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Abstract

Automatic evaluation of 3D volumes is a topic of importance in order to speed up clinical

decision making. We describe a method to classify computed tomography scans on volume

level for the presence of non-acute cerebral infarction. This is not a trivial task, as the lesions

are often similar to other areas in the brain regarding shape and intensity. A three stage

architecture is used for classification: 1) A cranial cavity segmentation network is developed,

trained and applied. 2) Region proposals are generated 3) Connected regions are classified

using a multi-resolution, densely connected 3D convolutional network. Mean area under

curve values for subject level classification are 0.95 for the unstratified test set, 0.88 for

stratification by patient age and 0.93 for stratification by CT scanner model. We use a partly

segmented dataset of 555 scans of which 186 scans are used in the unstratified test set.

Furthermore we examine possible dataset bias for scanner model and patient age parame-

ters. We show a successful application of the proposed three-stage model for full volume

classification. In contrast to black-box approaches, the convolutional network’s decision can

be further assessed by examination of intermediate segmentation results.

Introduction

Stroke is one of the leading death causes world-wide [1]. It can be further differentiated

between hemorrhagic stroke and ischemic stroke, whereby ischemic stroke occurs around 5.5

times more often and has a lower mortality rate, however, functional independence of patients

is often inhibited which makes stroke rehabilitation necessary. Immediate diagnosis to start

treatment is important and usually supported by computed tomography (CT) or magnetic res-

onance imaging (MRI). [2]
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In our work, we focus on ischemic stroke areas that hipoattenuate in CT [3], in which neu-

rons typically undergo cell necrosis or apoptosis [4, 5]. Diagnosis of medical images can be

supported by computer aided diagnosis (CAD), which is a strategy to reduce the probability of

missing abnormalities [6]. A considerable amount of literature about the application of CAD

for automated stroke lesion segmentation has been published lately: Non deep-learning

approaches make use of hand-crafted features such as histograms [7], local entropy or median

intensities [8]. There are several publications on stroke lesion segmentation from MRI images

which either utilize a U-Net [9] like architecture [10, 11] or classify voxels on patch level [12].

For thrombus detection in CT images, Lisowska et al. [13] also utilized a patch based approach

with additional atlas coordinates. There are also challenges focusing on segmentation, how-

ever, these only use a subset of slices from the whole CT scan for evaluation [14] and do not

provide healthy subjects in their datasets. For clinical decision making, classification on vol-

ume level is of more interest, as it does not require to manually select a region of interest.

Recently, techniques for optical coherence tomography (OCT) or CT volume classification,

which still make use of slice-wise or voxel-wise annotation, but output predictions on volume

level, have been proposed [15–18]. Apart from that, convolutional neural networks (CNNs)

which only make use of volume-wise, binary annotation have also been evaluated for hemor-

rhage detection [19]. However, these require a large number (N = 37074) of training samples.

Recent work also highlights the importance of result explanation for deep learning systems

applied in a clinical environment [16, 18].

Our contributions are as follows: 1) We present a fully automatic subject level classification

method of patients with cerebral infarction, which does not require to select a region of inter-

est manually and is evaluated on a test-set with healthy and diseased patients. 2) We compare

our algorithm with existing approaches for 3D volume classification 3) We present a method

for cranial cavity segmentation of CT scans that is, to the best of our knowledge, faster than

existing methods and evaluate its use for stroke classification 4) We investigate if our method

is prone to dataset bias.

For the initial development and testing of the algorithm, we focused on non-acute stroke

lesions. Hereby, the ground-truth can be retrieved more easily than for acute stroke volumes.

However, the clinical use case is limited to structured reporting. For the classification of acute

stroke cases, an algorithm similar to the presented one could be used. Hence, this work lies the

foundation for the detection of acute cases.

The paper is structured as follows: in the Material and Methods section the dataset, the used

convolutional network architectures and the network training procedure is described. The

Results section reports results for the classification network and intermediate results for seg-

mentation networks. The Discussion section puts the results in context with current literature

and highlights advantages and disadvantages of the proposed method.

Materials and methods

The main objective of this work was to provide a reliable, automatic pipeline for cerebral

infarction classification of non-contrast CT scans, which is also capable to provide visual

explanations. We use a three stage approach, which systematically reduces the amount of vox-

els used for final classification: after preprocessing, a cranial cavity segmentation to extract

brain tissue is performed in stage 1. In the second stage, a region proposals network is trained

on slice level, which proposes regions where stroke is to occur most likely, but does not provide

an individual probability for each region yet. Hereby a high sensitivity of the network is desir-

able, as false positives are eliminated in the third stage. In this stage, a network differentiating
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between patches extracted from the ground-truth radiologist annotations and patches

extracted from region proposals of healthy volumes is trained. For inference, the three stages

are run through consecutively (Fig 1).

Dataset description

CT scans of 555 patients were retrospectively collected at our institution. Of these, 171 patients

had a confirmed non-acute stroke diagnosis with hipoattenuating tissue visible in the CT scan.

Data access was approved by the institutional ethics committee at Klinikum Rechts der Isar

(Ethikvotum 87/18 S) and data was anonymized. The ethics committee has waived the need

for informed consent. All research was performed in accordance with relevant guidelines and

regulations. Reference standard for diseased patients was obtained based on the diagnosis of

two radiologists, while reference standard for healthy patients was based on the diagnosis of

one radiologist. Segmentation of the stroke lesions was performed by a radiologist using an in-

house annotation software.

Slice thickness of the scans was 5mm for 435 scans. 109 scans were acquired with two differ-

ent slice thicknesses (3mm and 6mm) within a single cranial scan. Further 11 scans were

acquired with 6mm, 3mm, 4mm or 8mm slice thickness. From the patients, 284 patients were

male and 271 patients were female. Mean patient age was 67.02±17.05 years. Scanner and age

distribution is shown in Table 1.

For training of the cranial cavity segmentation network, the cranial cavity of 42 healthy

patients was segmented. Overall data flow is illustrated in Fig 2. For each of the three stages,

the training/validation/test data split is described in the respective section.

In case of primary or secondary non-stroke like pathologies or abnormalities, CT scans

were excluded from the dataset.

Fig 1. Illustration of inference steps for classification of test set volumes. First the cranial cavity segmentation is

performed. To generate region proposals, the region containing the cranial cavity is given as input to the stage 2

network. The output is a segmentation of possible stroke lesions. Next, patches (orange and black boxes) are extracted

from the original volume with positions corresponding to the border of the segmentations (blue). Hereafter, the

patches are given as input to the stage 3 network, which yields a probability for each patch. Lesion probabilities are

calculated by averaging the probabilities of patches on that lesion. Subject-level probability is later determined by

calculating the maximum of all lesion probabilities within a scan.

https://doi.org/10.1371/journal.pone.0235765.g001

PLOS ONE Towards subject-level cerebral infarction classification of CT scans using convolutional networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0235765 July 15, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0235765.g001
https://doi.org/10.1371/journal.pone.0235765


Table 1. Dataset split.

S, All H, All S, Test No Strat. H, Test No Strat. S, Test Age H, Test Age S, Test Scanner H, Test Scanner

10-20 0 3 0 1 0 0 0 2

20-30 0 20 0 8 0 0 0 10

30-40 1 24 0 7 0 0 0 3

40-50 5 40 3 13 3 3 3 13

50-60 13 52 9 13 9 9 7 14

60-70 33 74 16 17 16 16 9 11

70-80 56 100 32 20 30 30 28 11

80-90 54 51 28 9 24 24 24 7

90-100 9 19 5 4 4 4 4 4

100-110 0 1 0 1 0 0 0 0

Brilliance 64 1 2 1 1 1 0 1 1

Brilliance iCT 3 0 3 0 3 0 0 0

iCT 256 33 71 13 14 12 17 10 10

Ingenuity CT 2 0 2 0 2 0 0 0

IQon—Spectral CT 22 26 16 16 14 9 16 16

Sensation 16 9 13 6 2 5 3 6 6

Sensation Cardiac 64 44 49 22 8 20 4 22 22

SOMATOM Definition AS 30 208 13 40 13 47 13 13

SOMATOM Definition AS+ 22 15 13 12 12 6 7 7

Volume Zoom 5 0 4 0 4 0 0 0

Detailed dataset split. S indicate stroke patients and H indicate healthy patients. For stratified test sets, patient occurrences are balanced by CT scanner model and age.

https://doi.org/10.1371/journal.pone.0235765.t001

Fig 2. Overview of data-flow. Arrows passing a box indicate inference of a trained network. For stage 2 training and

validation, only segmented slices containing a stroke lesion were used (abbreviated with seg.). Dependent on

stratification, a different number of patients was used for the last stage hold-out test-set. None of the final hold-out

test-set patients was used in a previous stage for training, validation or test.

https://doi.org/10.1371/journal.pone.0235765.g002
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Data extraction and preprocessing

DICOM pixel data is read using the pydicom library [20] and slices are assembled to Numpy

based 3D ndarray [21] volumes. Slice positions are determined by sorting slices by the z-coor-

dinate of the ImagePositionPatient DICOM tag. Intensity values below 0 HU and above 80 HU

are clipped to match the stroke window radiologists at our institution use for diagnosis. As net-

work training input requires values to be in a range between 0 and 1, HU values are normal-

ized using a min-max normlization scheme. In our case this results in a division by 80, which

is the maximum HU value.

After cranial cavity segmentation, rotation of the head is performed on the x-y plane in

order to align the mid-line axis, similar to [7]. Areas with a density below water (HU�0) sur-

rounding the cranial cavity are cropped.

Cranial cavity segmentation

Prior to the region proposal generation the cranial cavity, which contains the brain, needs to

be segmented. Organ of interest segmentation was also utilized in previous literature [22–24].

Hereby, for CT scans, the number of voxels can be limited by removing irrelevant objects like

the patient table from the scan. Hence, the memory usage and training time of the consecutive

CNNs can be reduced.

For cranial cavity segmentation, a 3D U-Net like architecture [9, 25] with an unweighted

binary-crossentropy loss function is used in a first experiment (Fig 3a) and a 2D U-Net archi-

tecture [9] is used in another experiment. Rectified linear unit (ReLu) activations were chosen

similar to the original U-Net studies.

For the 3D U-Net, volumes are first downsampled (40 × 64 × 64 voxel). After inference, a

segmentation is retrieved and results are upsampled to the original volume size. However, due

to the upsampling, the border of the segmentation is blurry. In order to obtain clean bound-

aries between soft-tissue and bones, voxels in the original volume are kept on a 11 pixel stripe

around the segmentation border if their HU value is below 50 HU. The optimal distance was

determined according to supplementary material S1 Text.

The HU value of 50 ensures to keep ischemic stroke lesions, which have profile values

below 32 HU in the volume [26]. We emphasize that thresholding is only applied on the seg-

mentation mask edges and that the relevant brain structures are extracted by the CNN and not

by thresholding.

The 3D U-Net is compared to a 2D U-Net segmenting the cranial cavity on slice level. We

used 5 × 5 sized kernels and hyper-parameters similar to the U-Net utilized for region-propos-

als (Fig 3a). Slices are resampled to a 512 × 512 resolution for input and retrieved segmenta-

tions are upsampled to the original slice resolution.

While it is beneficial to restrict the CNN input to the cranial cavity and remove irrelevant

objects like the patient table, it is of interest whether a pixel-wise segmentation brings further

performance improvements for stroke classification. Thus, for consecutive CNN training, we

performed one experiment with the slices cropped around the cranial cavity on the x-y plane

and another experiment with additional pixel-wise cranial cavity segmentation. Hereby, both

experiments make use of the proposed cranial cavity segmentation method.

Region proposal generation

For this stage, the aim is to identify areas where cerebral infarction has most likely occurred. A

high sensitivity is desirable, as false-positives are eliminated in a later stage. A 2D U-Net

derived architecture [9] is used (Fig 3a). The accuracy substantially depends on the loss func-

tion. Due to strong class imbalance on voxel-level, experiments were performed using a Dice
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loss function [27, 28]:

DICE ¼
2
P

pSðpÞyðpÞ
P

pðSðpÞ
2
þ yðpÞ2Þ

; ð1Þ

given the predicted segmentation S(p) and the ground-truth y(p) for a pixel p. The dice loss is

calculated per volume and averaged on batch level in order to penalize small and large lesions

equally within a batch. Connected components with a size smaller than 0.2cm3 are removed by

post-processing. This value was chosen below the size of the smallest stroke lesion in the seg-

mented training and validation set.

Region and volume classification

The segmentation network of the second stage only returns a binary segmentation on voxel

level. To eliminate false positives and to generate a ROC curve, it is desirable to obtain a proba-

bility of how likely a single, connected lesion within the segmentation is classified as a stroke

Fig 3. Network architectures. The proposed cranial cavity segmentation and region proposal architecture is displayed

in (a). Hereby, for region proposal and 2D cranial cavity segmentation networks 52 sized kernels are used. 33 sized

kernels are used for 3D U-Net based cranial cavity segmentation. The final dense layer uses a sigmoid activation

function. The region classification architecture is illustrated in (b) and employs a dual-pathway network, which inputs

patches extracted from the lesion border. It consists of multiple dense and transition blocks. Convolution layers use 33

kernels for dense blocks and 13 kernels for transition blocks. The final dense layer of uses a softmax activation

function. Dropout layer rate was set to 0.2. For both architectures, numbers on top of layers display the number of

convolution filters for convolutional layers or number of neurons for dense layers. Non-dotted line connections

between two layers indicate flow from left to right. If not otherwise stated, convolutional layers utilize a ReLu

activation function.

https://doi.org/10.1371/journal.pone.0235765.g003
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lesion. Hence, a third network is trained, which inputs patches extracted from the lesion bor-

ders and outputs a class (stroke/no stroke). The probability of a lesion is determined by averag-

ing the probabilities of patches on that lesion (Fig 1). This patch-averaging technique was

recently utilized on the ImageNet dataset [29] and is called bag-of-local-features. We consider

this approach as beneficial, because the stroke lesion sizes have a high variance. To determine

the stroke probability on a subject level, the maximum probability of all lesions of a volume is

taken.

It is crucial to select the training data carefully. While it would be possible to extract non-

stroke patches from random positions in healthy volumes, this is an inefficient approach, as it

includes also patches from areas, which were classified as non-stroke by the stage 2 segmenta-

tion network. A better approach is to extract non-stroke patches from positions in healthy vol-

umes, where the region proposal network of stage 2 yields a stroke segmentation (false-

positives). For the other class, stroke patches are extracted from the ground-truth lesion anno-

tations of the radiologist. This strategy is called hard-negative mining and was previously sug-

gested for medical image analysis [13, 23].

To extract patches for training from the segmentation, connected lesions are found using a

connected component labeling algorithm. Next, the border of the lesion is obtained using a

Sobel filter on the segmentation. From each lesion, 70 random positions on this border are

picked. Afterwards, 3D patches in two different resolutions (3 × 32 × 32 voxels and 3 × 64 × 64

voxels downsampled to 3 × 32 × 32 voxels) are extracted from these positions in the corre-

sponding original volume and given as input to a dual-pathway architecture [12, 30]. We

extend the dual-pathway architecture to a densely connected architecture [18, 31], an approach

that was already applied in MRI brain lesion segmentation [32]. Densely connected networks

consist of dense convolutional blocks and transition blocks. While convolutional layers of

standard CNNs only input data from the previous layer, dense convolutional blocks contain

multiple convolutional layers, whereby each layer input data from multiple previous convolu-

tional layers in a respective block. Layers within a block have a rising number of filters, defined

by the growth rate. Transition blocks limit the number of filters and apply a max-pooling oper-

ation. A detailed description can be found in [31]. Our proposed architecture is illustrated in

Fig 3b. A categorical-crossentropy loss is used, as the two classes were hot-encoded. As the dis-

tribution consists of more healthy than stroke patches, unhealthy patches were oversampled

[33] to ensure that all labels are equiprobable. ReLu activations were chosen similar to [31, 32].

In the test-phase, the three trained models are executed sequentially: first, the cranial cavity

is segmented (optional) and region proposals are generated. From the retrieved proposed

regions, 70 patches in two different resolutions from each lesion’s borders are extracted. For

each patch, a probability is retrieved from the region proposal network. This returns 70 proba-

bilities per lesion. To obtain a score on lesion-level, the mean of the 70 probabilities is calcu-

lated. After having calculated a score for each lesion, the score on case-level can be calculated

by taking the maximum score out of all lesion scores.

Comparison with end-to-end architectures

Two architectures that directly input the 3D volume and output a prediction are tested. First, a

3D DenseNet architecture, very similar to the end-to-end architecture used for comparison by

De Fauw et al., [18] is tested: It consists of 5 dense convolutional blocks, each followed by a

transition layer. The first dense block uses a 3 × 3 × 1 filter size for all convolutional layers and

the remaining blocks use a 3 × 3 × 1 filter size for the first, second, third and fifth layer and a

1 × 1 × 3 filter size for the forth layer. A regularization rate of 10−5 is applied on convolutional

layers. The first transition layer uses a 1 × 1 × 2 kernel for pooling, the remaining transition
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layers use a 2 × 2 × 2 kernel. The last layer is a global average pooling layer, followed by a

dense layer. For each block, the initial filter count is 12 with a growth rate of 4.

The second architecture is similar to Arbabshirani [19] and consists of 5 convolutional lay-

ers (256, 64, 96, 128 and 128 filters), each followed by a max-pooling layer (two times 2 × 2 × 4

and three times 2 × 2 × 2 pooling). All convolutional layers use a 3 × 3 × 3 filter size. After the

second layer we added a batch normalization layer, which is different from the original paper’s

local response normalization layer. Last, 2 dense layers with 1000 units each are used and after-

wards one dense layer with 2 units outputs the classification. For both architectures, all layers

use a ReLu activation function, except the final layer which outputs the class. Here, a softmax

activation is used and a categorical cross-entropy loss function is utilized, as the classes are

hot-encoded. Augmentation includes width, height and rotation transformations.

Measuring generalization performance and dataset bias

For image classification dataset bias is a factor to be considered [34]. As our CT scanners are

from different vendors, it has to be ensured that the network does not classify its samples by

features originating from the CT scanner model or patient age. CT scanner models use differ-

ent post-processing kernels for image reconstruction and the brain structure of older patients

is different from younger patients. Consequently both of these factors contribute to different

textured brain tissue. As CNN training on large image databases such as ImageNet is often

biased towards texture [35], the possibility of dataset bias for our classification method is

examined by stratified sampling: For the first stratified set, for each CT scanner model as

many stroke cases as non-stroke cases were used for testing. For the second set, classes of each

patient are equiprobable for an age decade. Stratified and unstratified test set distributions are

shown in Table 1.

Network training

Optimizer, network and number of epochs for all networks are listed in Table 2, whereby

Adam refers to the optimizer [36]. For 2D and 3D cranial cavity segmentation networks, 33

subjects were used for training, 4 for validation and 5 for test, whereby model weights with the

best validation loss during training were used for the final model. As the task does not require

detailed anatomical knowledge, the manual cranial cavity annotation was performed by a com-

puter scientist and verified by a radiologist. Data augmentation was performed using rotation,

shift and zoom transformations.

Total annotated data for training the region proposal network included 78 annotated CT

scans with cerebral infarction. Training data included 62 scans, test data 8 and validation data

8 scans. Slices were resized to 256 × 256 pixels and during training the region proposal

Table 2. Network parameters.

Learning Rate Optimizer Epochs

2D Cranial Cavity Seg. 10−4 Adam 30

3D Cranial Cavity Seg. 10−4 Adam 320

Region Proposal 10−4 Adam 30

Patch Classification 10−5 Adam 5

E2E Hemorrhage 10−5 Adam 1000

E2E DenseNet 10−5 Adam 1000

Network training parameters for all utilized network architectures.

https://doi.org/10.1371/journal.pone.0235765.t002
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network, only slices with present stroke lesions were used. It was ensured that slices of a single

volume only appear either in test, train or validation set.

A sigmoid activation function was used in the final layer. Final weights were obtained from

the epoch with the best validation accuracy. For training the patch-classification network,

patches of the minority class were oversampled.

Training data included patches from 53 segmented stroke cases and 133 healthy cases. Vali-

dation data contained patches from 26 stroke cases and 66 healthy cases. Final subject level test

data included 186 samples in the unstratified and age-stratified test set and 150 samples in the

scanner-stratified test set with equiprobable classes. Again, final weights were obtained from

the epoch with the best validation accuracy. Batch normalization layers were initialized with a

momentum of 0.99 and an epsilon parameter of 10−3 for all architectures. Weights were initial-

ized using the glorot uniform initializer and biases were initialized with zeros. Models were

implemented using Tensorflow [37] and Keras [38] and training was performed on a Titan Xp

GPU.

Statistical analysis

Results were analysed using a receiver operating characteristic (ROC) curve. Here, the true-

positive rate is plotted against the false-positive rate for various discrimination thresholds. If

the discrimination threshold decreases, the number of true-positives and false-positives

increases. We calculated 95% confidence intervals (CI) of ROC curves using a bootstrap

approach: The following experiment was repeated 1000 times: After selecting 100 random

samples from the test set and calculating the AUC value of these samples in each experiment,

we sorted the resulting AUCs of all experiments incrementally. Hereafter, we used the mini-

mum and maximum value of the interval between 2.5% and 97.5% to obtain the 95% CI

intervals.

Results

Results were evaluated for cranial cavity segmentation, region proposals and subject-level clas-

sification, whereby subject-level classification results are of most interest. If not otherwise

stated, numbers are provided in the format mean±standard deviation.

Cranial cavity segmentation

Accuracy and time was evaluated for 3D and 2D U-Net based segmentations. Processing times

for 2D and 3D U-Net were 1.2±0.05 and 2.99±0.11 seconds respectively. Corresponding dice

scores were 0.9826±0.0033 for the 3D version and 0.9854±0.0033 for the 2D version. CT scan

resolution for evaluation with respect to time was 34 × 592 × 592 voxels.

Region proposals

For stroke region proposals, the Dice loss was evaluated for enabled and disabled pixel-wise

cranial cavity segmentation on slice level and illustrated in Fig 4. The latter experiment yielded

a lower average dice score per volume (0.36±0.25 vs. 0.41±0.27) mostly due to more false posi-

tive detections in tissue distant from the brain.

Subject level classification

Final classification ROC curves for subject-level classification are shown in Fig 5. Visual output

with lesion probabilities is shown in Fig 6.
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Fig 4. Region proposals evaluated on slice level using a Dice metric. The top row shows the original image, the second row the prediction

and the third row the ground-truth. From left to right, the first image shows a segmentation with some false positive predicted lesions

outside the brain for disabled cranial cavity segmentation. The second and third image shows a segmentation with mostly true positive

predicted voxels whereby pixel-wise cranial cavity segmentation was disabled and enabled respectively. In the plots for disabled pixel-wise

cranial cavity segmentation (a) and enabled pixel-wise cranial cavity segmentation (b), big squares indicate a stroke lesion in the ground-

truth. Example slices are marked with a red circle in the plot. The square color shows the Dice score calculated from the ground-truth

compared to the network’s prediction. Small squares with color show the ratio of false positive predictions on a slice (1.0 would indicate false

positive voxels only). White squares with a silver border indicate only few or none false-positives, with coverage below 0.1 percent of the

slice. The number of false-positive lesions is later reduced by the stage 3 classification network.

https://doi.org/10.1371/journal.pone.0235765.g004

Fig 5. ROC curves for evaluation on the test set. Pixel-wise cranial cavity segmentation was disabled. Best results

were retrieved for the unstratified test-set. Additional stratification to examine dataset bias was performed for age

decade and CT scanner.

https://doi.org/10.1371/journal.pone.0235765.g005
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Our method achieved an area under a curve (AUC) value of 0.95 for the unstratified test

set, 0.88 for the age- and 0.93 for the scanner stratified test set without pixel-wise cranial cavity

segmentation enabled. This indicates the algorithm is a little prone to dataset bias. Enabled

pixel-wise cranial cavity segmentation delivered slightly worse results (0.94 for the unstratified

test-set). By setting a threshold above which score lesions are considered as stroke, a confusion

matrix can be generated. A confusion matrix for a threshold of 0.3 is shown in Table 3.

The performance of our architecture was compared to two end-to-end approaches previ-

ously utilized for hemorrhage detection and OCT classification (Table 4).

Discussion

In this work, we proposed a fully-automatic multi-stage architecture for classification of non-

contrast CT scans for cerebral infarction. Beside we contributed a method for cranial cavity

segmentation, investigated the effect of dataset bias and compared our method to other CNN

architectures.

Our method for cranial cavity segmentation reaches a similar Dice score of the non-deep

learning approach of Patel et al. [22] (0.98) on a smaller test set, while being, to the best of our

knowledge, notably faster (13.78±0.24 seconds vs. 6 minutes) for the same resolution. How-

ever, we emphasize that they did not use a GPU for calculation, which is utilized by deep learn-

ing frameworks and that performance depends on the available hardware. While pixel-wise

Fig 6. Scores of lesions predicted by the region classification network. Low scores (0.04 and 0.0003) are examples of

false-positive lesions. These lesions received a low score in stage 3 after the stage 2 network had segmented the lesions.

The remaining lesions are true positives. Lesion ground truth was verified by a radiologist (marked with “x”).

https://doi.org/10.1371/journal.pone.0235765.g006

Table 3. Confusion matrix.

True diagnosis Total

Positive Negative

Predicted Positive 73 4 77

Predicted Negative 20 89 109

Total 93 93 186

Confusion matrix with absolute numbers. Results were obtained for a ROC threshold of 0.3.

https://doi.org/10.1371/journal.pone.0235765.t003
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enabled cranial cavity segmentation did not enhance classification performance in our experi-

ments, we consider cropping the images around the cranial cavity segmentation as useful. It

strongly reduces the number of input voxels for the region proposal network as it removes

non-human objects such as the CT scanner table from the images.

For the second stage network, a U-Net architecture for region proposal generation is uti-

lized. The choice of the architecture for region proposals depends on what kind of annotation

is available. In case of box annotations, which can be obtained from pixel-wise annotations, it

is also possible to use architectures such as R-CNN and its derivatives [39–41]. Mask R-CNN

was already utilized for hemorrhage detection in previous work [17].

For classification, we investigated the effect of dataset bias. In the stratified test set, we

observe a small decrease in performance after age and scanner stratification. This indicates

that these parameters have influence on the networks decision. Hereby, it is a point to discuss,

whether an unbiased decision for the patient age is desirable. A radiologist may unintention-

ally also yield a diagnosis more likely in older than in younger patients. Furthermore, we com-

pared our method to existing methods: Only recently, CNN models which directly input the

complete volume data instead of patches have been proposed. We evaluated two of these in

our experiments, but did not achieve a performance comparable to our multi-stage method for

cerebral infarction classification. This is identical to the findings of Lee et al., [16] who also

reported a reduced performance using an end-to-end approach for hemorrhage detection

compared to their multi-stage approach.

We believe the worse performance is due to two reasons: First, the end-to-end approaches

are usually trained with more volumes, e.g. Arbabshirani et al. [19] used 37074 studies in the

training dataset. Second, we believe that the morphological characteristics of the disease play a

role: In OCT scans, as investigated by De Fauw. et al. [18], diseases usually cover a larger part

of the volume, which makes it easier to detect features in lower resolutions (e.g. after pooling

layers). For hemorrhage, affected areas can be discriminated from brain tissue more easily, as

the HU value of affected areas is usually higher than remaining brain tissue. Both characteris-

tics may have a positive impact on the convergence of the end-to-end network during the

training process.

While multi-stage approaches are used for volume segmentation [42] and classification [17,

18], the idea of reducing input data for the second network using a prior network is the same

for both tasks. In our case, these offer two advantages compared to end-to-end training using a

single network: First, a lower number of volumes for training is required. And second, it helps

Table 4. ROC AUC results.

Experiment AUC

No Strat. 0.95 (0.91–0.98)

Age Strat., 0.88 (0.80–0.95)

Scanner Strat. 0.93 (0.86–0.97)

No Strat., C.S. 0.94 (0.89–0.98)

Age Strat., C.S. 0.89 (0.82–0.95)

Scanner Strat., C.S. 0.92 (0.86–0.97)

E2E Hemorrhage 0.80 (0.70–0.89)

E2E DenseNet 0.80 (0.71–0.88)

AUC values for subject-level classification of the unstratified test set from our approach compared to existing

approaches. Confidence intervals are provided in brackets. Best results were retrieved using the unstratified test set

(No Strat.). C.S. indicates pixel-wise cranial cavity segmentation enabled.

https://doi.org/10.1371/journal.pone.0235765.t004
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the clinician and the developers to understand the CNN’s decision by examining the segmen-

tation and the additional score for each lesion. This advantage was also outlined in previous

work utilizing prior segmentation for classification tasks [17, 18]. In the stage 3 network, we

utilized hard-negative mining, as proposed by [13, 23]. While in initial experiments we

extracted healthy patches from random positions in healthy volumes, we found it crucial to

extract patches from positions where the second stage network yielded a stroke segmentation

in the presented study.

However, a disadvantage of the multi-stage approach compared to end-to-end approaches

is that three networks instead of one network need to be trained. This results in a more com-

plex routine for data extraction, as, for example patches need to be extracted for the classifica-

tion network first. One more potential disadvantage is the need of pixel-wise segmented

training data. This data can not be extracted from the PACS, but needs to be manually anno-

tated by an expert radiologist, which is both, a time and cost intensive process.

In our pipeline, no manual interaction, such as region-of-interest selection, is needed,

which is essential for fully automatic evaluation. A promising use case is to warn radiologists

for false-negatives after examinations. Hereby, structured reporting, an uprising technology,

shows great potential for clinical use [43] and would further allow seamless integration into

clinical work flow. As the indication of an examination is already selected in a machine read-

able format by the user, a sub-process for automatic evaluation can be started in the back-

ground and co-evaluate the CT volume.

Future work includes the acquisition of more data and further optimzation of the network

architecture. To further improve performance, we plan to use ensemble networks, similar to

Fauw et al. [18], in which multiple networks with a identical architecture are trained and the

prediction outcomes are averaged. In addition, we plan to perform further research on how

different network parameters (such as the patch size) affect the network performance.

In conclusion, we presented a method for classification of brain CT scans for cerebral

infarction as our main contribution. Additionally, we evaluated our method on a broad range

of CT scanners and investigated the effect of dataset bias.
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