a

step of five SNPs and an r2 threshold of 0.2 (Gu et al. 2011),

which resulted in 6993 independent SNPs.

The genome-wide association study was implemented

with a mixed model approach using GEMMA software (Zhou &

Stephens 2012) for each trait in the first parity. The

centered relatedness matrix was calculated using all auto-

somal markers, and a Wald test was performed for each SNP

against the null hypothesis of g = 0. The statistical model

used is as follows:

y ¼ Waþ xbþ uþ e

where y is an n91 vector of phenotype values for all

individuals; W is an n9c matrix of covariates (fixed effects

that contain the first PC, herd, farrowing season and a

column of 1s); a is a c91 vector of the corresponding

coefficients including the intercept; x is an n91 vector of

genotypes of a marker at the locus tested; b is the effect size

of the marker; u is an n91 vector of random polygenic

effects with a covariance structure as ɛ�N(0, KVg), where

K is an n9n genetic relatedness matrix and Vg is the

polygenic additive variance; and ɛ is an n91 vector of

residual errors with ɛ�N(0, IVe), where I is n3n identity

matrix and Ve is the residual variance component.

To properly decide the thresholds for genome-wide

significant/suggestive associations, we calculated the effec-

tively independent tests based on the estimated number of

independent markers and linkage disequilibrium blocks for

autosome markers (Nicodemus et al. 2005). A linkage

disequilibrium block was defined as a set of adjacent SNPs

with pairwise r2 values greater than 0.40 (Gu et al. 2011).

A total of 11 315 effectively independent tests was sug-

gested, following Lander & Kruglyak (1995), and the

threshold P-value for genome-wide significance association

was 4.42E–6 (0.05/11 315) and for suggestive association

was 8.84E–5 (1/11 315). The genomic inflation factor k
was calculated using GENABEL packages. In addition, GCTA

software (Yang et al. 2011) was used to calculate pheno-

typic variances explained by significant SNPs.

The functional genes containing or near the identified

significant SNPs, less than 1 Mb away from significant

SNPs, were selected based on the Sus scrofa 10.2 genome

assembly. Further functional annotation was carried out

based on the NCBI database (https://www.ncbi.nlm.nih.

gov/), and Gene Ontology analysis was conducted using

DAVID Bioinformatics Resources (http://david.abcc.ncifc

rf.gov/).

Table 1 Genome-wide significant SNPs for five reproductive traits.

Trait SNP Chr Position (bp) P-value MAF b CPV% (SE)

Nearest gene/

candidate gene1 Location (bp)2

TNB WU_10.2_2_162527469 2 162 527 469 9.72E–07 0.27 (C/A) �0.59 2.18 (0.03) IFITM2 174 050

TNB WU_10.2_3_44631648 3 44 631 648 1.19E–06 0.31 (G/A) �0.55 2.09 (0.03) BARX1/IL1B2 23 864/53 8271

TNB WU_10.2_3_44862084 3 44 862 084 2.83E–06 0.27 (G/A) �0.57 2.01 (0.03) BARX1/IL1B2 254 300/307 835

TNB ALGA0098819 18 56 535 534 3.46E–06 0.17 (A/G) �0.62 1.72 (0.03) LOC102165380/GCK within/617 340

NBA WU_10.2_3_44631648 3 44 631 648 9.07E–07 0.31 (G/A) �0.53 2.08 (0.03) BARX1/IL1B2 23 864/538 271

NBA ALGA0098819 18 56 535 534 3.10E–06 0.17 (A/G) �0.61 1.79 (0.03) LOC102165380/GCK within/617 340

NBA WU_10.2_2_162527469 2 162 527 469 4.42E–06 0.27 (C/A) �0.53 1.93 (0.03) IFITM2 174 050

GL ALGA0061535 11 25 305 148 1.42E–06 0.05 (A/G) �1.04 2.26 (0.03) AKAP11 99 469

GL WU_10.2_4_1247716 4 1 247 716 3.32E–06 0.16 (A/G) �0.66 1.93 (0.03) ZC3H3/GPIHBP1 14 516/96 877

GL ASGA0023643 4 1 166 037 3.87E–06 0.16 (A/G) �0.66 1.88 (0.03) MAFA 7303

AFS ALGA0111336 16 80 445 920 2.23E–06 0.38 (A/C) �0.22 2.26 (0.03) ADCY2 within

AFF ALGA0111336 16 80 445 920 3.53E–06 0.38 (A/C) �0.22 2.19 (0.03) ADCY2 within

Chr, swine Chromosome; MAF, allele frequency of first listed marker; b, allele substitution effect; CPV% (SE), contribution to phenotypic variance

(standard error); TNB, total number born; NBA, number born alive; GL, gestation length; AFS, age at first service; AFF, age at first farrowing.
1Gene names in bold type represent candidate genes with less than 1.0 Mb of the SNPs.
2Locations in bold type represent the distance between a significant SNP and the candidate gene.
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As a result, 53 SNPs, including 12 genome-wide signif-

icant (Table 1) and 41 suggestive significant (Table S2)

SNPs, were detected for TNB, NBA, LBW, GL, AFS and AFF

on SSC1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16 and 18

(there were no significant SNPs detected for LBW). The

lambda values were 1.01, 1.02, 1.02, 1.01, 1.01 and 1.01

for each trait respectively, which meant lower population

stratification (Price et al. 2010). Manhattan plot and

quantile–quantile plots for TNB, NBA and ABW are shown

in Fig. 1, and the plots for GL, AFS and AFF are shown in

Fig. S1.

The phenotypic variance explained by each significant

SNP ranged from 1.24% to 2.26% (Tables 1 & S2). The

phenotypic variance explained by all significant SNPs was

6.77% (SE = 0.03) and 4.46% (SE = 0.03) for TNB and NBA

respectively. Of note, among them, individuals with

genotype AA at SNP WU_10.2_2_162527469 on SSC2

had higher TNB than did those with genotypes AC or CC,

whereas individuals with genotype GG at SNP

WU_10.2_3_44631648 on SSC3 showed lower NBA than

did those with genotypes AG and AA (Table S3). For AFS

and AFF, the phenotypic variance explained by all signif-

icant SNPs was 7.98% (SE = 0.048) and 9.38% (SE = 0.05)

respectively. The peaking SNP ALGA0111336 on SSC16

revealed that individuals with genotype CC had higher AFS

and AFF than did those with other genotypes (Table S3). In

addition, for two other traits, ABW and GL, the phenotypic

variance explained by all significant SNPs was equal to

7.11% (SE = 0.05) and 11.49% (SE = 0.05) respectively.

A total of 376 different functional genes (Table S4) that

contained or were near the significant SNPs were selected.

Combined with Gene Ontology analysis (Table S5), 14 genes

Figure 1 Manhattan plots and quantile–quantile (Q–Q) plots of the observed P-values for total number born (TNB), number born alive (NBA) and

average birth weight (ABW). The horizontal red and red dashed lines in the Manhattan plots indicate the genome-wide (4.42 9 10�6) and suggestive

significance (8.84 9 10�5) thresholds respectively. The Q–Q plots show the observed –log10-transformed P-values (y-axis) and the expected

–log10-transformed P-values (x-axis).
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with biological functions, such as carbohydrate metabolism,

lipid metabolism and embryonic development, were selected

as promising candidates for swine reproductive traits

(Tables 1 and S2).

For TNB and NBA, we selected six functional genes. Both

the IL1B2 and GCK genes simultaneously associated with

two traits. The IL1B2gene promotes follicular growth, corpus

luteum formation and embryo development (Ross et al.

2003). The GCK gene encodes an enzyme that regulates

glucose level (Muller et al. 2014) and affects the supplement

of fetal energy substrate. Three other genes—BHLHA15,

OCM2 and SMAD2—associated with TNB. The BHLHA15

gene has a critical role in mouse embryonic development,

especially in gastrulae and plantule (Pin et al. 2000). The

OCM2 gene contributes to the transport of calciumandaffects

fetal skeletal mineralization (Belkacemi et al. 2002). We also

selected the SMAD2 gene, which promotes actions of follis-

tatin on blastocyst development in early embryogenesis

(Zhang et al.2015). Furthermore, theHABP2 gene is another

candidate gene for NBA and plays a role in the integrity of

mouse cumulus extracellular matrix (Chen et al. 1993).

The PAQR5 and GRB10 genes were selected as important

candidates for ABW. The PAQR5 gene promotes fast

regulation of progesterone through a combination of

specific receptors on the cell membrane (Thomas 2008),

and the expression of GRB10 in the placenta directly

regulates placental size and efficiency in mouse (Charalam-

bous et al. 2010).

Four genes—namely PRELID2, DMNK, GPI and

GPIHBP1—associated with GL. PRELID2 is involved in

mouse embryogenesis during mid-later gestation (Gao et al.

2009), whereas DMNK plays a role in the process of

embryonic implantation (Paria et al. 2002). The function of

the GPI gene is similar to that of GCK: regulating glucose

homeostasis. Like glucose, lipids play critical roles in fetal

growth, and the GPIHBP1 gene participates in the trans-

portation of lipids, including cholesterol, triglycerides and

other lipids (Herrera 2002).

A common candidate gene associated with AFS and AFF

is the ADCY2 gene, which contained the peak SNP

ALGA0111336 and is involved in catalyzing the synthesis

of the secondary messenger cyclic adenosine monophos-

phate (cAMP), which promotes the functions of follicle

stimulating hormone and luteinizing hormone on ovaries

(Richards et al. 1995). Another candidate for AFF,

ACVR2B, plays an important role in the production of

estrogen and progesterone, oocyte maturation and follicle

stimulating hormone receptor expression (Findlay 1993).

The sample size in this study, consisting of 1207

individuals, was larger than that used by Schneider et al.

(2012), who used a composite population with 1152

individuals, and Onteru et al. (2011, 2012), who used

683 and 818 commercial sows respectively. Our study

enriches the understanding of genetic mechanisms for

reproductive traits, especially for AFS and AFF in pigs.

Compared with previous studies, there were 29 signifi-

cant SNPs located on known QTL regions for reproductive

traits (Table S6), such as number of teats (Verardo et al.

2016), number of stillborn and litter size (Onteru et al.

2012). One QTL region associated with litter size (SSC18,

52.3–77.6 MB) contained the ALGA0098819 SNP for TNB;

the GCK gene is located in this QTL region.

In summary, 53 significant SNPs were detected to be

associated with six reproductive traits. Further, 14 func-

tional genes were identified to be important candidates for

TNB, NBA, ABW, GL, AFS and AFF, namely, BHLHA15,

OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10,

PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B.

Our findings provide important knowledge on the under-

standing of genetic architecture for swine reproductive

traits.

Acknowledgements

We gratefully acknowledge our colleagues on the molecular

quantitative genetics team for their technical assistance and

helpful comments on the manuscript. This work was

supported by the Beijing Innovation Consortium of Agri-

culture Research System (BAIC02-2016), the China Agri-

culture Research System (CARS-35), the National Natural

Science Foundation of China (31671327), the Beijing City

Committee of Science and Technology Key Project

(D151100004615004), and the Program for Changjiang

Scholar and Innovation Research Team in University (grant

number IRT_15R621).The authors have no conflict of

interest to declare.

References

Aulchenko Y.S., Ripke S., Isaacs A. & van Duijn C.M. (2007)

GENABEL: an R library for genome-wide association analysis.

Bioinformatics 23, 1294–6.

Belkacemi L., Simoneau L. & Lafond J. (2002) Calcium-binding

proteins: distribution and implication in mammalian placenta.

Endocrine 19, 57–64.

Browning S.R. & Browning B.L. (2007) Rapid and accurate

haplotype phasing and missing-data inference for whole-genome

association studies by use of localized haplotype clustering.

American Journal of Human Genetics 81, 1084–97.

Browning B.L. & Browning S.R. (2009) A unified approach to

genotype imputation and haplotype-phase inference for large

data sets of trios and unrelated individuals. American Journal of

Human Genetics 84, 210–23.

Charalambous M., Cowley M., Geoghegan F., Smith F.M., Radford

E.J., Marlow B.P., Graham C.F., Hurst L.D. & Ward A. (2010)

Maternally-inherited Grb10 reduces placental size and efficiency.

Developmental Biology 337, 1–8.

Chen L., Russell P.T. & Larsen W.J. (1993) Functional significance

of cumulus expansion in the mouse: roles for the preovulatory

synthesis of hyaluronic acid within the cumulus mass. Molecular

Reproduction and Development 34, 87–93.

© 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics, 49, 127–131

Wang et al.130



Chen P., Baas T.J., Mabry J.W., Koehler K.J. & Dekkers J.C. (2003)

Genetic parameters and trends for litter traits in U.S. Yorkshire,

Duroc, Hampshire, and Landrace pigs. Journal of Animal Science

81, 46–53.

Findlay J.K. (1993) An update on the roles of inhibin, activin, and

follistatin as local regulators of folliculogenesis. Biology of

Reproduction 48, 15–23.

Gao M., Liu Q., Zhang F., Han Z., Gu T., Tian W., Chen Y. & Wu Q.

(2009) Conserved expression of the PRELI domain containing 2

gene (prelid2) during mid-later-gestation mouse embryogenesis.

Journal of Molecular Histology 40, 227–33.

Gu X., Feng C., Ma L. et al. (2011) Genome-wide association study

of body weight in chicken F2 resource population. PLoS One 6,

e21872.

He L.C., Li P.H., Ma X., Sui S.P., Gao S., Kim S.W., Gu Y.Q., Huang

Y., Ding N.S. & Huang R.H. (2017) Identification of new single

nucleotide polymorphisms affecting total number born and

candidate genes related to ovulation rate in Chinese Erhualian

pigs. Animal Genetics 48, 48–54.

Herrera E. (2002) Lipid metabolism in pregnancy and its conse-

quences in the fetus and newborn. Endocrine 19, 43–55.

Holm B., Bakken M., Klemetsdal G. & Vangen O. (2004) Genetic

correlations between reproduction and production traits in

swine. Journal of Animal Science 82, 3458–64.

Lander E. & Kruglyak L. (1995) Genetic dissection of complex traits:

guidelines for interpreting and reporting linkage results. Nature

Genetics 11, 241–7.

Muller Y.L., Piaggi P., Hoffman D. et al. (2014) Common genetic

variation in the glucokinase gene (GCK) is associated with type 2

diabetes and rates of carbohydrate oxidation and energy expen-

diture. Diabetologia 57, 1382–90.

Nicodemus K.K., Liu W., Chase G.A., Tsai Y.Y. & Fallin M.D. (2005)

Comparison of type I error for multiple test corrections in large

single-nucleotide polymorphism studies using principal compo-

nents versus haplotype blocking algorithms. BMC Genetics 6

(Suppl 1), S78.

Onteru S.K., Ross J.W. & Rothschild M.F. (2009) The role of gene

discovery, QTL analyses and gene expression in reproductive traits

in the pig. Society of Reproduction & Fertility Supplement 66, 87.

OnteruS.K., FanB.,NikkilaM.T.,GarrickD.J., StalderK.J.&Rothschild

M.F. (2011) Whole-genome association analyses for lifetime repro-

ductive traits in the pig. Journal of Animal Science 89, 988–95.

Onteru S.K., Fan B., Du Z.Q., Garrick D.J., Stalder K.J. & Rothschild

M.F. (2012) A whole-genome association study for pig repro-

ductive traits. Animal Genetics 43, 18–26.

Paria B.C., Reese J., Das S.K. & Dey S.K. (2002) Deciphering the cross-

talkof implantation: advances andchallenges.Science296, 2185–8.

Pin C.L., Bonvissuto A.C. & Konieczny S.F. (2000) Mist1 expression

is a common link among serous exocrine cells exhibiting

regulated exocytosis. Anatomical Record 259, 157–67.

Price A.L., Zaitlen N.A., Reich D. & Patterson N. (2010) New

approaches to population stratification in genome-wide associa-

tion studies. Nature Reviews Genetics 11, 459–63.

Purcell S., Neale B., Todd-Brown K. et al. (2007) PLINK: a tool set

for whole-genome association and population-based linkage

analyses. American Journal of Human Genetics 81, 559–75.

Richards J.S., Fitzpatrick S.L., Clemens J.W., Morris J.K., Alliston T.

& Sirois J. (1995) Ovarian cell differentiation: a cascade of

multiple hormones, cellular signals, and regulated genes. Recent

Progress in Hormone Research 50, 223–54.

Ross J.W., Malayer J.R., Ritchey J.W. & Geisert R.D. (2003)

Characterization of the interleukin-1beta system during porcine

trophoblastic elongation and early placental attachment. Biology

of Reproduction 69, 1251–9.

Schneider J.F., Rempel L.A., Snelling W.M., Wiedmann R.T.,

Nonneman D.J. & Rohrer G.A. (2012) Genome-wide association

study of swine farrowing traits. Part II: Bayesian analysis of

marker data. Journal of Animal Science 90, 3360–7.

Sell-Kubiak E., Duijvesteijn N., Lopes M.S., Janss L.L., Knol E.F.,

Bijma P. & Mulder H.A. (2015) Genome-wide association study

reveals novel loci for litter size and its variability in a Large White

pig population. BMC Genomics 16, 1049.

Thomas P. (2008) Characteristics of membrane progestin receptor

alpha (mPRalpha) and progesterone membrane receptor compo-

nent 1 (PGMRC1) and their roles in mediating rapid progestin

actions. Frontiers in Neuroendocrinology 29, 292–312.

Verardo L.L., Silva F.F., Lopes M.S., Madsen O., Bastiaansen J.W.M.,

Knol E.F., Kelly M., Varona L., Lopes P.S. & Guimaraes S.E.F.

(2016) Revealing new candidate genes for reproductive traits in

pigs: combining Bayesian GWAS and functional pathways.

Genetics Selection Evolution 48, 9.

Yang J., Lee S.H., Goddard M.E. & Visscher P.M. (2011) GCTA: a tool

for genome-wide complex trait analysis. American Journal of

Human Genetics 88, 76–82.

Zhang H., Wang Z., Wang S. & Li H. (2013) Retraction note:

progress of genome wide association study in domestic animals.

Journal of Animal Science & Biotechnology 4, 1.

Zhang K., Rajput S.K., Lee K.B., Wang D., Huang J., Folger J.K.,

Knott J.G., Zhang J. & Smith G.W. (2015) Evidence supporting a

role for SMAD2/3 in bovine early embryonic development:

potential implications for embryotropic actions of follistatin.

Biology of Reproduction 93, 86.

Zhou X. & Stephens M. (2012) Genome-wide efficient mixed-model

analysis for association studies. Nature Genetics 44, 821–4.

Supporting information

Additional supporting information may be found online in

the supporting information tab for this article:

Figure S1 Manhattan plots and quantile–quantile plots of

the observed P-values for gestation length (GL), age at first

service (AFS) and age at first farrowing (AFF).

Table S1 Descriptive statistics of reproductive traits in the

Large White population.

Table S2 Suggestive significant SNPs for six reproductive

traits.

Table S3 Genotype–phenotype correlations of the most

significant SNPs for four reproductive traits

Table S4 Annotated genes with less than 1 Mb of significant

SNPs.

Table S5 Significant Gene Ontology terms for five repro-

ductive traits.

Table S6 Significant SNPs located in known QTL regions for

reproductive traits.

© 2018 The Authors. Animal Genetics published by John Wiley & Sons Ltd
on behalf of Stichting International Foundation for Animal Genetics, 49, 127–131

GWAS for reproductive traits in pigs 131


