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1  | INTRODUC TION

Individuals with prodromal psychosis (also known as the “ultra‐high‐
risk” subjects), along with various cognitive deficits, such as execu‐
tive functions, processing speed, working memory, and attention,1,2 

are known to be on the pre‐onset stage of psychosis and thus show 
potentially prodromal psychotic symptoms, which may (or may not) 
progress to full‐blown psychosis.3 A meta‐analysis showed that 
prodromal individuals had a mean (95% CI) risk of transiting to psy‐
chosis of 29% (23%‐36%) over the period of 2 years of follow‐up, 
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Abstract
Background: Brain anatomical deficits associated with cognitive dysfunction have 
been reported in patients with schizophrenia. However, it remains unknown whether 
such anatomical deficits exist in individuals with prodromal psychosis. The present 
study is designed to investigate anatomical deficits in prodromal individuals and their 
associations with clinical/cognitive features.
Methods: Seventy‐four prodromal individuals and seventy‐six healthy controls were 
scanned using structural magnetic resonance imaging. Support vector machines were 
applied to test whether anatomical deficits might be used to discriminate prodromal 
individuals from healthy controls.
Results: Prodromal individuals showed significantly increased gray matter volume 
(GMV)	in	the	right	inferior	frontal	gyrus	(IFG)	and	right	rectus	gyrus	relative	to	healthy	
controls.	No	correlations	were	observed	between	increased	GMV	and	clinical/cogni‐
tive	characteristics.	The	combination	of	increased	GMV	in	the	right	rectus	gyrus	and	
right IFG showed a sensitivity of 74.32%, a specificity of 67.11%, and an accuracy of 
70.67% in differentiating prodromal individuals from healthy controls.
Conclusion: Our	 results	 provide	 evidence	 of	 increased	 frontal	GMV	 in	 prodromal	
individuals.	A	combination	of	GMV	values	in	the	two	frontal	brain	areas	may	serve	
as potential markers to discriminate prodromal individuals from healthy controls. The 
results thus highlight the importance of the frontal regions in the pathophysiology of 
psychosis.
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32% (24%‐35%) over the period of 3 years, and 36% (30%‐43%) 
after 3 years.4 However, a recent study showed a low psychosis in‐
cidence in the prodromal group after 12 months of follow‐up, and 
the low incidence might be due to a short follow‐up time.5 The 
pathophysiological mechanism of prodromal psychosis still requires 
further exploration because of the inconsistencies in these field 
advancements.

Some studies observed that prodromal individuals had reduced 
GMV	in	several	brain	regions,	particularly	in	the	hippocampal	gyrus,6 
lateral temporal lobe,7 and prefrontal cortex(PFC),7,8 including the 
medial PFC and lateral PFC. Previous review revealed that prodro‐
mal	individuals	exhibited	reduced	GMV	in	the	temporal	gyrus,	PFC,	
and anterior cingulate cortex (ACC) before illness onset.9 Nenadic 
et	al	found	reduced	GMV	in	the	right	middle/superior	temporal,	left	
superior frontal, and right postcentral cortices in prodromal individ‐
uals	 compared	with	 healthy	 controls.	Meanwhile,	 they	 also	 found	
increased	GMV	in	the	left	temporal	gyrus	in	prodromal	individuals.10 
However,	 several	 neuroimaging	 studies	 found	 no	 GMV	 reduction	
between prodromal individuals and controls.11,12 A recent study 
found no significant structural changes in the prodromal individuals, 
but patients with first‐episode schizophrenia exhibited significantly 
decreased	GMV	in	the	bilateral	superior	parietal	lobule	and	left	or‐
bital frontal cortex compared with prodromal individuals and healthy 
controls.13 Hence, it remains controversial whether prodromal indi‐
viduals have structural alterations.

Several factors may attribute to the inconsistent findings. First, 
sample size, clinical characteristics, and analysis methods differ 
across studies. For example, a recent study indicated that a voxel‐
based	 morphometry	 (VBM)	 analysis	 by	 Computational	 Anatomy	
Toolbox (CAT12) was more accurate and robust against volumet‐
ric	alterations	compared	with	the	VBM8	toolbox.14 Furthermore, a 
small sample size may confine the power to detect volumetric differ‐
ences. Second, medication use can confound the results across stud‐
ies. For example, previous studies have reported that antipsychotic 
treatment	might	decrease	GMV	in	the	temporal	and	frontal	areas	in	
early phases of psychosis.15 Therefore, it is meaningful to conduct 
a structural study to examine whether prodromal individuals have 
GMV	deficits	after	controlling	for	the	abovementioned	confounding	
factors.

The prediction of psychosis based on neuroanatomical biomark‐
ers is possible by using multivariate pattern recognition approaches, 
including	 support	 vector	 machine	 (SVM).	 SVM	 has	 emerged	 as	 a	
promising tool for diagnostic purpose of various neuropsychiatric 
conditions.16	 Previous	 SVM	 results	 showed	 that	 the	 classification	
pattern included the prefrontal and temporal cortices, as well as a 
large bilateral cluster containing the parahippocampus and hippo‐
campus	where	GMV	reductions	were	recognized	 in	the	prodromal	
individuals.17,18	 SVM	could	 successfully	 discriminate	prodromal	 in‐
dividuals from healthy controls with an accuracy of 68.42% based 
on	structural	magnetic	resonance	imaging	(MRI)	and	diffusion	tensor	
neuroimaging parameters.19 Zarogianni et al20 reported an accuracy 
of 74% for predicting later onset of psychosis, and the discrimina‐
tive neuroanatomical pattern included many brain areas such as the 

temporal,	frontal,	and	parietal	regions.	Therefore,	SVM	may	be	fea‐
sible in the early discrimination of psychosis using the neuroanatom‐
ical‐based pattern recognition method.

In the present study, a relatively large sample of prodromal in‐
dividuals was recruited. Prodromal individuals were drug‐naive to 
eliminate the effects of medication use. Structural data were ana‐
lyzed with the CAT12 method with optimized segmentation and nor‐
malization. Based on the abovementioned studies, we hypothesized 
that prodromal individuals would exhibit significantly decreased 
GMV	in	certain	brain	regions,	especially	in	the	prefrontal	and	tem‐
poral regions, which could be applied as potential image markers to 
identify	prodromal	individuals	from	healthy	controls	using	SVM.	We	
also	hypothesized	that	decreased	GMV	would	be	significantly	cor‐
related with clinical/cognitive features.

2  | MATERIAL S AND METHODS

2.1 | Participants

Seventy‐four prodromal individuals from the Department of 
Psychiatry, the Second Xiangya Hospital of Central South University 
in China were enrolled in the study. All prodromal individuals were 
recruited from the outpatient department. There are eight prodro‐
mal individuals in the brief intermittent psychotic syndrome (BPS) 
subcategories, forty‐four prodromal individuals in the attenuated 
positive symptom syndrome (APS) subcategories, eleven prodromal 
individuals in the genetic risk and deterioration syndrome (GRD) 
subcategories, and eleven prodromal individuals met the criteria of 
two prodromal syndromes (APS and GRD), respectively. Seventy‐six 
healthy controls unrelated to prodromal individuals were recruited 
from the local community. Healthy controls and their first‐degree 
relatives had no history of psychiatric disorders. All subjects were 
right‐handed, aged 13‐39 years, and had at least a junior high school 
education level with the ability to understand the survey contents. 
Age, sex, and years of education were matched between prodromal 
individuals and healthy controls. The prodromal individuals were 
screened using the structured interview for prodromal syndromes 
(SIPS) and scale of prodromal syndromes (SOPS),21 including (a) 
BPS, (b) APS, and (c) GRD. The SIPS (19 items) contains four symp‐
tom clusters: negative symptoms; positive symptoms; disorganized 
symptoms; and general symptoms. The SOPS was used to identify 
the presence of a psychotic syndrome that was either (a) disorgan‐
izing or dangerous or (b) existing at least an hour within a day on 
average 4 days of a week for at least 1 month. The reliability and 
validity of the SIPS/SOPS were acceptable.21,22 Healthy controls 
were screened by the non‐patient version of the Structured Clinical 
Interview	for	DSM‐IV.	All	individuals	were	drug‐naive.

Cognitive function was evaluated using the Brief Assessment 
of Cognition in Schizophrenia Symbol Coding Test (BACS‐SC), 
Hopkins	Verbal	Learning	Test‐Revised	(HVLT‐R),	Brief	Visuospatial	
Memory	Test‐Revised	(BVMT‐R),	Stroop	Color	Word	Test	(SCWT),	
Trail	 Making	 Test	 A	 (TMT‐A),	 and	 Continuous	 Performance	
Test (CPT). BACS‐SC is used to measure processing speed and 
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attention.23	HVLT‐R	is	a	list	of	learning	verbal	memory	test	includ‐
ing 12 words to assess verbal memory.24	BVMT‐R	is	widely	utilized	
to evaluate visuospatial learning and memory in neuropsycholog‐
ical assessment.25SCWT is applied to evaluate the attention and 
working memory functions, which includes three parts. Part 1 is 
about reading a list of 100 words, and the words “red,” “green,” 
or “blue” are printed in black. Part 2 requires the participants to 
distinguish the ink color of a list of unmeaning characters. Part 
3 requires the participants to report the ink color of the words 
“red,” “green,” and “blue.”26TMT‐A	 is	applied	to	measure	psycho‐
motor speed, including 25 circles (numbered 1‐25) distributed over 
a piece of paper. Participants are required to draw lines to link the 
numbers as quickly as possible in an ascending order.27 CPT is a 
widely used measure of sustained attention.28 These tests cover 
visual learning and memory, verbal processing speed, attention/
vigilance, and executive function.

Exclusion criteria for all participants were any physical illnesses, 
such as liver and kidney diseases, cardiovascular diseases, and any 
past or present neuropsychiatric disorders; any traumatic brain in‐
jury; seizures; drug or alcohol abuse or dependence; pregnancy; and 
any	contraindications	to	MRI	scan.

The Ethics Committee of the Second Xiangya Hospital of Central 
South University approved this study. After a complete explanation, 
all participants (if the subject was under 18 years of age, the signa‐
ture of the guardian was required) submitted their written informed 
consent.

2.2 | Scan acquisition

Magnetic	resonance	imaging	scanning	was	conducted	with	a	3.0	T	
Siemens scanner (General Electric). The participants were told to lie 
supine and stay still with eyes closed. Foam pads and soft earplugs 
were used to reduce scanner head motion and noise. A 3D magneti‐
zation‐prepared rapid acquisition gradient‐echo sequence was used 
with the following parameters: repetition time of 2710 ms, echo time 
of 3.78 ms, flip angle of 7°, inversion time of 1000 ms, slice thickness 
of 1 mm, field of view of 256 mm × 256 mm, matrix of 256 × 256, no 
gap, and 188 slices.

The	 structural	 MRI	 data	 were	 preprocessed	 using	 the	 CAT12	
(http://dbm.neuro.unije na.de/cat) method of the Statistical 
Parametric	 Mapping	 software	 package	 (SPM12,	 http://www.fil.
ion.ucl.ac.uk/spm/softw are/spm12/ ). The data analysis was con‐
ducted as follows. (a) All images were reoriented to the same origin 
point and spatial orientation, and the non‐linear deformation field 
was reckoned that prime overlaid the probability maps of tissue 
on the individual images. Three tissue components, including ce‐
rebral spinal fluid, gray matter, and white matter, were classified. 
(b) Registering the native‐space tissue segments to the standard 
Montreal	Neurological	 Institute	template	by	the	affine	registration	
algorithm and correcting the differences in the individuals’ head 
positions	 or	 orientation	 during	 MRI	 scanning.	 (c)	 The	 diffeomor‐
phic anatomical registration was used to all individuals’ gray mat‐
ter to refine the inter‐individual registration by the exponentiated 

TA B L E  1   Characteristics for prodromal individuals and healthy controls

 
Prodromal individuals 
(n = 74) Controls (n = 76) P value

Sex (male/female) 43/31 39/37 0.403a

Age (y) 22.0 ± 5.25 21.6 ± 2.97 0.523b

Years of education (y) 11.8 ± 2.94 15.1 ± 1.88 <0.001b

SIPS

Positive symptoms 9.51 ± 4.53   

Negative symptoms 11.4 ± 6.03   

Disorganized symptoms 5.05 ± 2.93   

General symptoms 5.72 ± 3.17   

Total scores 32.0 ± 11.1   

TMT‐A 39.5 ± 17.1 34.0 ± 10.3 0.022b

BACS: symbol coding 54.4 ± 10.2 61.8 ± 9.34 <0.001b

HVLT‐R 24.2 ± 5.84 26.9 ± 3.96 0.002b

BVMT‐R 23.0 ± 10.0 27.6 ± 6.95 0.002b

Stroop Word 86.6 ± 27.2 98.1 ± 17.3 0.014b

Stroop Color 56.5 ± 19.2 72.7 ± 13.6 <0.001b

Stroop Color and Word 33.2 ± 13.4 43.5 ± 8.38 <0.001b

CPT 2.40 ± 0.79 2.85 ± 0.56 <0.001b

Abbreviations:	BACS,	Brief	Assessment	of	Cognition	in	Schizophrenia;	BVMT‐R,	Brief	Visuospatial	Memory	Test‐Revised;	CPT,	Continuous	
Performance	Test;	HVLT‐R,	Hopkins	Verbal	Learning	Test‐Revised;	SIPS,	structured	interview	for	prodromal	syndromes;	TMT‐A,	Trail	Making	Test,	
part A.
aThe P values for sex distribution were obtained by a chi‐square test. 
bThe P values were obtained by two‐sample t tests. 

http://dbm.neuro.unijena.de/cat
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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lie	 algebra	 (DARTEL)	 toolbox.	 (d)	 Modulating	 the	 intensity	 of	 the	
gray matter images with the surrounding voxels compressed or ex‐
panded.	Comparing	the	relative	GMV	corrected	for	individual	brain	
size, gray matter tissues were modulated by a non‐linear deforma‐
tion approach. (e) When the preprocessing pipeline was completed, 
the quality check using a CAT12 toolbox was performed to evaluate 
the homogeneity for the gray matter tissues. (f) The gray matter tis‐
sue segments were smoothed with an 8 mm Gaussian Kernel for the 
group analysis. This step contributed to increase the signal‐to‐noise 
ratio and decrease the influence of misregistration between images 
and benefit on the statistical normality. (g) Using the automated an‐
atomical labeling atlas software and anatomical atlases to determine 
the most significant clusters.

2.3 | Statistical analysis

The clinical and demographic data of the two groups were compared 
by two‐sample t tests or a chi‐square test when necessary.

The	 differences	 of	 GMV	 between	 prodromal	 individuals	 and	
healthy controls were compared using voxel‐wise two‐sample t 
tests, with total intracranial volume, age, and years of education as 
covariates of no interest. The significance level was set at P < 0.05 
corrected according to the Gaussian random field theory (voxel sig‐
nificance: P < 0.001, cluster significance: P < 0.05) for multiple com‐
parisons with the REST software.

Once	 significant	 differences	 in	 GMV	 were	 observed	 in	 brain	
regions	between	 the	 two	groups,	 the	mean	GMV	values	were	ex‐
tracted from those brain regions. Pearson's correlation analyses 
between	 abnormal	 GMV	 and	 clinical/cognitive	 parameters	 were	
carried out with threshold of P < 0.05. Bonferroni correction was 
used to limit type I error.

2.4 | Classification analysis

To	 test	 the	 capacity	 of	 the	 combination	 of	 abnormal	GMV	 in	 any	
two brain regions to discriminate the prodromal individuals from 
the	controls,	we	applied	a	SVM	ran	 in	MATLAB	using	the	LIBSVM	
software package (http://www.csie.ntu.edu.tw/~cjlin/ libsv m/). The 
“leave‐one‐out” method was employed in the study.

3  | RESULTS

3.1 | Demographic and clinical characteristics

Table 1 presents details of the demographic and clinical charac‐
teristics. No significant differences are noted in age and sex ratios 
between prodromal individuals and healthy controls. Significant 
differences are observed in years of education (11.82 ± 2.94 vs. 
15.11 ± 1.8, P	<	0.001).	The	scores	of	the	BACS‐SC,	HVLT‐R,	CPT,	
BVMT‐R,	and	SCWT	are	significantly	lower	in	prodromal	individuals	
than those in healthy controls. Prodromal individuals score signifi‐
cantly	higher	than	healthy	controls	in	the	TMT‐A	scores.

3.2 | Differences in GMV between prodromal 
individuals and healthy controls

Relative to healthy controls, prodromal individuals exhibit sig‐
nificantly	 increased	 GMV	 in	 the	 right	 inferior	 frontal	 gyrus	 (IFG)	
(t = 4.1821) and right rectus gyrus (t = 4.0674). Table 2 and Figure 1 
present the detailed information.

3.3 | Correlation analysis

No	 significant	 correlations	 are	 observed	 between	 increased	GMV	
and clinical characteristics/cognitive function in prodromal individu‐
als (P > 0.05, Bonferroni corrected).

3.4 | Distinguishing prodromal individuals from 
healthy controls

The	combination	of	the	GMV	values	in	the	right	rectus	gyrus	and	right	
IFG showed a sensitivity of 74.32% (55 of 74 in the prodromal group), 
a specificity of 67.11% (51 of 76 in the control group), and an accuracy 
of 70.67% (106 of 150 in the two groups), as shown in Figure 2.

4  | DISCUSSION

By	analyzing	the	whole	brain	GMV	with	CAT12,	prodromal	individuals	
showed	significantly	increased	GMV	in	the	right	IFG	and	right	rectus	
gyrus compared with healthy controls. No correlations were noted 
between	increased	GMV	in	the	two	brain	regions	and	clinical	charac‐
teristics/cognitive	function.	Moreover,	the	SVM	analysis	showed	that	
a	combination	of	the	GMV	values	in	these	two	brain	regions	might	be	
a potential marker to distinguish prodromal individuals from controls.

Our	findings	of	increased	GMV	in	the	right	IFG	and	right	rec‐
tus gyrus in prodromal individuals are inconsistent with our hy‐
pothesis and the results of most previous high‐risk studies, which 
showed decreased volume in the frontotemporal regions in the 
prodromal individuals.10,29 The present results are also inconsis‐
tent with the results of previous Asian high‐risk studies. Some 
VBM	 studies	 from	 Asian	 reported	 GMV	 reductions	 in	 the	 fron‐
totemporal regions in the prodromal individuals compared with 

TA B L E  2   Increased	GMV	in	prodromal	individuals	relative	to	
controls

Cluster location

Peak coordinate
Cluster size 
(voxel) t valuex Y z

Right IFG (or‐
bital part)

52.5 21 −4.5 26 4.1821

Right rectal 
gyrus

16.5 12 −25.5 30 4.0674

Abbreviations:	GMV,	gray	matter	volume;	IFG,	inferior	frontal	gyrus.
The significance level was set at P < 0.05 corrected by the Gaussian 
random field (GRF) theory (voxel significance: P < 0.001, cluster signifi‐
cance: P < 0.05) for multiple comparisons with the REST software.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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healthy controls.7,30 Other studies from Asian even failed to find 
significant	 difference	 in	 the	 regional	GMV	between	 the	 prodro‐
mal individuals and healthy controls.13,31 Several factors deserve 
consideration	in	explaining	the	regionally	increased	GMV	seen	in	
the present study. First, age range of prodromal individuals may 
be considered. Previous studies reported different maturational 
trajectories in different brain regions, which presented an inverted 
U‐curve with maximal point in adolescents.32 Prodromal individ‐
uals in the present study were at the stage of adolescents. Brain 
gray matter maturation might be halted at the maximal point of 
the inverted U‐curve in prodromal individuals, which might result 

in increased frontal gray matter in prodromal individuals in the 
present study. Second, prodromal individuals are at the very early 
stage	 of	 psychosis.	 Very	 early‐stage	 neuronal	 pathology,	 such	
as hypertrophy or preapoptotic osmotic changes, could possibly 
increase regional volumes.33 The expectation is supported by a 
longitudinal	study	with	increased	GMV	in	the	right	ACC,	IFG,	and	
left cerebellum in subjects at clinical risk for psychosis.34 Third, 
medication use might confound previous studies.12,35 Progressive 
GMV	 loss	was	 reported	 after	 antipsychotic	 treatment.36,37 Also, 
antipsychotic medications could contribute to the decline of brain 
tissue volumes in animal studies.38,39	Vernon	et	al38 reported that 

F I G U R E  1  GMV	differences	between	prodromal	individuals	and	healthy	controls.	Increased	GMV	in	the	right	IFG	and	right	rectal	gyrus	
were observed in the prodromal individuals. The color bar represents the t	values	of	the	group	analysis	of	GMV.	GMV,	gray	matter	volume;	
IFG, inferior frontal gyrus

F I G U R E  2  Visualization	of	classification	by	the	method	of	support	vector	machine	(SVM)	using	the	combination	of	the	GMV	values	
in	the	abnormal	brain	regions.	In	the	right	of	figure,	dimension	1	and	2	represent	the	GMV	values	in	the	right	IFG	and	right	rectal	gyrus,	
respectively.	Red	crosses	represent	the	controls,	and	green	crosses	represent	the	prodromal	individuals.	GMV,	gray	matter	volume;	IFG,	
inferior frontal gyrus
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chronic exposure (8 weeks) to antipsychotic drugs in rats would 
induce significant decreases in the whole‐brain volume, mainly in 
the frontal cortex volume. which could be normalized after with‐
drawal of the antipsychotic medications.40 Prodromal individu‐
als in the present study were drug‐naive, and thus confounding 
effects induced by antipsychotic medications could be limited. 
Therefore, it is expected that prodromal individuals in this study 
presented	 increased	GMV.	Fourth,	 sample	 size	 is	 relatively	 large	
in the present study, which may have statistical power to identify 
hypertrophic effects not indicated frequently in previous studies. 
Fifth, CAT12 is an advanced method with optimized segmentation 
and	normalization,	which	is	more	sensitive	in	the	analysis	of	GMV	
than	 the	previous	version	such	as	 the	VBM8	method.	Other	po‐
tential reasons are neuroplasticity. According to results from post‐
mortem	 studies,	 alterations	 in	 GMV	may	 be	 related	 to	 changes	
in dendritic density, synaptic, and neuronal, as well as increased 
afferentation in certain regions.41 Sowell et al42 suggested that 
different	cortical	GMV	might	be	due	to	the	differences	in	the	neu‐
ropil, where synaptic connections were formed between axons 
and dendrites. Therefore, different synaptic pruning during ad‐
olescence might cause the different structural changes between 
prodromal individuals and controls. Finally, some studies reported 
that the inflammatory and immune mechanisms might be related 
to brain structures, which directly influenced neuronal prolifer‐
ation, migration, differentiation, and apoptosis. Whitford et al43 
found that prodromal individuals exposing herpes simplex virus 
type	1	 (HSV1)	had	GMV	abnormalities	 in	 the	cuneus,	which	was	
in line with the region found in established schizophrenic patients 
with	HSV1‐infected.	By	contrast,	some	studies	have	also	showed	
increased	GMV	in	prodromal	individuals,	including	a	report	of	in‐
creased	GMV	in	the	left	parietal/posterior	temporal	region	in	pro‐
dromal individuals.44 Fusar‐Poli et al34 also found that increased 
GMV	 in	 the	 right	 ACC	 and	 IFG	 in	 prodromal	 individuals.	 In	 line	
with those studies, our findings provide important information of 
increased	frontal	GMV	in	the	pathophysiology	of	psychosis.

The frontal cortex has well‐established effects on the process‐
ing of cognitive and mnemonic activities.45 The encoding‐related 
activity of the medial‐temporal lobe and the interaction with the 
inhibition‐correlation activity of the right frontal cortex mediate 
intentional forgetfulness.46 A recent review indicated that changes 
in cortical midline structures during prodrome may be correlated 
to a disrupted sense of self, on the basis of the involvement of 
the ACC and medial PFC regions in self‐related processing.47 Our 
previous study found that prodromal individuals had altered func‐
tional connectivity strength (FCS) in the frontal‐occipital network. 
Furthermore, decreased FCS in the left middle frontal gyrus was sig‐
nificantly correlated with the cognitive measures in the prodromal 
individuals.48	 Hence,	 correlations	 between	 increased	 GMV	 in	 the	
frontal lobes and clinical/cognitive parameters are expected in the 
present study. However, no correlations were somewhat surprised 
in	the	present	study.	 Increased	GMV	in	the	frontal	 lobes	might	be	
trait alterations independently of symptom severity and cognitive 
deficits in the prodromal individuals.

A few longitudinal studies revealed that prodromal subjects 
showed	progressive	GMV	decreases	over	time.	Prodromal	subjects,	
who	 later	developed	psychosis,	 showed	active	GMV	 loss	 in	 several	
brain regions, including the prefrontal cortices, superior temporal 
gyrus, and parahippocampal gyrus during the transition period.29,49 
Recent multicenter study using a relatively large prodromal subjects 
cohort	who	developed	psychosis,	also	showed	progressive	GMV	loss	
mainly in the prefrontal regions, superior temporal, parietal, and para‐
hippocampal regions.50 Taken together, the current evidence revealed 
that the progressive pathological process precedes the first manifes‐
tation of overt psychosis in the prefrontal and other brain regions.

Previous study showed that more than 0.7 of specificity or sen‐
sitivity is good for establishing diagnostic index,51 whereas less than 
0.6 of specificity or sensitivity may be poor for diagnostic indicator.52 
SVM	has	been	well	applied	in	extensive	biomedical	applications	for	
diagnostic purpose.53,54 Koutsouleris et al55 showed an accuracy of 
86% for distinguishing prodromal individuals from controls using the 
SVM	analysis.	Then,	they	found	the	classification	accuracy	between	
healthy controls and prodromal individuals without a subsequent 
disease conversion was 66.9% in another independent population.56 
A	recent	MRI	study	found	that	structural	MRI	data	allowed	identifi‐
cation of prodromal individuals with a specificity of 76%, a sensitivity 
of	68%,	and	an	accuracy	of	72%	with	the	SVM	analysis.17 The pres‐
ent	SVM	analysis	exhibited	that	the	combination	of	GMV	values	in	
the right IFG and right rectus gyrus showed an accuracy of 70.67% in 
discriminating prodromal individuals from healthy controls. Hence, 
the	combination	of	 an	 increased	GMV	values	 in	 the	 right	 IFG	and	
right rectus gyrus could serve as a potential image marker to distin‐
guish prodromal individuals from controls.

Cognitive deficits may precede the onset of psychosis, which 
may be helpful as potential markers of increased vulnerability for 
psychosis. The present study compared neurocognitive performance 
between prodromal individuals and healthy controls. We found that 
the	scores	of	the	BACS‐SC,	HVLT‐R,	CPT,	BVMT‐R,	and	SCWT	were	
significantly lower in prodromal individuals than those in healthy 
controls, suggesting that prodromal individuals had cognitive defi‐
cits, such as decreased processing speed, attention, executive func‐
tion, visual learning, and memory. The results were consistent with 
previous findings, which revealed that prodromal psychosis status 
was related to impairments in multiple neurocognitive components, 
including learning, attention, memory, executive function, and pro‐
cessing speed.57,58 A recent study showed that cognitive deficits in 
prodromal individuals were intermediate between FES and first‐de‐
gree relatives of psychosis groups.2	Moreover,	Ucok	 et	 al59 found 
that the cognitive performance of prodromal individuals was similar 
to that of FES. Previous meta‐analysis also suggested that prodromal 
individuals were significantly impaired in various cognitive function 
domains.60 Together with the abovementioned studies, the present 
study showed cognitive deficits in prodromal individuals.

Several limitations exist in the present study. First, the study is 
cross‐sectional. It is unclear how many of the prodromal individu‐
als will transition to psychosis in the follow‐up period, and whether 
increased	GMV	in	the	frontal	lobes	will	be	stable	or	decrease	over	
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time. Future longitudinal research is necessary to examine this pos‐
sibility. Second, this study did not recruit patients with schizophre‐
nia to compare their anatomical changes with those of prodromal 
individuals. This issue might limit our comprehending of the dis‐
ease progression between prodromal individuals and patients with 
schizophrenia. Finally, level of education is unmatched between two 
groups. Cognitive differences may be driven by psychotic pathology 
of unmatched level of education. Although we tried to minimize the 
possible effects of unmatched level of education using it as a covari‐
ate of no interest in the analyses, the effects of unmatched level of 
education might not be completely eliminated. Therefore, the sam‐
ples differ in terms of level of education and cognitive test perfor‐
mance which may have confounded the results.

In conclusion, the present study provides evidence of increased 
GMV	in	the	frontal	gyri	in	prodromal	individuals.	A	combination	of	
GMV	values	in	these	two	brain	areas	may	serve	as	potential	mark‐
ers to discriminate prodromal individuals from healthy controls. The 
results thus highlight the importance of the frontal regions in the 
pathophysiology of psychosis.
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