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Although the clinical landscape of melanoma is improving rapidly, metastatic melanoma remains a deadly disease. Age remains
one of the greatest risk factors for melanoma, and patients older than 55 have a much poorer prognosis than younger individuals,
even when the data are controlled for grade and stage. The reasons for this disparity have not been fully uncovered, but there is
some recent evidence that Wnt signalling may have a role. Wnt signalling is known to have roles both in cancer progression as well
as in organismal ageing. In melanoma, the interplay of Wnt signalling pathways is complex, with different members of the Wnt
family guiding different aspects of invasion and proliferation. Here, we will briefly review the current literature addressing the roles
of different Wnt pathways in melanoma pathogenesis, provide an overview of Wnt signalling during ageing, and discuss the
intersection between melanoma and ageing in terms of Wnt signalling.

AGE IS A PROGNOSTIC FACTOR FOR MELANOMA

As human lifespan increases, there is a growing concern over the
availability of treatments to manage the increasing incidence of
cancer in aged individuals. Recently, comparison of melanoma
incidence and mortality rates across different age groups indicated
a worse prognosis with increasing age (Macdonald et al, 2011).
Aged populations (those 470 years at the time of diagnosis) tend
to have deeper primary melanomas as well as a higher number of
metastasis than younger populations. Consequently, these aged
patients are generally identified in the T3 or T4 stages of
melanomas, where the primary lesion depth is 42 mm (T3) and
44 mm (T4). Aged patients also have a greater chance of
recurrence (14.9% vs 3.4–6%, Po0.001, within 5 years of surgery)
and higher mortality from the disease (29.8% vs 12.3%, Po0.001,
5 years after surgery; Macdonald et al, 2011). These data suggest it
is critical to identify the molecular mechanisms for these variations
in disease outcome.

Factors such as changes in adaptive immunity, chronic
inflammation and the accumulation of genetic damage over time
have all been proposed as potential age-related factors in the age-
induced increase in cancer incidence and progression (Wolters and
Schumacher, 2013; Zanussi et al, 2013). However, other data
suggest that secreted factors in the aged microenvironment may

also contribute to the age-induced progression of cancer. For
example, it has long been proposed that the ageing stroma
contributes to cancer progression, based on the studies using
senescence as an artificial model of ageing (Campisi, 2013; Campisi
and Robert, 2014). Senescent dermal fibroblasts have been shown
to support the growth and invasion of melanoma cells in co-culture
models (Kim et al, 2013), suggesting that naturally aged fibroblasts
may have similar roles. This studies provide further insight into the
age-related progression observed in melanoma and other cancers,
and suggest that the microenvironment may have a dominant role
in age-induced melanoma progression. It has been recently shown
that Yumm1.7 melanoma cells, derived from the Braftm1Mmcm

Ptentm1Hwu Tg(Tyr-cre/ERT2)13Bos/BosJ mouse model of mela-
noma, when injected into mice aged over a year, were highly
metastatic and did not respond effectively to therapy, as compared
with the same cells in 8-week-old animals (Kaur et al, 2016).
Patient data also indicate that patients over the age of 65 respond
poorly to targeted therapy, and this appears to be driven largely by
changes in Wnt signalling, triggered by fibroblast-secreted Wnt
inhibitors, such as sFRP2. In fact, the Wnt signalling pathway has a
significant role during organismal ageing and may ultimately affect
melanoma outcome. In this review, we will describe the role of
Wnt signalling in melanoma and its potential contribution to age-
related increases in melanoma progression.
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THE WNT SIGNALLING PATHWAYS

Wnt signalling comprises a family of proteins that are involved in
cell proliferation, differentiation, polarity and cell fate determina-
tion. Though the primary role of Wnts is in development,
abnormal signalling through these pathways has been implicated
in ageing and many human cancers. Wnts may signal via three
distinct pathways; the canonical pathway, the Ca2þ /PKC pathway
and the planar cell polarity pathway. Wnt signalling is mediated by
cellular receptors known as the frizzled family of receptors, which
are G-protein-coupled receptors. In addition to Frizzleds, Wnt
signalling also requires multiple co-receptors, such as ROR1 and
ROR2, LRP5/6 and Ryk. To add further complexity, a variety of
secreted Wnt-related proteins such as sFRP2, WISP1, WIF1 and
others, also interact to guide Wnt signalling. The best-known Wnt
signalling pathway involves the intermediate signalling molecule
b-catenin and is termed the canonical pathway. Non-canonical
Wnt signalling includes both the Ca2þ /PKC pathway and the
planar cell polarity pathway mediated via Jnk signalling. In
melanoma, the non-canonical pathway most commonly observed
is that of the Ca2þ /PKC pathway, usually mediated by Wnt5A.
Extensive reviews of the basic transduction mechanisms of both
the canonical and non-canonical Wnt pathways are available, thus
we will not focus on those in this minireview, but refer the reader
to the following reviews (Chien et al, 2009; O’Connell and
Weeraratna, 2009).

Wnt signalling in melanoma initiation. The importance of Wnt
in developing skin can be realised through the developmental
stages of neural crest cells, which migrate and give rise to
melanocytes. Wnt signalling guides both the migration of the cells
from the neural crest and signals to determine cell fate. The fate of
neural crest cells is dependent on the microphthalmia transcription
factor (MITF) that is regulated by b-catenin, such that cells with
high levels of MITF will differentiate into melanocytes, whereas
cells with low MITF give rise to neurons, cartilage, glial cells and
others (Mort et al, 2015). Differentiated melanocytes are
responsible for the production of melanin, which is secreted and
transferred to keratinocytes, resulting in skin pigmentation. An
important stimulator of this process is the melanocortin-stimulat-
ing hormone (a-MSH), which results in the activation of the
cAMPK/PKA signalling pathway. When PKA is activated, it can
phosphorylate serine 9 on GSK3b, thus inhibiting its activity (Fang
et al, 2000). In addition, it has been shown that PKA can
phosphorylate the serine 675 residue of b-catenin directly, and that
this phosphorylation event prevents the ubiquitination and
subsequent degradation of b-catenin (Hino et al, 2005). Therefore,
a-MSH, via PKA activation, is thought to result in the
accumulation and activation of b-catenin signalling (Tachibana,
2000). b-Catenin activation in melanoma seems to occur largely via
increases in signalling such as this and less commonly via
mutation. Once activated, b-catenin is critical for the bypassing
of melanocyte senescence, which can ultimately result in the
transformation of melanocytes (Delmas et al, 2007). This is
perpetuated by b-catenin-mediated activation of the POU domain
transcription factor Brn2 (Goodall et al, 2004).

After activation, Brn2 can have a complex role in the regulation
of MITF. It has been found that Brn2 directly binds to and
represses MITF. In one study, the authors showed that co-staining
of melanoma samples for Brn2 and MITF defined a distinct
demarcation between MITF-positive and Brn2-positive cells
(Goodall et al, 2008). Introducing Brn2 into MITF-positive cells
repressed MITF activity. However, depletion of Brn2 has also been
shown to decrease MITF levels, suggesting that in some cases, Brn2
promotes MITF activity. This discrepancy may be owing to the
presence of oncogenic BRAF as the use of deletion mutants

demonstrated that Brn2 bound to the MITF promoter, and drove
its activity, in the presence of oncogenic BRAF (Wellbrock et al,
2008). Knockdown of either Brn2 or BRAF inhibited MITF
transcriptional activity. Therefore, the difference in whether Brn2
is able to transcribe or repress MITF may be dependent on cellular
context. For example, in the presence of oncogenic BRAF, Brn2
may drive MITF-mediated proliferation, but in its absence, it may
repress MITF and promote invasion. Post-translational modifica-
tions such as phosphorylation also regulate the function of Brn2
and its effects on cellular proliferation, as shown by Berlin et al
(2012), and MITF is known to function as a ‘rheostat’ where,
depending on the levels of its expression and activity, MITF
signalling can result in both inhibition and promotion of
melanoma growth (Goding, 2011). Very low levels of MITF or
absence of MITF results in a population of completely arrested,
potentially senescent cells (Vachtenheim and Ondrusova, 2015).
Low levels of MITF result in the emergence of a slow-cycling, stem-
like, highly invasive population of cells marked by high expression
of p27 and the cell cycle regulator, Dia1 (Carreira et al, 2006).
Increasing MITF above this threshold pushes cells towards a highly
proliferative phenotype, and finally, increasing MITF even further
can drive cells into terminal differentiation (Vachtenheim and
Ondrusova, 2015). MITF is therefore thought to be a master
regulator of the phenomenon of ‘phenotype switching’, where it is
hypothesised that cells switch back and forth between proliferative
and invasive states. This governs how cells leave a tumour and then
establish distant metastases (Hoek and Goding, 2010). MITF
expression can be regulated by canonical Wnt signalling as
described above and non-canonical Wnt signalling as described
below, and thus Wnt signalling can differentially affect each phase
of the ‘rheostat’. Although the MITF rheostat can also be
controlled by a number of other factors including TGFb, hypoxia,
inflammatory cytokines, and so on, for the purpose of this review,
we will focus on Wnt signalling.

Wnt signalling in invasion. As melanoma cells switch to an
invasive phenotype, they activate non-canonical Wnt signalling,
specifically via Wnt5A. Wnt5A signals via frizzled (Fzd) receptors
Fzd2 and 5, along with the orphan tyrosine kinase receptor ROR2,
to activate PKC and stimulate the release of intracellular calcium
(Webster et al, 2015a). This results in multiple downstream
outcomes such as the induction of calpain-mediated cleavage of
filamin leading to increased motility, and the upregulation of
vimentin and snail, resulting in a transition to an invasive,
mesenchymal phenotype (reviewed in O’Connell and Weeraratna,
2009). Activation of Wnt5A also inhibits MITF expression, via the
activation of STAT3. STAT3 inhibits the binding of MITF and
PAX3 to the promoter regions of melanocyte differentiation
antigens such as MART1, GP100 and DCT (Kamaraju et al, 2002).
Wnt5A-mediated activation of STAT3 reduces MITF levels and
ultimately downregulates the expression of melanocyte differentia-
tion antigens (Dissanayake et al, 2008). All of these outcomes act in
consort to promote a metastatic phenotype.

In addition, Wnt5A signals to promote the degradation of
b-catenin, via a GSK3b-independent pathway that involves the
ubiquitin ligase SIAH2 (Topol et al, 2003). These data suggest that
b-catenin loss is critical for invasion and were supported by
additional studies that implicated b-catenin loss in melanoma
metastasis (Chien et al, 2009; Arozarena et al, 2011). However, the
role of b-catenin in melanoma metastasis is highly controversial.
Although Arozarena et al (2011) have shown that the loss of
b-catenin promotes the invasion of human melanoma cells, studies
in mice contradict this observation. The stabilisation of the
b-catenin allele in the B6.Cg-Braftm1Mmcm Ptentm1Hwu Tg(Tyr-cre/
ERT2)13Bos/BosJ melanoma mouse model increases the metastatic
progression of melanoma in these mice (Damsky et al, 2011). In a
more recent study, Gallagher et al (2013) showed that although
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b-catenin did not promote cell motility, it did promote metastatic
outgrowth. This may have to do with the requirement for cells to
switch from an invasive phenotype and re-enter proliferation once
they have reached the distant metastatic site. It is possible that
microenvironmental influences at the metastatic niche govern the
switch to the proliferative state. It will be critical to understand
how dichotomous Wnt signalling guides different phases of
metastatic progression, especially in a temporal context.

Wnt signalling in therapy resistance of melanoma. There have
been multiple improvements in the clinical landscape of melanoma
over the last decade. Most significantly, these include therapy
targeted against mutant BRAF and its downstream signalling
(BRAF inhibitors), and immunotherapy. However, resistance, or in
the case of immunotherapy, lack of response, continues to be a
problem. In addition to metastasis, Wnt signalling may guide
response to multiple forms of therapy in melanoma cells. Wnt
inhibitors such as DKK3 are upregulated in dermal fibroblasts
co-cultured with melanoma cells treated with BRAF inhibitors, and
promote therapy resistance, potentially via b-catenin inactivation
(Seip et al, 2016). In support of this, data show that treating dermal
fibroblasts with another Wnt inhibitor such as recombinant sFRP2
inhibits their expression of b-catenin, and leads to resistance to
BRAF inhibitors in vitro and in vivo. Inhibiting sFRP2 with
monoclonal antibodies reconstitutes b-catenin expression and
resensitises tumours to BRAF inhibitors (Kaur et al, 2016).

Although increased b-catenin has been shown to sensitise
melanoma cells to the BRAF inhibitor, vemurafenib (Biechele et al,
2012), non-canonical Wnt signalling has been shown to contribute
to increased resistance to this drug (O’Connell et al, 2013; Anastas
et al, 2014), highlighting the opposing roles of the different Wnt
pathways in resistance as well as invasion and growth. Wnt5A
promotes resistance to vemurafenib partly by the SIAH2-mediated
degradation of b-catenin and partly by driving cells into a
senescent-like, drug-resistant state (pseudosenescence). In this
pseudosenescent state, Wnt5A-high cells retain all the hallmarks of
senescence while still maintaining a highly invasive phenotype, and
the capability to form metastatic outgrowth in the lung (Webster
et al, 2015b). Wnt5A cells initiate pseudosenescence whether
treated with irradiation, targeted therapy or doxorubicin, suggest-
ing that this is likely a non-specific stress response that allows
melanoma cells to survive damage. It is intriguing to note that
although Wnt5A, which makes melanoma cells resistant to BRAF
inhibitors, drives cells into senescence, and b-catenin, which makes
melanoma cells sensitive to drug, drives cells to bypass senescence
(Delmas et al, 2007; Conde-Perez et al, 2015). This suggests that
senescence may be a mechanism that melanoma cells co-opt to
escape cytotoxic drugs. Therefore, designing therapies that
promote senescence as a means of controlling disease could
potentially do more harm than good, and caution should be taken
when investigating such therapies.

In the immunotherapy setting, some controversy exists regard-
ing the role of Wnt signalling in response to therapy. For many
years, mutant-stabilised b-catenin was considered an antigen,
against which antigen-specific T-cell therapy could be directed
(Wang and Rosenberg, 1996). Furthermore, increased b-catenin
increases MITF, and MITF is then able to transcribe melanocytic
antigens such as MART1 and gp100, which are known to trigger
the infiltration of cytotoxic T cells into the tumour microenviron-
ment. In support of this, as previously mentioned, increases in
Wnt5A were shown to shut off this pathway, inhibiting MITF and
abrogating MART1 expression. This resulted in a decrease in the
activation of MART1-recognising T cells (Dissanayake et al, 2008).
Although these data are consistent with each other, recent studies
examining the effects of checkpoint inhibitors in melanoma have
highlighted some inconsistencies. In a recent study, Spranger et al
(2015) showed that, in contrast to that early work from the Wang

and Rosenberg (1996), mutant-stabilised b-catenin caused exclusion
of T cells from melanoma tumours and reduced the efficacy of
checkpoint inhibitors. More recently, Wnt5A was identified as a
marker of non-response in patients undergoing checkpoint inhibitor
therapy (Hugo et al, 2016). This supports earlier data that
demonstrated that melanoma-derived Wnt5A increases the expres-
sion of indoleamine 2,3-dioxygenase-1 (IDO) in dendritic cells
(Holtzhausen et al, 2015). Indoleamine 2,3-dioxygenase-1 is the rate-
limiting enzyme in the tryptophan catabolism pathway, and acts to
deplete tryptophan in T cells, inhibiting their ability to function
normally, thus acting as an immune checkpoint (Prendergast et al,
2014). Wnt5A, therefore, may implement its immunosuppressive
abilities via multiple mechanisms. The role of b-catenin in increasing
or suppressing the immune microenvironment remains less clear.

MICROENVIRONMENTAL EFFECTS OF WNT SIGNALLING
IN MELANOMA: AGEING

The stromal microenvironment of melanoma is composed of
immune cells, extracellular matrix and fibroblasts, as well as
keratinocytes and endothelial cells. b-Catenin is highly expressed
in normal fibroblasts and is important in maintaining normal
fibroblast function (Zhou et al, 2016). b-Catenin ablation in
fibroblasts slows their proliferation rate, but mimics the activity of
cancer-associated fibroblasts. Cancer-associated fibroblasts are also
known to signal via the Wnt pathways, and secrete Wnt/planar cell
polarity pathway molecules, such as Frizzled, Vangl, Dvl and Pk via
exosomes (Luga and Wrana, 2013). However, normal dermal
fibroblasts also secrete Wnt inhibitors, such as WISP1 (WNT1-
inducible signalling pathway protein 1) and Dickkopf family
member proteins, suggesting that the Wnt pathway is tightly
regulated in dermal fibroblasts. For example, secretion of WISP1 is
regulated by Notch1 in dermal fibroblasts and prevents early
melanoma progression in mice (Shao et al, 2011). Whereas DKK1
inhibits b-catenin-mediated signalling in normal dermal fibro-
blasts, as do other DKK family member proteins, particularly
DKK3, which acts on melanoma cells (Akhmetshina et al, 2012).

Wnt pathways, which have a role in development, also regulate
skin ageing, and the skin makes up the stromal microenvironment
with which primary melanoma cells interact during the initial
stages of tumourigenesis. The balance of Wnt signalling molecules
and Wnt inhibitors changes during ageing, and may affect not only
tumour progression, but also resistance to therapy. Changes in
multiple Wnt signalling pathways occur during ageing and these
results have been summarised in Table 1. Below, we will discuss a
few key contributors to age-related changes in Wnt signalling in
melanoma.

sFRP2 and oxidative stress. It has recently been shown that the
Wnt inhibitor sFRP2 is secreted by aged dermal fibroblasts, and
inhibits b-catenin signalling in melanoma cells. This sets up a
signalling cascade that results in the inhibition of the base-excision
repair protein APE1, a known target of MITF (Liu et al, 2009), and
the accumulation of oxidative stress and DNA damage, leading to
genomic instability (summarised in Figure 1). In addition to
tumour cells, Wnt-mediated oxidative stress changes can also be
observed in cancer-associated stromal fibroblasts as well as stromal
fibroblasts from aged individuals (Comito et al, 2012; Kaur et al,
2016). Dermal fibroblasts undergoing oxidative stress have also
been shown to recruit melanoma cells from the primary lesion to
produce new satellite metastases. The increase in oxidative stress in
aged fibroblasts can be reversed by using antioxidants such as
N-acetyl cysteine (NAC; Comito et al, 2012; Kaur et al, 2016).
Antioxidant therapies remain controversial, as studies have shown
that although NAC is effective in reducing ROS-mediated DNA
damage in primary melanoma tumours, it increased the number
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and burden of lymph node metastases in young mice (aged 3
weeks; Piskounova et al, 2015). However, oxidative stress in young
mice is known to be lower than in the mice 452 weeks, thus
highlighting the importance of understanding the role of age in
determining the outcome of antioxidant intervention therapies
(Kaur et al, 2016).

Klotho, an inhibitor of Wnt signalling. Klotho is a single-pass
transmembrane protein, with an extracellular domain that can be
cleaved, generating a secreted form of klotho that circulates in the
blood (Yokoyama et al, 2012). In humans, klotho is secreted into
the serum until about 35 years of age, and then lost rapidly
thereafter (Takumida et al, 2009). Klotho is often called the ‘anti-
ageing hormone’ and loss of klotho was observed to decrease
lifespan in mice, whereas overexpression of klotho prolonged
lifespan. Klotho also prevents oxidative stress in klotho-over-
expressing transgenic mice as well as in cultured cell lines
(Yamamoto et al, 2005). The antioxidant effects of klotho were
mediated via transcriptional activation of FOXO proteins, which
activate mitochondrial superoxide dismutase, SOD2, thereby
promoting survival of irreplaceable cells that may otherwise die
during ageing (Yamamoto et al, 2005). In addition, klotho has been
shown to suppress p21 and cellular senescence (Xie et al, 2013).

In a klotho knockout mouse model, increased canonical Wnt
signalling was observed, suggesting that klotho inhibits Wnt
signalling (Liu et al, 2007). This appears to occur via regulation of
Wnt binding to the cell surface, as the secreted form of klotho has
sialidase activity allowing it to modify glycans on the cell surface
(Kuro-o, 2009; O’Connell et al, 2009). It has been previously shown
that Wnt5A requires the heparan sulphate proteoglycan syndecan
to enhance its signalling. In the presence of klotho, the sialic acid
residues on syndecan are cleaved, and Wnt5A is released from the
cell surface, such that it can no longer signal as effectively to
mediate metastasis. In addition, klotho signals to inhibit calpain
activity, maintaining the integrity of filaminA and inhibiting the
motility of melanoma cells. In accordance with these observations
in vitro, it was also found that melanoma cells lose klotho
expression as they become more metastatic, and reintroducing
klotho can inhibit metastasis (Camilli et al, 2011). As klotho is
expressed by fibroblasts, it will be of interest to examine the age-
related effects of stromal sources of klotho on the malignant
progression of melanoma cells.

Telomere length and b-catenin signalling. Telomere length
attrition can contribute to premature ageing and the precancerous
state by promoting chromosomal instability (Hoffmeyer et al,
2012). To survive, cancer cells upregulate telomerase expression,
increasing telomere length and promoting survival. Telomere
length is maintained by telomerase, a reverse transcriptase enzyme

that carries an RNA template used to elongate telomere ends.
Mutations in the promoter region of functional subunit of
telomerase, TERT, occur in the vast majority of human melanoma
cell lines (B70%) and also in cutaneous melanoma in patients
(B43%). The frequency of the mutation varies among the different
subtypes of melanoma (Horn et al, 2013). These mutations tend to
be activating, and generate new ETS-binding motifs (Huang et al,

Table 1. Changes in Wnt pathway proteins with normal skin ageing

Source Proteins/other factors Reference

Increased in aged population
Female skin sFRP2, WISP2, ROR1, FZD1, IL4, TNF, NEU1, MMP1, MMP3,

POT1, SRSF9, CALM1, THBS1, miR-29c
Makrantonaki et al (2012); Waldera-Lupa et al (2014); Waldera Lupa et al
(2015); Kalfalah et al (2015); Kaur et al (2016)

Male skin TYR, NKD1, FZD8, LRP8, CXCL12, IL4R, IFNGR1, CCL5, CCL2 Makrantonaki et al (2012); Breitenbach et al (2015); Waldera Lupa et al (2015)
Female and
male skin

WIF1, AXIN2, FZD7, CORIN, IL8 Makrantonaki et al (2012); Waldera Lupa et al (2015)

In vitro MMP1, MMP3, CCR2, CCL3, CCND1, SOD3, IL6 Dudonne et al (2011); Elewa et al (2015)

Increased in young population
Female skin LRAP, TERT, TP53, TGFB1, MEN1, PLK1, DDX3X, miR-181a, miR-

409-3p, FLNC
Makrantonaki et al (2012); Waldera-Lupa et al (2014); Kalfalah et al (2015);
Waldera Lupa et al (2015)

Male skin CAMK1G, NFATC2, IL22RA1, IL1R2 Makrantonaki et al (2012); Breitenbach et al (2015)
Female and
male skin

SIRT6 Makrantonaki et al (2012)

In vitro E2F4, KLF10, GLRX, PPAR-a, TL4R, CTNNB1 Dudonne et al (2011); Elewa et al (2015); Kaur et al (2016)

Aged fibroblast

Proteins
Secreted

Transcription factor
Enzyme

OthersFRP2

Wnt

Melanoma cell

�-catenin

MART-1

ROS

DDR

OO O H

TCF
MITF

APE1

Nucleus

T cell

Extracellular space

CytoplasmFrizzled MART-1
(processed)

Figure 1. Schematic representation of Wnt signalling in the aged
microenvironment of melanoma. In melanoma cells, b-catenin signals
to increase microphthalmia transcription factor (MITF), which in turn can
signal to activate the base-excision repair endonuclease, APE1. This
enzyme acts to protect the cells from ROS-induced DNA damage. MITF
also signals to increase transcription of melanoma-associated antigens
such as MART1, which is processed, presented on the surface of the
cell and acts to increase the influx of cytotoxic T cells. During ageing,
aged fibroblasts secrete sFRP2, which inhibits canonical Wnt signalling
such as Wnt1 and Wnt3a. Inhibiting canonical Wnts inhibit b-catenin,
resulting in an ablation of this protective signalling cascade. This allows
the cells to accumulate DNA damage and become more genomically
unstable. This also leads to less antigen presentation, and therefore, a
decreased susceptibility to cytotoxic T cells.
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2013). TERT-promoter mutations were associated with poorer
overall survival in melanoma patients (80 vs 291 months, Po0.006;
Griewank et al, 2014).

TERT regulates Wnt signalling by two main mechanisms. First,
TERT acts in a complex with BRG1 (a SWI-/SNF-related ATP-
dependent chromatin-remodelling factor), directly binding to the
b-catenin promoter region and activating its transcriptional
activity (Park et al, 2009). In the absence of BRG1, TERT is
unable to activate b-catenin and its downstream signalling proteins
(Park et al, 2009). Next, TERT also binds directly to b-catenin
target sites, specifically to the TBE-containing promoter fragments
of the c-myc and Cyclin D1 genes. This regulation appears to be
reciprocal, as b-catenin can contribute to telomere stability. TERT
is highly expressed in adult stem cells with stabilised b-catenin
(Heidenreich et al, 2014). Upregulation of b-catenin increases
levels of TRF2, a subunit of the shelterin complex that protects
telomere ends, and allows for protection of telomeres in both
cancer and normal cells (Diala et al, 2013). Loss of nuclear b-
catenin increases telomere damage by triggering formation of
telomere dysfunction-induced foci, (telomere foci co-localising
with 53BP1), decreasing cell viability and causing the cells to enter
senescence (Diala et al, 2013). It is unclear whether this senescence
is terminal, or whether it represents a pseudosenescent state, which
allows these cells to survive the onslaught of therapy. This
association of DNA damage with the loss of b-catenin is also seen
in melanoma cells exposed to an aged microenvironment (Kaur
et al, 2016). The interaction of TERT with b-catenin provides
another nodal point where ageing and Wnt signalling may
intersect to govern melanoma progression.

CONCLUSION

Wnt signalling has critical roles in the development and ageing of
organisms, and Wnts are thus very highly conserved. The role of
these proteins in the growth and lineage specification of normal
cells is co-opted by tumour cells to increase malignancy, and as
such, Wnt proteins can have multiple and diverse roles in tumour
development and progression. Perhaps one of the most fascinating
things to observe in recent studies is the ever-burgeoning variety of
cellular processes in which Wnt signalling has a role in melanoma,
as highlighted in this review—growth, metastasis, resistance to
targeted therapy, immune-modulation and, most recently, ageing-
related changes in the disease. One of the ways in which ageing and
melanoma intersect in terms of Wnt signalling is via the release
of sFRP2 from aged fibroblasts, which signals to shut off b-catenin
in the melanoma cells. This triggers a host of downstream changes
that ultimately lead to altered response to ROS, and the initiation
of DNA damage (Figure 1). There may be a host of other
Wnt-related mechanisms that also change during ageing and
trigger similar pro-tumourigenic effects. This recently added
complexity of microenvironmental Wnt-related proteins that affect
the melanoma cells and are altered during ageing, makes the
understanding of the spatio-temporal roles of the different players
in this pathway critical for better design of effective therapy in
melanoma.
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