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Identifying driver genes that contribute to cancer progression from numerous passenger

genes, although a central goal, is a major challenge. The protein–protein interaction

network provides convenient and reasonable assistance for driver gene discovery.

Random walk–based methods have been widely used to prioritize nodes in social or

biological networks. However, most studies select the next arriving node uniformly from

the random walker’s neighbors. Few consider transiting preference according to the

degree of random walker’s neighbors. In this study, based on the random walk method,

we propose a novel approach named Driver_IRW (Driver genes discovery with Improved

Random Walk method), to prioritize cancer genes in cancer-related network. The key

idea of Driver_IRW is to assign different transition probabilities for different edges of

a constructed cancer-related network in accordance with the degree of the nodes’

neighbors. Furthermore, the global centrality (here is betweenness centrality) and Katz

feedback centrality are incorporated into the framework to evaluate the probability to walk

to the seed nodes. Experimental results on four cancer types indicate that Driver_IRW

performs more efficiently than some previously published methods for uncovering known

cancer-related genes. In conclusion, our method can aid in prioritizing cancer-related

genes and complement traditional frequency and network-based methods.

Keywords: cancer, driver gene, protein–protein network, random walk, centrality

INTRODUCTION

As one of the most complex and threatening diseases, cancer has attracted the attention of many
research groups and large-scale programs [such as The Cancer Genome Atlas (TCGA) (Network,
2008) and the International Cancer Genome Consortium (Bobrow and Zhao, 2010)] to explore the
molecular mechanisms and pathogenesis. With the rapid advances of technology, huge volumes of
cancer genomics data have been generated containing many different types of genetic aberrations,
such as single-nucleotide variants (SNVs), copy number variations (CNVs), and small and large
insertions and deletions (Indels) (Zhang and Zhang, 2017; Dimitrakopoulos et al., 2018). It has
been demonstrated that cancer is related to gene mutations, but only a few genes exist that confer
selective growth advantage to cancer progression, known as driver genes. The remaining mutations
are called passenger genes (Greenman et al., 2007; Stratton et al., 2009; Vogelstein et al., 2013;
Iranzo et al., 2018). However, identifying and distinguishing driver genes from myriad passengers
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are a fundamental question and an intractable challenge (Haber
and Settleman, 2007; Stratton et al., 2009; Vogelstein et al., 2013)
and are crucial to gain insights into biological processes (Zhang
et al., 2018).

Efforts have been made to address this challenge using a
variety of novel methods. The most traditional approaches
are based on genetic aberration frequencies among population
cohorts of patients with cancer (Gui et al., 2011; Dees et al.,
2012; Lawrence et al., 2013), which can detect some major
driver genes with significantly higher mutation rates than
background mutation rates (BMRs). However, the estimations of
BMR significantly affect the identification of driver mutations.
Additionally, it has been found that the BMR is dependent on
the genomic context of the nucleotide, the type of mutation
transcription rates, and replication time (Raphael et al., 2014).
Therefore, it is difficult to estimate BMR accurately. Moreover,
genes altered in only a few individuals may be relatively
important in contributing to cancer progression (Stratton
et al., 2009; Raphael et al., 2014; Hristov and Singh, 2017).
Evidently, these frequency-based methods cannot reveal rarely
mutated driver genes. Consequently, some promising methods
considering somatic mutations in the context of pathways are
proposed, because cellular signaling and regulatory pathways are
usually affected by driver mutations (Network, 2008; Vandin
et al., 2012; Jones et al., 2016). Additionally, most pathway-
based methods are primarily based on the mutual exclusivity
of mutations (Zhang et al., 2014; Wu et al., 2015; Zhang
and Zhang, 2018). They are focused on analyzing somatic
mutation rather than integrating different omics data, such as
transcriptome and interactome. Given that proteins tend to be
proximal if they take part in the same pathways (Hristov and
Singh, 2017), in recent years, many novel methods based on
networks have been successfully applied to cancer driver gene
identification by integrating different omics data (Bashashati
et al., 2012; Hou and Ma, 2014; Amgalan and Lee, 2015;
Bertrand et al., 2015; Dimitrakopoulos et al., 2018; Song et al.,
2019). However, some only map genes of different omics data
into networks without collecting more information regarding
network topology into account. Furthermore, some network
diffusion approaches, such as DawnRank (Hou and Ma, 2014),
propagate expression information through a protein interaction
network by selecting the next arriving node from its neighbors
uniformly. Moreover, Gentili et al. (2019) have proposed a
BRW (biological random walk) method to leverage biological
information in network propagation for gene prioritization. In
addition, there are also some advances of random walk in
different research field. For example, Chen et al. (2016) have
proposed an improved random walk with restart method for
lncRNA-disease association prediction (IRWRLDA). These two
methods improve the initial probabilities of restart term by

Abbreviations: TCGA, The Cancer Genome Atlas; ICGC, International Cancer
Genome Consortium; SNVs, Single Nucleotide Variants; CNVs, Copy Number
Variations; Indels, Insertions and Deletions; BMR, Background Mutation Rates;
BRCA, Breast Cancer; HNSC, Head and Neck Squamous Cell Carcinoma;
KIRC, Clear Cell Kidney Carcinoma; THCA, Thyroid Carcinoma; PCC, Pearson
Correlation Coefficients; DC, Degree Centrality; BC, Betweenness Centrality; KC,
Katz Centrality.

setting uniform probability of disease-associated seed nodes and
considering lncRNA expression similarity and disease semantic
similarity separately. However, in real-world scenarios, the
random walker is more likely to have tendentiousness and
preference for selecting the neighbors with a greater degree rather
than uniformly (Liu et al., 2017). The aforementioned random
walk–based methods rarely consider it. Although some methods
have realized the importance of seed genes, they did not consider
the topological characteristics. Therefore, it is beneficial for a
novel method to take more graph topological characteristics
and propagating tendency into consideration to identify cancer
driver genes.

In this study, to mitigate these methodological limitations
and improve the accuracy of driver gene identification, we
proposed a novel approach based on the random walk method,
named Driver_IRW (Driver genes discovery with Improved
RandomWalk method), for driver genes discovery by integrating
transcriptomic data and interaction network. The assumption
of our method is that genes in the interaction network with a
higher degree have a higher transition probability from their
upstream neighbors. First, we constructed different networks
for different types of cancer by selecting those edges that exist
in both the known PPI network and differential coexpression
network (Guo et al., 2019), in which the known information of
the PPI network used is a directed network from DanwRank
(Hou and Ma, 2014). The tumor and normal expression data
were used to construct the differential coexpression network for
each type of cancer. Then, the degree, betweenness, and Katz
centralities were obtained based on the constructed network.
Third, based on the assumption, we adopt the strategy that
the information in network is diffused in accordance with its
neighbors’ out-degree rather than uniformly (Liu et al., 2017).
Moreover, the betweenness and Katz centrality of different seed
genes of corresponding cancers were merged as random jumping
probabilities to these nodes, in which the different seed nodes
were extracted from CGC (Sondka et al., 2018) and DisGeNet
databases (Piñero et al., 2016) for different cancers. The random
walk scores were calculated by the improved random walk
method. Finally, only mutated genes were retained. To evaluate
the performance of the proposed method, data of four cancer
types from TCGA were used, and the results indicate that it
performs well. Moreover, the benchmark analysis showed that the
proposed method is useful.

MATERIALS AND METHODS

Datasets
In this work, four different types of cancer, breast cancer (BRCA)
with 1097 samples, head and neck squamous cell carcinoma
(HNSC) with 522 samples, kidney renal cell cancer (KIRC) with
534 samples, and thyroid cancer (THCA) with 513 samples, from
TCGA were studied. The datasets used consisted of mutation
and expression data from tumor and normal samples for every
cancer. The mutation data were integrated by SNVs and CNVs.
It was regarded as a mutated gene if there was an SNV or CNV
present, in which the CNV data are downloaded from UCSC
data portal (http://xena.ucsc.edu/) (Rosenbloom et al., 2015),
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which have transformed the data from TCGA using Gistic2
method. And we retained only those genes with +2 and −2
values, which are the high-level amplification and homozygous
deletion. The RNAseq expression data were real values denoting
the normalized abundance of each gene in each sample. To
obtain the differential coexpression network, the expression data
of normal and tumor samples were required. In addition, the seed
genes of different cancers were derived from CGC (release v85,
downloaded on May 8, 2018) (Sondka et al., 2018) and DisGeNet
(release v6, downloaded in February, 2019) databases (Piñero
et al., 2016). The CGC database encompasses 719 expert-curated
descriptions of the genes driving human cancer (Sondka et al.,
2018), and DisGeNet is one of the largest available collections
of human disease-involved genes and variants (Piñero et al.,
2016). Additionally, the reference network used in this study
was downloaded from DanwRank (Hou and Ma, 2014), which
integrates various sources, includingMEMo (Ciriello et al., 2012),
NCI-Nature Curated PID (Schaefer et al., 2008), Rectome (Croft
et al., 2010), and KEGG (Kanehisa et al., 2011). It can be viewed
as a directed graph.

The Construction of the Cancer-Related
Network
To retrieve more specific peculiarity of different types of cancer,
we constructed different networks for different types of cancer by
integrating the known PPI network and differential coexpression
network (Guo et al., 2019).

First, Pearson correlation coefficients with p-values of
tumor and normal expression data were calculated separately
as coexpression networks for different cancers. Then, the
differential coexpression network was constructed as per the
following two steps: (1) only the edges with p< 0.05 were selected
and assigned to 1 as significantly correlated gene pairs; (2) the
differential edges that were significantly correlated only in the
tumor or normal coexpression networks, i.e., the edges, were
statistically significant (p < 0.05) in tumor (normal) data but
not (p-value > 0.05) in normal (tumor) data, were screened out.
The consistent edges, i.e., edges that were statistically significant
or not in both tumor and normal coexpression networks,
were removed. Finally, the reference network downloaded from
DawnRank (Hou and Ma, 2014) was integrated with differential
coexpression network by selecting the common nodes and edges
(Guo et al., 2019). The framework of Driver_IRW is shown in
Figure 1. This reconstructed network, i.e., adjacency matrix, is a
0–1 matrix represented as A with A

(

i, j
)

= 1 if node i links to j in
the constructed network, otherwise, A

(

i, j
)

= 0.

The Selection of Cancer-Related Seed
Genes
In previous studies, seed genes have been widely used as prior
information for disease gene discovery (Köhler et al., 2008;
Moreau and Tranchevent, 2012). To take this prior information
into account in the Driver_IRW framework, and in light of
the previous conception, known cancer-related genes for the
corresponding types of cancer were used as seed genes in
this study. Different cancer-related genes were extracted for

corresponding types of cancers from CGC (release v85, May
8th, 2018) (Sondka et al., 2018) and DisGeNet (Piñero et al.,
2016) databases.

The Calculation of Centralities
By virtue of the adjacency matrix, the topological centralities,
here are degree centrality, betweenness centrality, and Katz
feedback centrality (termed as DC, BC, and KC, respectively),
were calculated. The degree centrality was used to obtain the
weighted transition matrix. Additionally, the betweenness and
Katz feedback centralities were used to evaluate the random
jumping probability to seed genes.

The degree centrality of a vertex is the number of edges
incident to the vertex in a graph. That is,

DCi =
∑n

j=1
Aij (1)

where n is the total number of genes in the network; Aij is the
adjacency matrix of the network.

The betweenness centrality can be interpreted as a vertex being
more central if it is needed to transport more information of
others in the network. This is calculated as follows:

BCi =
2

n2 − 3n+ 2

∑

s6=i6=t

nst(i)

gst
(2)

where gst indicates the total number of shortest paths from node
s to node t, and nst(i) indicates the number of these paths that
pass through vertex i. The betweenness centrality was obtained
using the “igraph” R package, which provided handy tools to
create, manipulate, and visualize networks, and calculate various
structural properties (Csardi, 2006).

The Katz centrality, one of the feedback centralities, is
calculated based on the impact of a vertex on others. This is
defined as follows:

KC (i) =
∑∞

k=0

∑n

j=1
αk(Ak)ji (3)

where A is the adjacency matrix; (Ak)ji is the number of paths
from j to iwith length k; and α is a damping factor, which restricts
that the longer the path between i and j, the smaller the impact of
i on j should be. It has been proved that to guarantee convergence
the α must be restricted as follows:

λ1 <
1

α
⇔

∑∞

k=1
αkAk converge (4)

where λ1 is the largest eigenvalue of A. The closed form
expression is Equation (5) when it converges:

KC =
∑∞

k=1
αk(AT)

k
1n = ((I − αAT)

−1
)1n (5)

Then, the prior information used in the diffusing procedure as
random jumping probabilities to seeds is represented by the
normalizedmean value of normalized betweenness centrality and
Katz centrality of seeds.
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FIGURE 1 | The framework of Driver_IRW for identifying cancer driver genes. (A) The procedure of data processing, including the construction of the network and the

selection of the seed genes for different cancers. (B) The improved random walk, including the calculation of the improved transition probabilities and the calculation

of the global centralities for seed genes (blue nodes). The mutation data are used as posterior information to filter the mutated candidate driver genes.

The Algorithm of Improved RW
In light of the above assumption that the information in the
network is diffused in accordance with its neighbors’ out-
degree instead of uniformly, the transition matrix whose values
represent transition probability from the vertex i to any vertex j
of the directed graph was defined as follows (Liu et al., 2017):

pi j =







α
DC+

j Aij
∑

v∈N+(i) DC
+
v
+ (1− α) 1

n , if
∑

v∈N+(i) DC
+
v 6= 0;

1
n , otherwise

(6)
where DC+

v and DC+
j are the out-degree of vertex v and j,

respectively. N+(i) denotes all the neighbors interacting with
vertex i in the network. In addition, n is the total number of genes
in the network. This means that if there are neighbors of one

node, the transition probabilities from the node to the neighbors
are proportional to the neighbors’ out-degree; otherwise, the
transition probability is uniform according to the total genes. A
parameter of α (empirically, here α = 0.85) is presented. This
is used to avoid neglecting the nodes whose out-degree of the
neighbors of node i is zero.

Next, we defined the score of each gene iteratively according
to the improved random walk approach:

ri (t + 1) = d ·
∑n

j=1
pji · rj (t) + (1− d)prior_ps (7)

It can be presented in the matrix form:

r (t + 1) = dPT × r (t) + (1− d)× prior_p (8)
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where r(t) and prior_p are n × 1 vectors representing the gene
score in the t-th iteration of each node and prior information
of seed nodes separately with the sum of the values equal to
1 (Köhler et al., 2008). The initial gene scores r(0) are the
normalized mean of all tumor expression. Moreover, PT is the
transposition of the transition matrix P obtained by Equation
(6). Here, d is set to 0.85 according to the initial PageRank
algorithm and is the damping factor that corresponds to a
random walker periodically jumping to a random node (Page
et al., 1999), which is used as the seed gene of different cancers. To
retrieve more global information on the network, betweenness
and Katz feedback centralities were used to represent the random
jumping probabilities of a randomwalker jumping to the seeds in
each iteration.

The final random walk scores of all nodes converged to a
stationary distribution when there was no longer a significant
update in the scores (Hou and Ma, 2014). When the difference
(Equation 9) in scores between the (t+1)-th and previous t-th
iteration was smaller than ε, the iteration stopped. Here, the
threshold was set as ε = 1e − 8. Additionally, the iteration
stopped after the maximum number of iterations, which was
set to 1,000, when no solution was obtained. In practice, the
improved method always converges to the stationary status.

diff =

√

∑n

i=1
(ri (t + 1) − ri(t))

2 (9)

To retrieve the impact of the mutated genes in the population,
only the mutated genes were retained in the final results.

RESULTS

Performance Evaluation for Known
Cancer-Related Genes
For evaluating and comparing the performance of Driver_IRW
in predicting known cancer genes, two publicly available
databases-20/20 rule (Vogelstein et al., 2013) and IntOGen
(downloaded on May, 2019) (Gonzalez-Perez et al., 2013),
datasets were utilized as approximate benchmarks. The 20/20
rule dataset contained 138 well-studied oncogenes and tumor
suppressor genes, which were used to assess the ability of our
method in identifying known cancer drivers. The IntOGen
database lists previously detected drivers of different cancers,
which were used to evaluate the performance of driver discovery
on specific types of cancer. Different driver genes were extracted
for different types of cancer as benchmarks for performance
comparison. Therefore, we compared Driver_IRWwith previous
state-of-the-art methods, such as DawnRank (Hou and Ma,
2014), DriverNet (Bashashati et al., 2012), MUFFINN (Cho et al.,
2016), and naive mutation frequency-based method to evaluate
the performance of predicting known cancer-related genes.
In particular, the MUFFINN method provided two strategies;
DNmax (direct neighbor max), which counts mutations in
the most frequently mutated neighbors, and DNsum (direct
neighbor sum), which counts mutations in all direct neighbors
using the networks HumanNet (Lee et al., 2011) and STRING
(Szklarczyk et al., 2015; Cho et al., 2016). For comparison, the best

performance between the two networks of each strategy of the top
N genes was selected. In addition, other methods were executed
in their default settings. Moreover, the precision-recall curves of
the top N genes are illustrated in Figure 2. The precision and
recall matrices are defined as follows:

precision =
(#genes in benchmark) ∩ (# genes found in Driver_IRW)

#genes found in Driver_IRW
(10)

recall =
(#genes in benchmark) ∩ (# genes found in Driver_IRW)

#genes found in benchmark
(11)

where (# genes in benchmark) represents the number of genes
in benchmarks (20/20 rule and IntOGen datasets) dataset, and
(

# genes found in Drive rIRW
)

represents the number of top N
genes prioritized by Driver-IRW.

In practice, researchers may only be interested in the top-
ranked candidate genes for follow-up experimental validation.
Hence, only the top 100 candidate driver genes (detailed lists
are in the Supplementary File) were selected to assess their
performance. In general, Driver_IRW outperforms most other
methods in four datasets regardless of whether assessing with the
20/20 rule or IntOGen metrics, which indicates that Driver_IRW
can identify more known cancer drivers than other methods.
Overall, the results show that our proposedmethod performs well
in identifying known cancer-related genes.

Analysis of the Improvement of the
Transition Matrix
To verify that there are improvements after incorporating the
tendency of nodes in random walk, the strategy that assigns all
neighbors of node i with uniform transition probabilities (named
RW_UniTr) was adopted. Here, the random jumping probability
remained the same as that of Driver_IRW. The benchmark data
are the 20/20 rule, and the results are shown in Figure 3. The
results indicated that the transition tendency in accordance with
the neighbors’ out-degree and network topological information
are important for improving the performance of the method.

The Analysis of Seed Genes
Based on the successful application of seed genes on disease-
related discovery in previous studies (Köhler et al., 2008),
known cancer driver genes were used in our method. To
evaluate the performance after considering seed genes, the seed
genes were removed from our Driver_IRW method (termed as
IRW_withoutS). Without the seed genes, the random jumping
probabilities of all nodes were set to equal values (1/n, n is
the total number of genes), which was equivalent to letting
the random walker jump to all nodes with equal probability.
Analogous to the analysis of transition matrix, the benchmark
here is the 20/20 rule dataset. The results are shown in Figure 4.
These results indicate that there is mild improvement after taking
the seed genes into consideration.

In addition, in order to investigate the impact of the seed
nodes and demonstrating whether the results are sensitive
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FIGURE 2 | Assessment of predictive power of Driver-IRW for known cancer related genes compared with different methods. The precision-recall curves of the top

100 results of Driver-IRW, DawnRank, DriverNet, MUFFINN (contained two results of MUFFINN_DNmax and MUFFINN_DNsum), and naïve frequency-based methods

by 20/20 rule gene list for four datasets (A) BRCA, (B) HNSC, (C) KIRC, and (D) THCA, and by IntOGen database for datasets (E) BRCA, (F) HNSC, (G) KIRC, and

(H) THCA.

FIGURE 3 | The analysis of the improvement of transition matrix. Driver_IRW is our proposed method; RW_UniTr means random walk method with uniform transition

probability. The precision-recall curves of top 100 results of Driver_IRW and RW_UniTr by 20/20 rule gene list for four datasets (A) BRCA, (B) HNSC, (C) KIRC, and

(D) THCA.

to the selection of seed node, we have randomly deleted
10, 30, and 50% nodes for 10 times, respectively, from all
seed nodes we used in this article. Next, we applied our
method to every subset. Then the accuracy and recall are
calculated in accordance with the 20/20 rule dataset for 10
times. Finally, the mean value of accuracy and recall of 10 times
are calculated and used to compared with the full seed nodes
(Figure 5).

It is obviously that the performances of full seeds and 90%
seeds are similar. And with the rise of the percentage we
deleted seeds from full seeds, the performance seems becoming

a little worse especially in KIRC and THCA dataset. However,
in general, the performance on these subsets does not change
significantly. It means that the results are not too sensitive to the
selection of seed nodes.

Analysis of the Top 10 Candidate Drivers
The overall performance of identifying cancer drivers of the top
100 genes is shown in Figure 2. Here, the top 10 candidate genes
were listed to illustrate their importance. First, their statuses were
explored regarding whether they are known cancer drivers or
candidate drivers in the NCG 6.0 database (Repana et al., 2019),
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FIGURE 4 | The analysis of seed genes. Driver_IRW is our proposed method with seed genes; IRW_withoutS means removing the seed genes from Driver_IRW

method and setting them with equal probabilities. The precision-recall curves of top 100 results of Driver_IRW and IRW_withoutS by 20/20 rule gene list for four

datasets (A) BRCA, (B) HNSC, (C) KIRC, and (D) THCA.

FIGURE 5 | The assessment of different seeds for four types of cancer. Here,

the full seeds mean the results of all seed nodes we integrated from CGC and

DisGeNet database; 90% seeds, 70% seeds, and 50% seeds mean that we

randomly deleted 10, 30, and 50% seed nodes, respectively.

which is amanually curated repository that contained 2,372 genes
whose somatic modifications have been reported as known or
predicted cancer driver roles (Repana et al., 2019). Then, the
mutation frequencies of these genes were calculated to investigate
the sensibility to the mutation frequency of our method. The
results are shown in Table 1.

As shown in Table 1, almost all of the top 10 genes are cancer-
related according to NCG 6.0. Genes not reported by NCG 6.0
may also have potential effects on cancer. For example, it has been

TABLE 1 | The top 10 candidate drivers of different cancers.

BRCA HNSC

Candidate

genes

Status in

NCG6.0

No. of

mutated

Candidate

genes

Status in

NCG6.0

No. of

mutated

TP53 Known 310 TP53 Known 362

JUN Known 24 AKT1 Known 14

CTNNB1 Known 7 EGFR Known 69

EGFR Known 30 PIK3CA Known 179

AR Known 18 ERBB3 Known 17

PIK3R1 Known 29 MAPK1 Known 18

SRC Known 25 CTNNB1 Known 10

RELA Predicted 26 MAPK3 Unknown 1

PAK1 Unknown 94 STAT3 Known 8

MYC Known 230 PIK3R1 Known 10

KIRC THCA

Candidate

genes

Status in

NCG6.0

No. of

mutated

Candidate

genes

Status in

NCG6.0

No. of

mutated

CTNNB1 Known 58 HRAS Known 18

TP53 Known 6 EIF1AX Known 9

PIK3R1 Known 1 SRC Known 2

PIK3CA Known 1 TP53 Known 4

RELA Predicted 17 NRAS Known 40

MAX Known 5 AKT1 Known 6

PAK1 Unknown 3 KRAS Known 5

SRC Known 1 TRIM24 Known 1

HIF1A Known 6 CTNNB1 Known 1

EGFR Known 4 HSP90AA1 Known 3

demonstrated that PAK1 is increased in breast cancer and plays
a pivotal role in promoting tumor growth and drug resistance
(Kumar et al., 2006; Dou et al., 2016). In addition, PAK1 has been
reported by some studies to play a key role in the initiation and
progression of KIRC (O’Sullivan et al., 2007).
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Furthermore, besides the frequently mutated and important
candidate drivers, such as TP53 in BRCA and HNSC and NRAS
and HRAS in THCA, rare mutated (usually defined as mutated
frequency <2% of samples Hou and Ma, 2014) candidate
drivers could also be identified through our method (Table 1).
Interestingly, TP53 and CTNNB1 rank in the top 10 in four
cancer types. It is widely known that the tumor suppressor gene
TP53 is frequently mutated in most human cancers and has an
important role in the cellular stress response (Petitjean et al.,
2007; Hidalgo, 2010). Additionally, CTNNB1 is reported as a
potential biomarker using the KIRC corresponding network (Isik
and Ercan, 2017). Moreover, mutations in CTNNB1 are related
to several human malignancies, such as colorectal cancer (Klaus
and Birchmeier, 2008), lung cancer (Schou et al., 2001), HNSC
(Jerhammar et al., 2010), and KIRC (Hirata et al., 2012), although
it is a rarely mutated gene.

DISCUSSION

The identification of cancer driver genes is a valuable task
for cancer genomics analysis (Guo et al., 2018). In this study,
we propose Driver_IRW, an improved random walk–based
framework, to prioritize cancer genes. Since the transition of a
node moving to others is more likely to have tendentiousness
in reality, a strategy different from the traditional random walk
method was used whereby nodes transit to others based on
the out-degree of their neighbors rather than move to their
neighbors uniformly according to the degree of themselves. This
not only spreads information rapidly but also avoids trapping
by dangling nodes. Additionally, the application of the method
without seed genes exhibits that the seed genes play a role in
driver gene identification. However, the improvement is not
prominent. On the one hand, the quality of the seeds may
affect the performance; hence, it is necessary to collect high-
quality seeds. On the other hand, this might mean that our
method is robust to the prior information. In a nutshell, the
main differences of our proposed method Driver_IRW with
other methods are mainly in two aspects. The first one is the
computation of the transition probability compared with some
methods such as DawnRank, BRW, and IRWRLDA. The second
one is the computation of the prior information compared with
DPRankmethod. DPRankmethod considers the tendentiousness
of the neighbors’ degree in the network; however, it neglects
the impact of known seeds in the real biology network. The
experimental results on four different cancer datasets (Figure 2)
indicate that our method is more effective when evaluating
known driver discovery than some previous methods. Moreover,
the results in Table 1 also show that Driver_IRW can identify
not only the frequently mutated genes but also rarely mutated
drivers. Comparison of Driver_IRW with the method that uses
traditional transition probability indicates that the improvement
on transition matrix indeed improves the performance. It should
be noted that Driver_IRW was only applied on four TCGA
datasets as case studies in this study; it could be extended to other
datasets if expression data, mutation data, and corresponding
seeds genes are available.

Our method may be a complement of the traditional
frequency-based methods and some network-based methods.

However, there are also some limitations for this method.
In this study, the mutation data are only regarded as the
posterior information to filter the candidate driver genes.
Generally, cancer evolves to accumulate additional alterations
(Nussinov et al., 2019), which might infer more important
information to take the mutation and time-dependent alteration
data into consideration. Besides genetic aberrations, other
events, such as miRNA differential expression and epigenetic
changes, can also contribute to the progression of cancer. The
expression of mRNAs can be controlled by upregulated miRNAs
(Dimitrakopoulos et al., 2018). This may increase the power
of our method if more omics information are integrated. In
addition, the cancer data used were from all patients of one
type. However, there are different subtypes for multiple cancers.
For example, BRCA is typically classified as luminal A, luminal
B, triple-negative/basal-like, HER2-enriched, and normal-like
subtypes, and HNSC contains HPV+ (human papillomavirus
positive) and HPV– (human papillomavirus negative) subtypes
(Vokes et al., 2015). Moreover, the characteristics, molecular
profiles, or specific mutations are usually distinguished among
different subtypes. Therefore, future work in dividing the cancer
types into different subtypes to research the driver gene separately
will be valuable.

In conclusion, Driver_IRW is easy to use for prioritizing
cancer genes with the improved randomwalk–basedmethod.We
expect that our method will provide a valuable resource and can
be amended in the future.
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