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Abstract

This paper presents a robust 3D point cloud registration algorithm based on bidirectional

Maximum Correntropy Criterion (MCC). Comparing with traditional registration algorithm

based on the mean square error (MSE), using the MCC is superior in dealing with complex

registration problem with non-Gaussian noise and large outliers. Since the MCC is consid-

ered as a probability measure which weights the corresponding points for registration, the

noisy points are penalized. Moreover, we propose to use bidirectional measures which can

maximum the overlapping parts and avoid the registration result being trapped into a local

minimum. Both of these strategies can better apply the information theory method to the

point cloud registration problem, making the algorithm more robust. In the process of imple-

mentation, we integrate the fixed-point optimization technique based on the iterative closest

point algorithm, resulting in the correspondence and transformation parameters that are

solved iteratively. The comparison experiments under noisy conditions with related algo-

rithms have demonstrated good performance of the proposed algorithm.

1 Introduction

The development of scanning equipment makes the acquisition of 3D point cloud possible [1,

2]. Point cloud registration problem has attracted considerable attentions in computer vision

[3, 4]. The goal of registration is to find the correspondence and estimate the optimal rigid

transformation between two point clouds. The conventional methods based on the iterative

closest point (ICP) [5, 6] algorithm have been widely used for the advantages of high speed

and accuracy. Usually, such methods build a global hard correspondence which are efficient

but not robust enough with the presence of various noise, outliers and partial difference.

To overcome the above disadvantage, two kinds of improvements have been applied by

researchers. One is to replace the hard assignment with soft assignment, which uses one-to-

more correspondences instead of one-to-one mapping [7, 8]. For example, Liu et al. [9] added

the expectation maximization principle to the ICP, and used the SoftAssign for registration of

overlapping point sets. Jian et al. [10] modeled point sets as probability density functions

(PDF) by Gaussian mixture model. The distance between two global distributions is mini-

mized for fitting two point sets with some smooth transformation constraints. Similar idea
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was used by Zhou et al. [11] for non-rigid point set registration. These methods are accurate

and robust. But they need to estimate the correspondence from each point to all points. The

computational complexity is very high. The other way is to select part of reliable point-pairs to

estimate the transformation. The straightforward solution is to add a penalty term for the cor-

responding points with greater distance [12]. In order to balance the penalty intensity auto-

matically, a parameter related with the overlapping ratio was applied into a series of methods

[13–15] to adjust the trimming and matching ratio. These methods are effective to overcome

the challenge of partial difference. But in reality, when varied kinds of non-ideal conditions

occur together, they are hard to deal with them jointly.

Most traditional registration algorithms build the distance measure based on the mean

square error (MSE). In information theoretic learning (ITL) [16, 17], researchers have noticed

the poor performance of MSE to process non-Gaussian data. Instead, correntropy, a non-

second statistical measure, has shown significant potential in the general robust learning and

signal processing [18–21]. The core reason for its robustness is that the correntropy directly

estimates the probability of how similar the two random variables are. The adverse effects of

noise and outliers are automatically eliminated by assigning small weights. The related work is

a shape matching method [22] based on the Maximum Correntropy Criterion(MCC), which is

equivalent to minimizing C-Loss between two point sets. This work has shown some superior

in dealing with non-Gaussian noise and large outliers. But the algorithm assumes the corre-

spondences between two point sets should be assigned in advance. Moreover the result’s stabil-

ity should be improved. More recently, Xu et al. [23] employed the correntropy and Yang et al.

[24] employ a non-second statistical measure in kernel space under the ICP framework, which

can establish the correspondence and do the matching concurrently. However their algorithms

are easily converge to partial noisy points. Later, we will present some registration results in

[23] in the experiments for comparison.

Different from the above methods, this paper presents a robust point cloud registration

algorithm based on the bidirectional Maximum Correntropy Criterion (BiMCC). Since the

MCC is considered as a probability measure which weights the correspondence of point sets

for registration, the noisy points are penalized. Moreover, using bidirectional measure can

maximum the overlapping parts and avoid the registration result being trapped into a local

minimum. Both of these two strategies can better apply the information theory method to the

registration problem, making the algorithm more robust. In the process of algorithm imple-

mentation, we integrate the fixed-point optimization technique into the ICP framework,

resulting in the correspondence and transformation parameters that are solved jointly. The

comparison experiments under noisy conditions with related algorithms have demonstrated

good performance of the proposed algorithm.

The rest of the paper is structured as follows. In Section 2, we give a brief review of corren-

tropy. Following that, Section 3 proposes a novel formulation and optimization algorithm for

noisy point cloud registration based on the BiMCC. In Section 4, we present experimental

results tested on the benchmark data set to demonstrate the performance. Section 5 concludes

this paper.

2 Brief review of correntropy

In real world, signals are generally captured from unconstrained scenarios by sensors, which

brings big challenges for computer processing. The point cloud captured from 3D space has

unpredictable nature errors. Some errors may be with large magnitude as outliers, some of

them may be small but with arbitrary distributions. Therefore, a robust cost function should

Robust point cloud registration based on bidirectional MCC
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have the ability to filter out all kinds of errors. Today, the MSE is the most widely used in cost

function for registration. However, as a standard second order statistics, it is a good solution

only for processing Gaussian noise. Recently, correntropy is proposed in ITL to handle non-

Gaussian noises and large outliers, which has widely and successfully applications in signal

processing and machine learning. Essentially, correntropy is a second order statistical measure

in kernel space, which corresponds to a non-second order measure in original space.

Given two arbitrary random variables X and Y, the correntropy is defined as

VsðX;YÞ ¼ E½ksðX � YÞ�; ð1Þ

where κ(�) stands for a kernel function, satisfying κ(x)� 0 and
R1
� 1

kðxÞdx ¼ 1. E[�] denotes

the mathematical expectation. In this work, without mentioned otherwise, the kernel function

is selected as a Gaussian kernel, given by

ksðxÞ ¼ exp ð� x2=2s2Þ; ð2Þ

where σ denotes the kernel bandwidth.

In a practical situation, the joint probability density function is usually unknown, and one

has to estimate it from a finite number of data pair ðxi; yiÞ
N
i¼1

. Based on the Parzen window

approach, the sample estimator of correntropy is simply estimated as

V̂ sðX;YÞ ¼
1

N

XN

i¼1

ksðxi � yiÞ; ð3Þ

We can see from the Eq (3) that correntropy is directly related to the probability of how

similar two random variables along the line X = Y and in a neighborhood of the joint space

controlled by the kernel bandwidth. This is the reason that correntropy weights the correspon-

dence of points.

3 Proposed algorithm

In this section, we first define the bidirectional correntropy for two point cloud data, and pro-

pose the rigid registration formulation for noisy point cloud based on the bidirectional Maxi-

mum Correntropy Criterion (BiMCC). And then we develop the optimization method to

estimate optimal parameters. Finally, the theory analysis is presented with the algorithm

property.

3.1 Problem formulation

Given two point clouds in 3D space, denoted as a model point cloud X≜f~xig
Nx
i¼1
ð~xi 2 R

3�1Þ

and a target point cloud Y ≜ f~yjg
Ny
j¼1
ð~yj 2 R

3�1Þ, the goal for registration is to build up the cor-

respondence and calculate the rigid transformation to achieve the best alignment with two

point clouds. We assume the corresponding point for~xi in the opposite point cloud is~ycðiÞ,
using c(�) to denote the corresponding index. The registration process is to rigid transform the

point~xi by a rotation matrix R and translation vector~t to~ycðiÞ, then the error between two

matched points is

exi ¼ R~xi þ~t � ~ycðiÞ; ð4Þ

For each point in X, it can be found one corresponding point in Y by the nearest neighbor

searching. These corresponding points compose a new data set denoted as ~Y , which has the

Robust point cloud registration based on bidirectional MCC
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same number and order with X. If model point set and its corresponding point set are consid-

ered as two random variables with noise and outliers, we measure their correntropy as:

V̂ sðX; ~Y ;R;~t Þ ¼
1

Nx

XNx

i¼1

ksðexiÞ

¼
1

Nx

XNx

i¼1

exp
� k R~xi þ~t � ~ycðiÞ k2

2s2

 !

:

ð5Þ

It is easy to know that ~Y � Y . So, when we only consider one corresponding direction, part

of the points in Y will be ignored in the formulation. Without a good initial position, most of

the Y are wrong at the beginning. Especially with the presence of noise, the distance between

model points and noisy points may be smaller compared with other true correspondences. In

that case, these noisy points are trusted for registration which causes the result being stick to

partial noisy region.

To avoid this situation, we define the bidirectional correntropy for two point clouds. Corre-

spondingly, for each point in Y, it can be found one corresponding point in X by the nearest

neighbor searching. These corresponding points compose a new data set denoted as ~X , which

has the same number and order with Y. It can be understood as we construct two big point

sets fX; ~Xg and f~Y ;Yg, respectively, with the same point number N = Nx + Ny. With the help

of more correspondence between fX; ~Xg and f~Y ;Yg, the weight of local registration will be

reduced. The result leans to a global registration.

Then, the bidirectional correntropy is formulated as:

V̂ sðfX; ~Xg; fY; ~Yg;R;~t Þ

¼
1

N

XNx

i¼1

exp
� k R~xi þ~t � ~ycðiÞ k2

2s2

 !

þ
XNy

j¼1

exp
� k R~xdðjÞ þ~t � ~yj k2

2s2

 ! !

:
ð6Þ

The two terms in Eq (6) are the sum of the forward distance and backward distance

between two point sets respectively. For each term, it is formulated as a non-second order

manner. This formulation also denotes a distance measure between two point sets. To mini-

mum the distance measure is equal to maximum the bidirectional correntropy, call as BiMCC.

Thus, the proposed the cost function for the point cloud registration based on BiMCC is

max V̂ sðfX; ~Xg; fY; ~Yg;R;~t Þ

s:t: RTR ¼ I3; detðRÞ ¼ 1:
ð7Þ

Note that since R is a rotation matrix, it should satisfy the constrained conditions RT R = I3

and det(R) = 1. The constraint about rotation matrix R should be added, when we maximize

the cost function.

3.2 Parameter estimation

In the above cost function Eq (7), there are two kinds of parameters to be optimized: 1) the

reconstructed point sets ~X and ~Y . It is equal to find the one-to-one corresponding index c(i)
and d(j) between two point sets, 2) the rigid transformation parameters R and~t . Actually,

these two kinds of parameters are close related with each other. When one of them has been

known, the other is easily to be obtained. Moreover, the parameter estimation can be solved

Robust point cloud registration based on bidirectional MCC
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like the ICP algorithm under an iteration framework. We call the proposed algorithm as

ICP-BiMCC, which is presented as follows:

Step 1: Given the (k − 1)th transformation parameters ðRk� 1;~t k� 1Þ, the bidirectional corre-

sponding points between two point-sets are found by the nearest neighbor searching:

ckðiÞ ¼ arg min
j21;2;:::;Ny

ðRk� 1~xi þ~t k� 1 � ~yjÞ; i ¼ 1; :::;Nx

dkðjÞ ¼ arg min
i21;2;:::;Nx

ðRk� 1~xi þ~t k� 1 � ~yjÞ; j ¼ 1; :::;Ny:
ð8Þ

The above Step 1 finds the closet point in another point set for each point. Some conven-

tional searching strategies like Delaunay triangulation and k-d tree are able to be used in

advance to speed up the computation.

Step 2: According to the current correspondence fi; dkðjÞ
Ny
j¼1g and fckðiÞ

Nx
i¼1
; jg, two point

sets U ¼ f~uig
N
i¼1

and V ¼ f~vig
N
i¼1

are redefined as

~ui ¼

(
~xi; 1 � i � Nx;

~xdkðiÞ; Nx þ 1 � i � N:

~vi ¼

(
~yckðiÞ; 1 � i � Nx;

~yi; Nx þ 1 � i � N:

Then the transformation parameters are computed by maximizing the following function:

FðR;~t Þ ¼
1

N

XN

i¼1

exp
� k R~ui þ~t � ~vi k2

2s2

� �

: ð9Þ

Firstly, taking the derivative of Eq (9) with respect to~t , we have:

@FðR;~t Þ
@~t

¼ 0

¼)
1

Ns2

XN

i¼1

exp
� k R~ui þ~t� � ~vj k2

2s2

 !

ðR~ui þ~t � ~viÞ ¼ 0

¼)~t� ¼

XN

i¼1

ksðeiÞð~vi � R~uiÞ

XN

i¼1

ksðeiÞ
;

ð10Þ

where ei ¼ R~ui þ~t � ~vi.
To simplify the cost function, we substitute~t� into Eq (10) and let

~pi ≜ ~ui �
XN

i¼1

ksðeiÞ~ui=
XN

i¼1

ksðeiÞ; ~qi ≜ ~vi �
XN

i¼1

ksðeiÞ~ui=
XN

i¼1

ksðeiÞ: ð11Þ

Intuitively, point sets P and Q are normalized by weighted centroid.

Robust point cloud registration based on bidirectional MCC
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Therefore,

R� ¼ arg max
RTR¼I3 ;detðRÞ¼1

1

N

XN

i¼1

exp
� k R~pi � ~qi k2

2s2

� �

: ð12Þ

It is difficult to solve the constraint optimization problem by simple technique. But, Arun

et al. [25] has presented in the ICP algorithm to solve for the rotation matrix with respect to

the MSE, by calculating the matrix H and its singular value decomposition (SVD). The differ-

ence is that our cost function is based on the MCC, the modified matrix H is

H ¼
XN

i¼1

~piksðeiÞ~q
T
i : ð13Þ

And we make the SVD of H, it becomes: H = UΛV. Then we get the optimal R�:

R� ¼ VDUT ; ð14Þ

where,

D ¼

( I3; detðHÞ > 0;

diagð1; 1; � 1Þ; detðHÞ < 0:

Finally, with the known parameters R�, we can calculate the translation parameter~t �

according to Eq (10). R� and~t� are the current transformation under the last k − 1 time result.

Thus, the transformation on the original template should be updated. Update Rk and~tk by:

Rk ¼ R�Rk� 1; ~t k ¼ R�~tk� 1 þ~t�

The above Steps 1 and 2 are repeated until satisfying the stop criteria.

We can see that both the optimal parameters R� and~t� depend on the kernel function

κσ(ei). Whereas, ei is related to the parameters R and~t . So it is a fixed-point equation which

can be solved by a fixed-point iterative algorithm. For the solution of the algorithm, we assume

that the kernel function is fixed as the last iteration ksðeiÞ ¼ ksðRk� 1~ui þ~tk� 1 � ~viÞ. Since after

a few iterations, there is no much difference of parameters between two continuous iterations,

this approximation will not affect the final registration result. So the complete algorithm only

has one iterative layer. Algorithm 1 summarizes the process of the proposed ICP-BiMCC algo-

rithm for rigid point cloud registration. There are some effective ways [26] to set optimal ini-

tialization, which are not discussed in this paper. Here, we use the identity matrix as the initial

parameter.

Algorithm 1 ICP-BiMCC

Input: model point cloud f~xig
Nx
i¼1

and data f~yjg
Ny
j¼1

Output: transformation R and ~t, correspondences fi; dðjÞNyj¼1g and fcðiÞ
Nx
i¼1
; jg

1: Initialization: Set R0 = I3 and ~t0 ¼ 0, and randomly initialized σ0
2: for k = 1, 2, . . ., K do
3: Set up the correspondence ck(i) and dk(j) by nearest neighbor

searching;
4: Compute the kernel κσ(ek) by Rk−1 and ~t k� 1;

Robust point cloud registration based on bidirectional MCC
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5: Reconstruct the point sets P and Q;
6: Solve the rotation matrix R� by Eq (14);
7: Solve the translation vector ~t � by Eq (10);
8: Update the transformation parameters Rk and ~t k;
9: Compute the MSE ek;
10: Set the kernel width σk;
11: Until kek − ek−1k < ε.
return

3.3 Theory analysis

Compared with the conventional ICP algorithm, there are two main improvements of the pro-

posed ICP-BiMCC algorithm. We firstly use a bidirectional measure to build the correspon-

dence, and then compute the rigid transformation by a non-second order measure:

correntropy. In this section, we analysis the reasons why the ICP-BiMCC algorithm is more

robust by these two improvements.

3.3.1 Computing the transformation. In each iteration, when correspondence has been

established, the one-to-one point-pairs are selected as candidates for computing the rigid

transformation. The ICP algorithm uses all of them equally to estimate transformation param-

eters. But when there are some noise or outliers, the wrong correspondences will drag the

global transformation to a bad position. Instead, the ICP-BiMCC algorithm utilises the corren-

tropy measure. As we mentioned, the correntropy is directly related to the probability of how

similar two random variables are. Intuitively, we can see the distribution of Gaussian function

κσ(e). When e locates outside of the space around 0 vector, the value reduces quickly. That

means only when the two corresponding points are close enough, they could be used reliably

for estimating transformation parameters. Otherwise, they have little influence for the result.

Since the noisy points and outliers are usually far away from the model points, the proposed

algorithm can avoid the bad effects caused by noise and outliers in theory.

Here, the kernel bandwidth σ plays an important role in controlling the weight of each cor-

responding point’s contribution. It affects the range which distinguishes the inliers and noisy

points. Since the majority correspondence are not accurate at the beginning, all points should

be used without obvious differences. Here we set a big bandwidth. Gradually, after a few itera-

tive steps one-to-one correspondences are built accurately. Noisy points should be filtered out

by small bandwidth. Therefore, the kernel bandwidth is varied from large to small. It is corre-

sponding to the coarse-to-fine registration strategy. We employ the Silvermans rule [18] in

Eq (15) to adjust the kernel width automatically.

s2 ¼ 1:06�min sE;
D

1:354

� �

� ðnÞ� 1=5
; ð15Þ

where σE is the standard deviation of k ei k2
2

and D is the interquartile range. We can see that σ
is adjusted according to the current registration’s error, which conforms to the above analysis.

Without mentioned otherwise, we apply this chosen principle.

3.3.2 Building bidirectional correspondence. In each iteration, the model point cloud is

transformed by the estimated parameters to a new position. The correspondences are built

according to the nearest neighbor principle in 3D space. Now, we assume that target point

cloud is noisy. Some of points are disturbed by a non-zero mean noise but with small variance.

It’s can be imagined that these noisy points are similar with the local shape of model point

cloud, such as Fig 1. We consider this situation when a certain percentage of model points is

matched to noisy data, other points are mismatched. In this case, if we only build a single

directional correspondence for every model point, some of them still find the noisy data with

Robust point cloud registration based on bidirectional MCC
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very short distance values, and others find the wrong correspondences with big distance val-

ues. Based on the above analysis of MCC, the latter will be considered as noisy points which

has no contribution for updating the rigid transformation. Thus, the iterative process termi-

nate, and the registration is trapped into a local minimum as Fig 1(c). Whereas, if we use bidi-

rectional measure to build the correspondence, the most points in target point set will find the

right correspondences relatively with model points, which weaken the bad influence caused by

noise. Therefore, using bidirectional measures between two point sets can maximum the

matching overlaps to reach a global optimization as Fig 1(d).

Fig 1. Registration results on noisy ‘bunny’. (a) Initialization. (b) result of ICP. (c) result of ICP-MCC. (d) result of ICP-BiMCC.

https://doi.org/10.1371/journal.pone.0197542.g001
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4 Experimental results

In this section, we compare the performance among the ICP algorithm [5], ICP-MCC algo-

rithm [23] and our ICP-BiMCC algorithm. The registration precision is reported by the MSE

between corresponding points. An alternative way to measure the performance is the errors

between estimated values and the ground truth simulation parameters. For rigid transforma-

tion, they are defined as εR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k R � RG k

2
p

and ε~t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k~t � ~tG k2

q

. The experiments are

conducted on the public and standard datasets [27] and [28–30]. The following experiments

are tested on the noisy data and partial overlapping data, respectively.

4.1 Testing on noisy data

In this part, the 3D point clouds ‘Bunny’, ‘Dragon’ and ‘Happy Buddha’ data from S1 Dataset

in [27] are tested. The original data is used as model point cloud, and the target point cloud is

simulated as the following ways. The model data is firstly rotated by 25 degree around three

axis and translated by [0.1, 0.1, 0.1]T. Then 20% points are selected randomly to be added with

Gaussian noise N(0, 0.02). 10% points are selected randomly to be added with non-zero mean

Gaussian noise N(0.003, 0.018). Since the noise is randomly added to the testing data, we

repeat every experiment condition for 10 times. The statistical quantitative results: MSE, ER

and E~t of three point clouds are shown in Table 1. Since the MSE can only deal with global

Gaussian noise, the performance is poor of the ICP algorithm. And the ICP-MCC algorithm

can filter out some noise and outiers. But they are misled by those non-zero mean noise, so it

achieves a local registration. It can be seen that all registration errors of our ICP-BiMCC algo-

rithm are the smallest. The ICP-BiMCC algorithm has the highest robustness and accuracy to

noisy data.

Fig 2 compares the convergence curves of ‘Bunny’, ‘Dragon’ and ‘Happy Buddha’ among

three algorithms. It can be seen all three algorithms are converged and the ICP-BiMCC algo-

rithm achieves the smallest registration error.

To clearly and intuitively demonstrate the results, Fig 1 displays the experiments on the

point cloud ‘Bunny’. Blue and red points present the model point cloud and the simulated tar-

get point cloud, respectively. In the result of Fig 1(b), we can see that the ICP algorithm uses all

Table 1. The MSE, ER and E~t comparison of point clouds.

Point cloud Error ICP ICP-MCC ICP-BiMCC

‘Bunny’ MSE(×10−3) 5.905 6.05 1.63

εR(×10−3) 345.415 285.985 8.545

ε~t ð�10� 3Þ 27.761 30.77 1.34

‘Dragon’ MSE(×10−3) 4.23 4.29 0.889

εR(×10−3) 61.71 89.286 3.89e-5

ε~t ð�10� 3Þ 25.8 23.15 7.24e-3

‘Happy Buddha’ MSE(×10−3) 4.14 3.63 1.18

εR(×10−3) 699.08 485.45 14.8

ε~t ð�10� 3Þ 26.68 25.52 4.195

https://doi.org/10.1371/journal.pone.0197542.t001
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corresponding points for registration, whose result is inevitably influenced by the noise. The

result of Fig 1(c), the ICP-MCC algorithm mismatches at noisy points, since it is difficult to

distinguish the noise and outliers in a local minimum region. However, from Fig 1(d) we can

see that the registration result of the ICP-BiMCC algorithm is very accurate. And the noise is

filtered out clearly.

4.2 Testing on partial overlapping data

We design two kinds of experiments to test whether the result will be trapped into local mini-

mum on partial overlapping data. In the first experiment, we cut off part of point set. Specifi-

cally, the 3D point cloud ‘Dragon’ from S1 Dataset is firstly rotated by 10 degree in each axis

and translated by [0.1, 0.1, 0]T. And then, the upper part of the body, which refers to those

points with the first dimension being smaller than -0.03, is trimmed. The differences between

the initial point cloud and the target point cloud are shown in Fig 3(a). Fig 3(b)–3(d) show the

registration results by three algorithms. From the Fig 3(b), we can find the ICP algorithm can

not deal with the registration of partial overlapping accurately. Compared Fig 3(c) and 3(d),

we can see that ICP-BiMCC algorithm is more accurate and robust to outliers. To more clearly

see the details of the registration region, the regions marked by green rectangles in Fig 3 are

amplified in Fig 4. We can clearly see that the registration result of ICP-BiMCC algorithm is

more accurate than the ICP-MCC algorithm. Fig 5(a) demonstrates their convergence curves.

It can be seen all three algorithms are converged and the ICP-BiMCC algorithm achieves the

smallest registration error.

In the second experiment, we add some local similar shapes to the original data to test the

robustness of the algorithm. During the iterative process, since their local similarity, when the

result reaches the partial registration, the other part will be easily considered as outliers. But

more robust algorithm can avoid it. Specifically, one more leg and one more tail of 3D point

cloud ‘T-rex’ from from S1 Dataset in [30] are copied, and given a rotation and a translation

transformation, then added to the original point cloud. The differences between the initial

Fig 2. Registration convergences of ICP, ICP-MCC and ICP-BiMCC. (a)‘Bunny’, (b)‘Dragon’, (c)‘Happy Buddha.’

https://doi.org/10.1371/journal.pone.0197542.g002
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point cloud and the simulated data are pointed out by the circles in Fig 6(a). Fig 6(b)–6(d)

show the registration results by three algorithms. We can see that the results of ICP and

ICP-MCC algorithm are mismatched because of the additional part. However, the

ICP-BiMCC algorithm can find the maximum overlapping parts and register two point clouds

accurately. Fig 5(b) demonstrate their convergence curves. It can be seen all three algorithms

are converged and the ICP-BiMCC algorithm achieves the smallest registration error.

Fig 3. Registration results on noisy ‘dragon’. (a) Initialization. (b) result of ICP. (c) result of ICP-MCC. (d) result of ICP-BiMCC.

https://doi.org/10.1371/journal.pone.0197542.g003
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Fig 4. Registration results on the regions marked by green rectangles in Fig 3. (a) result of ICP-MCC. (b) result of ICP-BiMCC.

https://doi.org/10.1371/journal.pone.0197542.g004

Fig 5. Registration convergence of ICP, ICP-MCC and ICP-BiMCC. (a)‘Dragon’, (b)‘T-rex’.

https://doi.org/10.1371/journal.pone.0197542.g005
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5 Conclusions

This paper presents a robust point cloud registration algorithm based on the BiMCC. The pro-

posed formulation replaces the similarity measure to the BiMCC loss, which is more robust to

the noise and outliers in practice and avoid the registration result being trapped into a local

minimum caused by bad initializations. The fixed-point optimization technique under the ICP

framework is adopted to solve the proposed formulation. Qualitative and quantitative experi-

mental results under noisy conditions show that our approach outperforms other related

methods.

Fig 6. Registration results on noisy ‘T-rex’. (a) Initialization. (b) result of ICP. (c) result of ICP-MCC. (d) result of DICP-MCC.

https://doi.org/10.1371/journal.pone.0197542.g006
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