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The plasticity of the heart enables it to adapt to certain pathological 

insults and to maintain the cardiac output necessary to satisfy the 

metabolic requirements of the body.1 Although beneficial at first, this 

process of ventricular remodelling can have detrimental effects on 

cardiac function and contribute to arrhythmogenesis.2 Sudden cardiac 

death due to ventricular tachyarrhythmias accounts for up to 60% 

of cardiovascular deaths.3 Despite improvements in cardiovascular 

risk management and therapeutic strategies for heart failure, sudden 

cardiac death remains an important healthcare issue.4 A considerable 

number of patients rely on the ICD for the prevention of sudden 

cardiac death.5 While ICD therapy is highly effective in ending 

ventricular arrhythmias, it does not prevent malignant arrhythmias 

from occurring.6–8 Experiencing ICD-shocks – either appropriate or 

inappropriate – can result in psychosocial distress for the patient and a 

reduced quality of life.9,10 Additional treatment, such as antiarrhythmic 

drugs or radio frequency ablation, are often used as adjunctive therapy 

to reduce the number of ICD-shocks, but both therapeutic modalities 

expose the patient to potentially adverse effects.11,12 This underscores 

the importance of finding alternative therapies that intervene to 

prevent the arrhythmia (and concomitant shock therapy).

Beat-to-beat variation of repolarisation (BVR) quantified as 

short-term variability of repolarisation (STV), has been studied 

extensively in relation to arrhythmogenesis in the chronic complete 

atrioventricular block (CAVB) dog model.13 STV has been proposed 

as a novel electrophysiological parameter for the monitoring of 

imminent ventricular arrhythmias.14,15 This review explains the influence 

of ventricular remodelling on BVR and how it can lead to a higher 

susceptibility for arrhythmias. The severity of arrhythmias is diverse; 

therefore, this review also explores the relation of STV to the severity 

of the arrhythmic outcome. It will also discuss the clinical implications 

of STV.

Ventricular Remodelling in the Chronic 
Complete Atrioventricular Block Dog Model 
The CAVB dog model is a widely used animal model to study ventricular 

remodelling and its relation with ventricular arrhythmias.16–18 It is a model 

of compensated biventricular hypertrophy with a long QT phenotype 

and is reproducibly inducible for torsades de pointes (TdP) arrhythmias 

when challenged with a delayed rectifier outward potassium current 

(IKr)-blocker such as dofetilide.19–21 Creation of complete atrioventricular 

block, by means of His bundle ablation, forces the ventricles to activate 

from an infranodal focus of the conduction system resulting in a slow 

idioventricular rhythm. As a result of this bradycardia, the cardiac output 

drops abruptly and there is volume overload. The decrease in cardiac 

output and the altered asynchronous activation form insults to the heart 

and trigger electrical, contractile and structural ventricular remodelling 

as compensatory mechanisms. 

Whereas structural remodelling forms slowly and reaches a stable 

condition between 12 and 16 weeks of CAVB, electrical and contractile 

remodelling are present from 2 weeks of CAVB and coincide with 

the inducibility of TdP arrhythmias in the CAVB dog model.13,22–28 The 

most striking feature of electrical remodelling is the prolongation of 

repolarisation time.15,18,28 On a cellular level, this is explained by the 

downregulation of the slow and rapid components of the delayed 

rectifier outward potassium currents (IKs and IKr).29 The prolonged action 

potential duration (APD) provides more time for the contractile process 
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of the cardiomyocyte. In combination with altered Ca2+ handling this leads 

to Ca2+ overload in the CAVB dog model.30–32 In an electrically remodelled 

heart, the Ca2+ overload can lead to early after depolarisations (EADs) 

that can trigger TdP arrhythmias in this animal model.

Repolarisation Reserve is Reflected by Beat-to-beat 
Variation of Repolarisation
The normal cardiomyocyte possesses a redundancy in repolarising 

currents, enabling it to withstand internal and external challenging 

factors on the repolarisation, which is also called the repolarisation 

reserve.33 The duration of repolarisation is within normal limits and 

fluctuates slightly between subsequent beats. Repolarisation reserve 

diminishes due to electrical remodelling, causing the heart to become 

more susceptible to repolarisation-related ventricular arrhythmia. This 

phenomenon is reflected by the increased temporal dispersion of 

repolarisation, or BVR, which can be quantified as STV. This should not 

be confused with heart rate variability (HRV), which reflects the balance 

of the activity of the autonomic nervous system and can serve as an 

indicator of cardiovascular integrity and prognosis.34,35

In a Poincaré plot, the repolarisation duration of a predetermined 

number of consecutive beats (n=31) is plotted against the duration of 

each previous beat (Figure 1). The difference in repolarisation between 

two subsequent beats is reported by each deviation from the line of 

identity. The average deviation of repolarisation from the line of identity 

for a number of beats reports STV, expressed in milliseconds (ms). STV 

is calculated according to the formula D D N/ ( 2)n n1 −∑ ×+  , where D 

represents repolarisation duration and N is the total number of beats.36 

Increased Temporal Dispersion of Repolarisation as a 
Substrate and Trigger for Torsades de Pointes
There are two fundamental requirements for ventricular arrhythmias 

such as TdP. The first being the need for a substrate that renders 

the heart susceptible to the development of arrhythmias. Electrical 

remodelling in the CAVB dog model diminishes the repolarisation 

reserve, thereby forming part of the substrate. During sinus rhythm 

and acute AV-block in the absence of remodelling, TdP arrhythmias 

cannot be induced when the animals are challenged with dofetilide.13,26 

It is also evident that STV is higher at baseline in CAVB dogs where 

TdPs can be induced repetitively compared with resistant CAVB 

dogs.37,38 Sudden cardiac death can occur in the canine CAVB model 

and is associated with a higher STV at baseline.39 This indicates that 

proarrhythmic ventricular remodelling is associated with an increased 

STVbaseline which reflects the decreased repolarisation reserve. 

The second fundamental for ventricular arrhythmias is the presence of 

a trigger. Temporal dispersion of repolarisation also fulfils this second 

role. Alongside ventricular remodelling, anaesthesia and bradycardia 

further challenge the repolarisation reserve in the canine CAVB 

model.14,21,40 When the ‘final hit’ in the form of an IKr-blocker is infused, 

the absolute value of STV increases abruptly in the minutes preceding 

a storm of TdPs (STVarrhythmic).
13–15,36,41,42 Moreover, STV has been shown 

to be a superior repolarisation parameter to predict the imminent 

proarrhythmic outcome, compared with repolarisation prolongation 

and interventricular dispersion of repolarisation.25,40 

Relation of Short-term Variability of Repolarisation 
to Severity of Arrhythmic Outcome 
The arrhythmic outcome in the inducible CAVB dogs is diverse and 

can range from self-terminating TdPs to TdPs requiring defibrillation 

for termination. Therefore, we investigated the relation of STV to the 

severity of the arrhythmic outcome. Articles studying STV in relation 

to TdP arrhythmias upon dofetilide challenge in the CAVB dog model 

at our lab were considered for pooled analysis (n=28). Only original 

articles that reported STV of the left ventricular monophasic action 

potential duration (STVLV, MAPD) in idioventricular rhythm-remodelled 

CAVB dogs and that used a standard anaesthetic regimen were 

considered. The QT-interval was measured on lead II of the ECG and 

corrected for heart rate using the van de Water formula or the Bazett 

formula.43,44 Original data from the remaining 11 articles was obtained. 

After removing duplicates, data from 64 inducible dogs was pooled. 

Definition of Inducibility and Quantification of 
Arrhythmia Severity
A decreased repolarisation reserve enables the occurrence of single 

ectopic beats (sEB), multiple ectopic beats (mEB), and TdPs. A TdP has 

been defined as ≥5 consecutive EBs with a twisting QRS vector around 

the isoelectric line. A dog is considered to be inducible when ≥3 TdPs 

occur within 10 minutes after the start of infusion with an IKr-blocker 

such as dofetilide.41 When a TdP lasts for 10–12 seconds, defibrillation 

with thoracic patches is performed to restore normal heart rhythm.

The arrhythmia score (AS) has been developed in an effort to quantify 

the severity of the arrhythmias.45 The AS is calculated by averaging the 

three most severe arrhythmias that occur during 10 minutes from the 

start of dofetilide infusion. Figures 2A and B show how the individual 

arrhythmic event is scored: 1 point is given by default for each regular 

beat in the absence of arrhythmic events. An ectopic beat or run of 

ectopic beats is scored with 1 additional point per ectopic beat to 

a maximum of 50. Hence, 2 points for sEB, 3–5 points for mEB, and 

6–50 points for TdP. A TdP requiring defibrillation is perceived as the 

most severe individual arrhythmic episode in the CAVB dog model 

and is applied for TdPs that last ≥10 seconds and contain ≥50 beats. 

Figure 1: Poincaré Plot Depicting Left Ventricular 
Monophasic Action Potential Durations
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Therefore, defibrillation is scored with 50, 75 or 100 points depending 

on the number of consecutive defibrillations necessary to terminate 

one TdP episode (1, 2, ≥3, respectively).40,46

Figure 2C illustrates how the AS corresponds with the severity of a 

storm of TdPs in inducible animals with ≥3 TdPs. We consider a storm 

of self-terminating TdPs less severe than a storm of TdPs requiring at 

least one defibrillation. In an inducible animal with one defibrillated 

TdP (50 points), the lowest possible AS is 20.67 when the other two 

TdPs have the minimal duration corresponding to 6 points each 

(AS = 50 6 6
3
+ +  = 20.67). 

Therefore, all inducible animals with an AS ≤20.67 only have self-

terminating TdPs and are part of the low AS group. An example of 

ECG tracings of an inducible animal with no defibrillations is shown 

in Figure 3A, where the AS is 16.3. The most severe storm of TdPs 

consists of TdPs requiring defibrillation (in the high AS group). The AS is 

50, when all three most severe arrhythmic events require defibrillation 

(Figure 3B). However, an average of 50 points can also be obtained 

with three long-lasting TdPs of ≥49 beats that terminate spontaneously 

before 10 seconds. The AS can reach a maximum of 100 points when 

the three most severe arrhythmic events require ≥3 consecutive 

defibrillations for termination. A combination of self-terminating 

and defibrillated arrhythmias corresponds to an AS of ≥20.67 and 

<50. An example in Figure 2B shows the intermediate AS group.

STV and QTc Increase Before Torsades de Pointes
It has been described previously that STVarrhythmic is higher compared 

with STVbaseline in inducible CAVB dogs. As shown in Figure 4A, STVarrhythmic 

is significantly increased compared with STVbaseline in the three different 

AS groups. STV increases from 0.98±0.72 to 1.71 ± 1.18 (p=0.0020) in 

the low AS group, from 1.34  ± 0.61 to 3.78 ± 2.02 (p<0.0001) in the 

intermediate AS group, and from 1.37 ± 0.63 to 3.55 ± 1.40 (p<0.0001) 

in the high AS group (Table 1). STVbaseline values do not differ between 

the three AS groups. Whereas previous research reports that STVbaseline 

is significantly higher in inducible dogs compared with non-inducible 

dogs, STVbaseline does not seem to contribute to the severity of the 

arrhythmias in inducible dogs.37,38 STVarrhythmic shows a trend for higher 

values in the group with an intermediate and high AS compared with the  

low AS group, but fails to reach statistical significance. Arrhythmic QTc 

is also significantly increased compared with QTc baseline in the three 

AS groups (Figure 4B and Table 1). Neither the values of QTc baseline 

nor the values of arrhythmic QTc differ between AS groups.

The Rise in Short-term Variability of Repolarisation 
is Associated with the Severity of the Arrhythmic 
Outcome
Figure 4A indicates that the change from STVbaseline to STVarrhythmic 

(∆STVLV, MAPD) is greater in the intermediate and high AS groups compared 

with the low AS group. Further quantification of this observation shows 

a significant correlation between ∆STVLV, MAPD and the AS (Spearman 

r 0.308, p=0.006; Figure 4C), indicating an association between the 

increment of STV and the severity of the arrhythmic outcome. This 

correlation is absent for the change in QTc (∆QTc), whereby QTc is 

equally prolonged in dogs with a low AS and a high AS (Pearson r 0.006, 

R2 3.65-0.005, p=0.481; Figure 4D). 

The AS has a heterogeneous nature, in the intermediate AS group the 

same AS score can be the result of a diverse combination in severity of 

arrhythmias. The group with an intermediate AS shows a big variation 

in ∆STVLV, MAPD with some outliers (Figure 2C and Figure 4C). Therefore, 

A. Scoring of the arrhythmic events using the AS. B. Example of calculation of the AS using ECG lead II and the monophasic action potential of the left ventricle. C. Categories of 
severity of a torsades de pointes storm and the corresponding AS in inducible animals based on the necessity of defibrillation for termination. AS = Arrhythmia score; LV = left ventricle; 
MAP = monophasic action potential; TdP = torsades de pointes. Source: Stams et al. 2013.45
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the relative ∆STVLV, MAPD and ∆QTc have been compared in dogs with 

a low AS and high AS (Figure 4E). The dogs discussed in this review 

with an AS score of 50 all had ≥3TdPs requiring defibrillation. Relative 

∆STVLV, MAPD increases with 90.83 ± 90.28% in the low AS group and with 

197.50 ± 143.60% in the high AS group (p=0.0414). This discriminative 

capacity is not found in the relative ∆QTc, which prolongs almost 

equally with 42.03 ± 21.95% in the low AS group and 41.31 ± 20.14% 

in the high AS group (p>0.9999). In the high AS group, the relative  

∆STVLV, MAPD is significantly higher than the relative ∆QTc (p<0.0001) 

(Table 1, Figure 4E).

Severity of Torsades de Pointes
A higher ∆STV contributes to the severity of a storm of TdPs, but 

is unlikely to be determinant for the duration of an individual 

TdP. The mechanism of initiation of an individual TdP episode has 

been attributed to EAD-dependent focal activity due to reduced 

repolarisation reserve.47–54 The significant increase in STV before a 

storm of TdPs can therefore be expected. However, the mechanism 

underlying the perpetuation of a TdP episode is still under debate. 

Extensive mapping experiments have been performed in animal 

hearts, whereby on the one hand focal activity has been proposed as 

the dominant underlying mechanism.48,52–56 On the other hand, it has 

been suggested that nonstationary re-entry perpetuates TdPs.50,51,57 

Others have observed both mechanisms to be present when TdP 

is perpetuated.47,49 These different observations may be due to the 

moment of measurement during a TdP. A TdP can deteriorate into 

ventricular fibrillation, which is most likely to be driven by re-entry. 

Therefore Boulaksil et al. clearly defined the moment of measurement, 

whereupon they based the conclusion that focal activity is the 

dominant mechanism in the perpetuation of self-terminating TdPs and 

during the early phase of a TdP episode, indicating triggered activity.58 

Vandersickel et al. confirmed that all observed TdPs were perpetuated 

by focal activity in the early phase and in the case of short-lasting TdPs, 

but added that the longer-lasting TdP episodes were re-entry driven.59

It is important to note that the STV measured by the studies 

incorporated in Figure 4 preceded the first arrhythmic episode of 

a storm of sEB, mEB, or TdP and was correlated to the AS that was 

observed for 10 minutes. A higher ∆STV is therefore not associated 

with a longer individual episode of a TdP, but rather with the severity 

of the complete electrical storm of TdPs in a short period of time. 

The positive correlation between ∆STV and the AS can be explained 

in several ways. First of all, a more severely decreased repolarisation 

reserve reflected by a higher ∆STV, may give rise to more EADs and 

therefore more focal activity. The bigger amount of focal activity can 

in turn simply improve the odds that a proportion of the focal activity 

is perpetuated into a long-lasting TdP. Second, the circumstances 

during the early phase of a TdP may influence the perpetuation and/or 

degeneration into ventricular fibrillation. The increased repolarisation 

lability and propensity for competing foci may create a more chaotic 

activation pattern, and the consequences on the initiation of re-entry 

have not yet been explored. 

One of the factors that is believed to promote the initiation of re-entry 

is spatial dispersion of repolarisation. However, Dunnink  et  al. 

demonstrated that spatial dispersion of repolarisation contributes to 
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the initiation and early phase continuation of a TdP, whereby focal 

activity was the underlying mechanism. In mapping experiments 

in the CAVB dog, sEBs and the first beat of the TdP arose at the 

site of maximal dispersion of repolarisation and demonstrated 

a focal origin. The TdPs continued with a second focal beat that 

arose from a different location in a region of maximal repolarisation 

heterogeneity.56 The complex interplay between temporal and spatial 

dispersion of repolarisation in relation to arrhythmogenesis needs 

further investigation. 

Clinical Implications
The observed change in STV before arrhythmia, and especially the 

correlation between ∆STV and severity of the imminent arrhythmic 

outcome, confirm the potential of STV as a possible electrophysiological 

marker for the monitoring of imminent ventricular arrhythmias. 

Data from the canine CAVB model cannot readily be extrapolated 

to humans, therefore clinical studies need to further investigate 

STVarrhythmic. In this review STV was measured with an intracardiac 

MAP-catheter in the left ventricle. There are also other modalities 

to measure STV that can be applied in humans more easily, namely 

the QT-interval on the non-invasive ECG and the activation recovery 

interval on intracardiac electrogram (EGM) in devices. The ECG has 

been used in descriptive studies in humans to study if STVbaseline of 

the QT-interval can identify the individual at risk for repolarisation-

dependent ventricular arrhythmias.60–64 However, longer registrations 

are necessary to capture sustained ventricular arrhythmias in 

patients to investigate STVarrhythmic. The EGM is a promising candidate 

for the continuous monitoring of STV and to study STV before 

arrhythmia. In the CAVB dog, the STV can be reliably derived from the 

activation recovery interval of the EGM in the right ventricle (RV), and 

A. STVbaseline and STVarrhythmic categorised by AS. B. Baseline QTc and arrhythmic QTc categorised by AS. C. Correlation between ∆STV and AS. D. Correlation between ∆QTc and AS. E) Relative 
∆STV and ∆QTc grouped by AS. Low AS <20.67 and high AS ≥50. *p<0.05, **p<0.01, ***p<0.0001. AS = arrhythmia score; LV = left ventricular; MAPD = monophasic action potential duration; 
LV = left ventricular; MAPD = monophasic action potential duration; STV = short-term variability of repolarisation. 
Source: Oosterhoff et al. 2010;14 Sprenkeler et al. 2018;26 Bossu et al. 201740; Van de Water et al. 1989;43 Sandhu et al. 2008;67 Bossu et al. 2018;68 Ji et al. 2017;69 Varkevisser et al. 2013;70 
Bourgonje et al. 2012;71 Stams et al. 2011;72 Oros et al. 2010.73
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Figure 4: Short-term Variability of Repolarisation of the Left Ventricular Monophasic Action Potential Duration in 
Relation to the Arrhythmic Outcome in the Inducible Chronic Atrioventricular Block Dog Model 

Table 1: Pooled Experimental Data of Short-term Variability (STV) of Repolarisation of the Left Ventricular Monophasic 
Action Potential Duration and QTc Prior to Torsades de Pointes STVarrhythmic and Arrhythmic QTc, Compared With 
Baseline in the Chronic Atrioventricular Block Dog Model

STVLV, MAPD (ms) ∆STV QTc (ms) ∆QTc

Baseline Arrhythmic Absolute (ms) Relative (%) Baseline Arrhythmic Absolute (ms) Relative (%)

Overall 1.28 ± 0.65 3.30 ± 1.79** 2.01 ± 1.59 182.8 ± 145.3 398.60 ± 59.80 557.6 ± 69.43** 159.1 ± 72.22 42.04 ± 22.87

AS Low (n=12) 0.98 ± 0.72 1.71 ± 1.18* 0.73 ± 0.70 90.83 ± 90.28 397.20 ± 68.89 555.1 ± 68.52** 157.9 ± 67.60 42.03 ± 21.95

Intermediate (n=25) 1.34 ± 0.61 3.78 ± 2.02** 2.44 ± 1.87 211.10 ± 155.10*** 400.60 ± 57.82 562 ± 70.20** 161.60 ± 82.22 42.83 ± 26.67****

High (n=27) 1.37 ± 0.63 3.55 ±1.40** 2.18 ± 1.32 197.50 ± 143.60*** 397.40 ± 59.70 554.6 ±71.49** 157.2 ± 66.73 41.31 ± 20.14****

Data are expressed as mean ± standard deviation. *p<0.01, **p<0.0001 compared with the same electrophysiological parameter in baseline, ***p<0.05 compared with the same 
electrophysiological parameter in the low arrhythmia score group, ****p<0.0001 compared to relative ∆STV of the same arrhythmia score group. All comparisons between the same 
electrophysiological parameter were not significant between the intermediate and high arrhythmia score group. Statistics between STV and QTc have not been calculated for absolute ∆, 
because these are not comparable. CAVB = chronic atrioventricular block; LV = left ventricular; MAPD = monophasic action potential duration; STV = short-term variability of repolarisation.
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it increases before TdP.15 Other repolarisation parameters have been 

studied in patients on the RV EGM, which indicates that it is a feasible 

method to further investigate STVarrhythmic in patients.65–67 

Conclusion
Temporal dispersion of repolarisation, quantified as STV, plays an 

important role in the initiation of ventricular arrhythmias like TdP. 

A sudden increase in STV precedes imminent TdP in the canine 

CAVB model. A higher increment of STV compared with baseline is 

associated with a more severe arrhythmic outcome, in contrast to 

QTc. These findings confirm the potential of STV for the monitoring of 

imminent pro-arrhythmic risk of the ventricles and create new options 

for interventions. 
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Clinical Perspective

• Beat-to-beat variation of repolarisation quantified as short-

term variability (STV) of repolarisation reflects the diminished 

repolarisation reserve of the heart.

• The extent of the increase in STV before ventricular 

arrhythmia is correlated to the severity of the arrhythmia in 

the complete chronic AV-block dog model, in contrast to the 

change in QTc.

• STV is a promising electrophysiological parameter for the 

monitoring of imminent proarrhythmic risk, further clinical 

studies are needed to confirm this potential.
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