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Updates to staging models are needed to reflect a greater understanding of tumor

behavior and clinical outcomes for well-differentiated thyroid carcinomas. We used a

machine learning algorithm and disease-specific survival data of differentiated thyroid

carcinoma from the Surveillance, Epidemiology, and End Results Program of the

National Cancer Institute to integrate clinical factors to improve prognostic accuracy. The

concordance statistic (C-index) was used to cut dendrograms resulting from the learning

process to generate prognostic groups.We created one computational prognostic model

(7 prognostic groups with C-index = 0.8583) based on tumor size (T), regional lymph

nodes (N), status of distant metastasis (M), and age to mirror the contemporary American

Joint Committee on Cancer (AJCC) staging system (C-index = 0.8387). We showed

that adding histologic type (papillary and follicular) improved the survival prediction of the

model. We also showed that 55 is the best cutoff of age in the model, consistent with the

changes from the most recent 8th edition staging manual from AJCC. The demonstrated

approach has the potential to create prognostic systems permitting data driven and real

time analysis that can aid decision-making in patient management and prognostication.

Keywords: thyroid cancer, cancer staging, C-index, dendrogram, machine learning, survival

INTRODUCTION

The American Joint Committee on Cancer (AJCC) has released eight iterations of its Cancer
Staging Manual since initial publication in 1976. The tumor, nodal involvement, metastasis (TNM)
staging model it publishes is a mechanism for comparing like or unlike groups of cases. This is the
worldwide standard for the way cancer information is communicated and is used for staging and
prognosis, treatment recommendations, and research at all levels. Periodic improvements attempt
to integrate new factors that inform behavior and prognosis of each cancer.

The accumulation of survival data with current advances in cancer research can improve
the delivery of patient care following enhanced prognostic accuracy of staging cancers. The 8th
edition of AJCC asserted major changes in the staging of oropharyngeal and breast cancers due
to the increasing wealth of clinical data. Hormone receptor status and histologic grade were
incorporated in the traditional TNM staging of breast cancer, whereas HPV status received its own
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staging algorithm in oropharyngeal cancers (1). Updates to our
staging models reflect a greater understanding of tumor behavior
and clinical outcomes, and further refinement of the staging
model for well-differentiated thyroid carcinomas is needed.

Well-differentiated thyroid carcinomas generally demonstrate
different clinical behavior compared to medullary and anaplastic
thyroid carcinomas. Current clinical outcomes of well-
differentiated thyroid cancers, which include papillary and
follicular carcinoma, are largely guided by the age of the patient.
Historically, the age cutoff for staging was 45 years as it is the
mean dataset age upon which staging recommendations are
based (2). Changing the age cutoff in prognostic staging from
45 to 55 has led to the down staging of 12% of patients whose
mortality would have otherwise been overstated. The age cutoff
of 55 could improve the prognostic validity of the AJCC staging
model (2).

In addition to AJCC’s widely used TNM system, numerous
prognostic calculators have been described to inform prognosis
for new cases of differentiated thyroid cancer. The European
Organization for Research on Treatment of Cancer (EORTC)
is a historical system from 1979 that includes age, gender,
histologic type, extrathyroidal invasion, and distant metastasis
based on a study of 507 patients (3). The AGES (age, gender,
extent, size) system from 1987 was based 859 patients at Mayo
Clinic between 1946 and 1970 (4). The AMES (age, metastases,
extent, and size) system came 1 year later from a Lahey Clinic
study involving 821 patients which improved on AGES by
including gender (5). As there was no consensus histologic
grading scheme when these prognostic systems were created, the
Mayo Clinic reanalyzed data from 1779 patients from 1940 to
1989 and developed the MACIS (metastases, age, completeness
of resection, invasion, size) system, which excludes histologic
grade and includes completeness of primary resection as an
independently significant parameter (6).

Although the above systems showed no difference in
prediction superiority (7), they are all based on single institution
experiences and subject to the limitations therein. As more
factors, gene mutations, and clinical features are increasingly
utilized in medical decision making, the volume of data in tumor
registries is exploding. The fidelity of legacy systems, including
those from AJCC that are based on expert panels is called
into question as the complexity of analysis necessary to make
meaningful interpretations will soon be too cumbersome for
humans alone. Can we use machine learning to systematically
consider any variable, present and future, to find groups of cancer
cases with a similar outcome?

In this study we describe a novel approach using the Ensemble
Algorithm for Clustering Cancer Data (EACCD) (8–13) to
create prognostic systems for well-differentiated thyroid cancer.
We demonstrate the approach by creating a prognostic system
on primary tumor, regional lymph nodes, status of distant
metastasis, and age using the disease-specific survival data from
the Surveillance, Epidemiology, and End Results (SEER) Program
of the National Cancer Institute. This system was compared with
the widely accepted AJCC staging system for thyroid cancer. We
also assess the effect of histologic type and the optimal cutoff for
age in producing prognostic systems.

MATERIALS AND METHODS

Data
The SEER database is supported by the National Cancer Institute
and collects case data from population-based cancer registries
covering approximately 34.6 percent of the U.S. population (14).
It contains de-identified data on patient demographics, primary
tumor site, tumor morphology, stage at diagnosis, and follow up
vital status. For this study we used data of well-differentiated
thyroid cancer diagnosed 2004–2010 that were obtained from the
November 2017 submission of SEER.

Cases of papillary and follicular thyroid cancer were selected

from the SEER 18 databases using the restrictions {ICD-

O-3/WHO 2008 = Thyroid} and {Histologic Type ICD-O-
3 = 8050, 8260, 8340–8344, 8350, 8450–8460 (for papillary

cancer), or Histologic Type ICD-O-3 = 8290, 8330–8335 (for
follicular cancer)}. We placed Hurthle cell carcinoma (ICD-
O-3=8290) into the category of follicular carcinomas, as used

in Lim et al. (15). We excluded medullary carcinoma as
it is staged differently. Clinically it is often part of genetic

syndromes and patients’ survival is confounded by its aggressive
course. Anaplastic carcinoma is not well-differentiated and
uniformly fatal and thus excluded. Furthermore, these 3 types are
exceedingly rare and a population-based study on them would be
of low utility.

Three datasets were used in this report. Dataset 1, containing
4 prognostic factors, was used to create a prognostic system for
thyroid cancer. This system was then compared with the staging
system of AJCC. Dataset 2, involving 5 factors, was used to
assess the effect of histologic type in creating prognostic systems.
Dataset 3, involving 4 factors, was used to explore the optimal
cutoff point for age in the prognostic system. Selection of cases,
data management, and specifics about factors for each dataset are
described as follows.

Dataset 1 SEER started to record derived AJCC T, N, M
according to the 6th AJCC Staging Manual in 2004 (16). The
AJCC staging systems of thyroid cancer (17–19) contained
further stratified categories (T4a and T4b for T and N1a and
N1b for N) that were not available in SEER until 2004. Therefore,
dataset 1 contained only cases with diagnosis years from 2004 to
2010 to include these categories for catching up with the latest
updates in AJCC, and to ensure a 5-year follow-up through 2015
which was the most recent year before which all case-level data
were available in SEER. SEER cause-specific death classification
variable (20) was used to capture deaths related to thyroid cancer.
Survival time was measured by months. The factors in dataset
1 included tumor size (T), regional lymph nodes (N), status of
distant metastasis (M), and age (A). The definition of T, N, andM
was from Adjusted AJCC 6th ed. T, N, M, and Stage in SEER (16).
Age in dataset 1 was treated as a binary variable and contained
two categories: A1 (0–54), and A2 (55+). The detailed definition
of categories/levels of each factor in dataset 1 was provided in
Table 1. We excluded patients with a missing or unknown value
on any of the following variables: T, N, M, A, survival time, and
SEER cause-specific death classification variable. Specifically, we
discarded 26 patients with “T4NOS,” 2894 patients with unknown
values of T, 2110 patients with “N1NOS,” 1982 patients with
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TABLE 1 | Definitions of levels of T, N, M, and A for well-differentiated thyroid

cancer patients diagnosed 2004–2010.

Factors Levels Definitions

Primary tumor T0 No evidence of primary tumor

T1 Tumor 2 cm or less in greatest dimension limited to

the thyroid

T2 Tumor more than 2 cm but not more than 4 cm in

greatest dimension limited to the thyroid

T3 Tumor more than 4 cm in greatest dimension limited

to the thyroid or any tumor with minimal extrathyroid

extension (e.g., extension to sternothyroid muscle

or perithyroid soft tissues)

T4a Tumor of any size extending beyond the thyroid

capsule to invade subcutaneous soft tissues, larynx,

trachea, esophagus, or recurrent laryngeal nerve

T4b Tumor invades prevertebral fascia or encases

carotid artery or mediastinal vessels

Regional

nodes

positive

N0 No regional lymph node metastasis

N1a Metastasis to Level VI (pretracheal, paratracheal,

and prelaryngeal/Delphian lymph nodes)

N1b Metastasis to unilateral, bilateral, or contralateral

cervical or superior mediastinal lymph nodes

Metastasis M0 No distant metastasis

M1 Distant metastasis

Age A1 0 ≤ Age < 55

A2 55 ≤ Age

Refer to SEER Research Data Record Description (21) for specifics of the 3rd column.

unknown values of N, 1,840 patients with unknown values of M,
4 patents with unknown age, 226 patients with unknown survival
time, 131 patients with “Dead (missing/unknown COD)” and
8011 patients with “N/A not first tumor.” We note that patients
with an unknown value of one variable are more likely to have
unknown values on several other variables.

In creating prognostic systems based on dataset 1, our
approach applied to combinations instead of individual patients.
A combination of prognostic factors is a subset of the data that
corresponds to one level of each selected factor. A combination
describes certain characteristics of its patients. For example,
T1 and N0 produce a combination, denoted by T1N0, which
represents a subset of patients whose tumor size is T1 and lymph
nodes positive is N0. As in T1N0, we use the notations of levels
of factors to denote combinations in this report.

To optimize robustness of statistical techniques, we only kept
combinations (in terms of T, N, M, A) each containing at least
25 patients in dataset 1. This left out 33 “rare” combinations (321
cases). Note that 68 cases had T0 and they were excluded since all
combinations involving T0 contained fewer than 25 patients. The
final dataset 1 consisted of 39 combinations (51,291 cases with a
median follow up 90 months).

Dataset 2 Dataset 2 was derived from dataset 1 by treating
the histology (H) as an additional prognostic factor. Two levels
were used for histologic type: H1 (follicular) and H2 (papillary).
To optimize robustness of statistical techniques, we only kept
combinations (in terms of T, N, M, A, H) each containing at
least 25 patients. This left out 268 cases from dataset 1. The

final dataset 2 consisted of 44 combinations (51,023 cases with
a median follow up 90 months). This is the largest dataset that
contains combinations (in terms of T, N, M, A, and H) each
containing at least 25 patients with diagnosis years from 2004
to 2010.

Dataset 3 Dataset 3 was also derived from dataset 1 due to
consideration of three cutoffs of age 45, 55, and 65. Both 45 and 55
have been used in recent editions of AJCC, and 65 was considered
because of its general use in the literature for stratifying young
and old patients. We required that each combination from T, N,
M, and any cutoff contain at least 25 patients. This left out 186
cases from dataset 1. The final dataset contains 51,105 cases (with
a median follow up 90 months), which is the largest dataset that
contains combinations (in terms of T, N, M, A with any of the
three cutoffs) each containing at least 25 patients with diagnosis
years from 2004 to 2010.

EACCD
The EACCD is a machine learning algorithm designed
to partition survival data. It consists of 3 main steps.
(1) Defining initial dissimilarities: This step defines the
initial dissimilarity between survival functions of any two
combinations. (2) Obtaining learned dissimilarities: This step
uses initial dissimilarities and an ensemble learning process
to obtain learned dissimilarities between combinations, which
are more data-driven than the initial dissimilarities. (3)
Applying hierarchical clustering analysis: This step clusters the
combinations by the learned dissimilarities and a linkagemethod.

There are several approaches for each step. In this paper,
the initial dissimilarity between two combinations is defined
by an effect size based on Gehan-Wilcoxon test statistic (22);
the ensemble learning process is based on the two-phase
Partitioning Around Medoids algorithm (23); and the complete
linkage method (24) is chosen for hierarchical clustering.
These and a detailed description of EACCD are given in
the Supplementary Material.

Prognostic Systems
Dendrograms can be cut horizontally to generate prognostic
groups that serve the same role as the staging groups in the
TNM.We cut dendrograms according to the C-index (25), which
estimates the probability that a subject who experienced an event
(e.g., death) in an earlier time had a shorter predicted time than
a subject who experienced the event in a later time. A higher C-
index implies a higher accuracy in survival prediction. In general,
the curve of the C-index vs. the number of groups increases for
relatively small numbers of groups and then quickly plateaus as
more groups are generated. The C-index curve can be used to find
the optimal number of groups (denoted by n∗) for the model,
which is around the “knee” point of the curve and balances the
simplicity and the accuracy of the system. The C-index value at n∗

is usually close to the maximum C-index that corresponds to the
maximum number of groups, i.e., the number of combinations
based on the selected factors. Survival curves using the Kaplan-
Meier estimates (26) are plotted for the prognostic groups to
visually evaluate the survival difference among the prognostic
groups. The survival curves for n∗ groups should not overlap.
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FIGURE 1 | Dendrogram for dataset 1 and cutting the dendrogram according to C-index. Running EACCD results in the tree-structured dendrogram, shown in the

black color in the figure. A 5-year disease-specific survival rate in percentage is given beneath each combination. Cutting the dendrogram according to n* = 7 in

Figure 2 creates 7 prognostic groups, shown in red square boxes. Listed on the bottom are the group numbers.

The final prognostic system is a collection of the dendrogram,
the group assignment, the C-index, and the survival curves
for the prognostic groups. In this report a prognostic system
is sometimes denoted by notations of the factors involved in
the system.

RESULTS

Prognostic System on the Basis of T, N,
M, A
Applying EACCD to dataset 1 yields the dendrogram in Figure 1.
The C-index curve (C-index vs. number of groups) is shown
in Figure 2 and can be used to find the optimal number of
prognostic groups n∗. The highest knee point of the curve
corresponds to 16 groups and a C-index value of around 0.9.
However, 16 groups obtained from cutting the dendrogram have
overlapping survival curves and thus should not be used. Then
n∗ is smaller than 16, since survival curves of more than 16
groups will also overlap. Fifteen groups yield overlapping survival
curves and should not be used either. The next knee point is at
7 groups with non-overlapping survival curves and a C-index
of 0.8583 and thus we choose n∗ = 7. Cutting the dendrogram
into 7 groups is shown in Figure 1 and the survival curves of
the 7 groups are plotted in Figure 3. Clearly, group 1, group 2,
. . . , group 7 have well-separated curves and have a decreasing
survival as the group number increases. For convenience, the
detailed definition for all 7 groups is restated in the 5th column
of Table 2.

Roughly, it is seen that 5 year disease-specific survival rates
within each of the 7 red boxes in Figure 1 are close to each
other and they differ between any two red boxes. Therefore, the

FIGURE 2 | C-index curve based on the dendrogram in Figure 1. The highest

knee point of the curve corresponds to 16 groups and the C-index value of

around 0.9. However, 16 groups of patients obtained from cutting the

dendrogram have overlapping survival curves and thus should not be used.

Therefore, the optimal number n* is smaller than 16. Fifteen groups also yield

overlapping survival curves and should not be used either. The next knee point

is at 7 groups with well-separated survival curves and a C-index of 0.8583.

Thus, the optimal n* = 7.

red boxes in Figure 1 provide a good grouping of the patients.
Figure 3 shows well-separated survival curves of 7 groups from
the 7 red boxes.

The dendrogram with cutting in Figure 1, the groups in
Table 2, and the survival curves in Figure 3 define one prognostic
system for well-differentiated thyroid cancer that incorporates T,
N, M, and A. For simplicity, this system is denoted by TNMA.
We call each of the 7 groups a prognostic group.
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FIGURE 3 | Disease-specific survival of 7 prognostic groups in Figure 1. The 5-year disease-specific survival rates for 7 groups are listed on the right side of the figure.

For comparison, the 8th edition of AJCC divides dataset 1 into
5 groups (Figure 4 and the sixth column of Table 2). Calculation
shows that the C-index of staging system TNMA from AJCC
8th edition is 0.8387. The p-value of the C-index based test (27)
for testing the difference between the prediction accuracy of the
EACCD prognostic system TNMA (7 groups, C-index =0.8583)
and the AJCC 8th edition staging system TNMA (5 groups, C-
index 0.8387) is 7.8 × 10−7. This shows that on the basis of
dataset 1, the EACCD generated prognostic system TNMA has
a significantly higher prediction accuracy than the staging system
of AJCC 8th edition.

Effect of Histology
To explore the effect of histology on prognostic systems, we used
EACCD to build the prognostic systems on the basis of dataset
2 for the following two sets of factors: {T, N, M, A} and {T,
N, M, A, H}. (Dataset 2 meets the requirement of at least 25
patients in each combination for each set, while dataset 1 does
not. Therefore, dataset 2 can be used for a fair assessment of
these two sets of factors on the same data.) Figure 5 plots C-index
curves, based on dataset 2, for the two scenarios. The optimal
number of groups is 7 for both sets, and the corresponding
C-index for {T, N, M, A} and {T, N, M, A, H} is 0.8425 and
0.8512, respectively. The p-value of the C-index based test (27) for
testing the difference in prediction of the two prognostic systems
is 0.00052, showing that inclusion of histology significantly
improves prediction accuracy compared to the system based on
T, N, M, A alone.

Cutoff Point of Age
In the above, we have used 55 as a cutoff for age. With different
cutoff values of age, prognostic systems can be created and
compared in terms of prediction accuracies. We provide such
an analysis for cutoffs 45, 55, and 65 on the basis of dataset
3, which is the largest dataset that allows at least 25 patients
in any considered combination. From our approach in creating

prognostic systems, the cutoffs 45, 55, and 65 lead to three
prognostic systems that have, respectively, a C-index 0.7710,
0.8394, and 0.8047. The p-value of the test in Kang et al. (27) for
testing the difference in prediction between the systemwith cutoff
55 and the system with cutoff 45 and 65 is 5.4 × 10−5 and 3.3 ×
10−10, respectively. The prognostic system based on age cutoff 55
performs significantly better than the systems with cutoff 45 or
65. Therefore, adjusting for T, N, and M, 55 is a good cutoff if
dichotomizing age is required (i.e., for clinical reasons).

Note that all three systems have 6 prognostic groups, rather
than 7 groups as in the system TNMA based on dataset 1.
This difference is due to the fact that dataset 3 is a subset of
dataset 1 and those patients in dataset 1 but not in dataset 3
are from small combinations which are mainly assigned to high-
risk groups (groups 5, 6, and 7) in the 5th column in Table 2.
For example, 33 T1N0M1A2 cases, 31 T3N1bM1A2 cases, and 32
T4bN0M1A2 cases, all from group 6, are excluded from dataset
3. These patients have a high death rate and excluding them
can affect the group assignment and predictive accuracy of the
systems based on dataset 3.

DISCUSSION

Histology
We showed that when histology was added into the pool of T, N,
M, and A, the prediction accuracy increased (p-value= 0.00052).
However, the improvement was not dramatic, as shown by their
small difference in C-index values in Figure 5. This is consistent
with earlier findings (28, 29).

We now examine how the EACCD system TNMA classifies
the patients in terms of their status of histology. Table 3 describes
how patients with different types of histology and different AJCC
stages are distributed across the prognostic groups of the EACCD
system TNMA. For each type (papillary and follicular), the upper
right and lower left corners of the table are filled with 0. Low and
high stages correspond to low and high-risk prognostic groups,
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TABLE 2 | EACCD and AJCC stratification of dataset 1 containing the SEER

well-differentiated (papillary + follicular) thyroid cancer patients diagnosed

2004–2010.

T N M A EACCD

prognostic

group

8th AJCC Staging

Manual staging

group

T1 N0 M0 A1 1 I

T1 N0 M0 A2 1 I

T1 N1a M0 A1 1 I

T1 N1a M0 A2 1 II

T1 N1b M0 A1 1 I

T2 N0 M0 A1 1 I

T2 N0 M0 A2 1 I

T2 N1a M0 A1 1 I

T2 N1b M0 A1 1 I

T3 N0 M0 A1 1 I

T3 N1a M0 A1 1 I

T3 N1b M0 A1 1 I

T4a N0 M0 A1 1 I

T1 N1b M0 A2 2 II

T2 N1a M0 A2 2 II

T3 N0 M0 A2 2 II

T3 N1a M0 A2 2 II

T4a N1a M0 A1 2 I

T4a N1b M0 A1 2 I

T4b N1a M0 A1 2 I

T2 N1b M0 A2 3 II

T3 N1b M0 A2 3 II

T3 N1b M1 A1 3 II

T4b N0 M0 A1 3 I

T4b N1b M0 A1 3 I

T4a N0 M0 A2 4 III

T4a N1a M0 A2 4 III

T2 N0 M1 A2 5 IVB

T4a N1b M0 A2 5 III

T4a N1b M1 A1 5 II

T4b N0 M0 A2 5 IVA

T4b N1a M0 A2 5 IVA

T1 N0 M1 A2 6 IVB

T3 N0 M1 A2 6 IVB

T3 N1b M1 A2 6 IVB

T4a N1b M1 A2 6 IVB

T4b N0 M1 A2 6 IVB

T4b N1b M0 A2 6 IVA

T4b N1b M1 A2 7 IVB

respectively. Therefore, the EACCD grouping and AJCC staging
are strongly positively correlated.

Cutoff of Age
It is known that age is a very important factor that has a strong
correlation with the outcome of differentiated thyroid cancer
patients, i.e., increasing patient age is significantly associated with
increasing mortality (after adjustment for certain characteristics)

(28–30). Since its second edition, the AJCC staging system for
thyroid cancer has been including age in addition to T, N, and M.
With AJCC, age has been treated as a dichotomous variable, with
a cutoff at 45 for earlier AJCC editions including the 7th and 55
for the current 8th edition.

The concept of cutoffs of age has been challenged recently in
a large number of studies that use statistical modeling techniques
to make inconsistent conclusions (30). In particular, in a study
of 31,802 patients with papillary thyroid cancer, Adam et al.
used the Cox proportional hazards modeling with restricted
cubic splines to show that age was significantly associated with
survival, without an apparent cutoff. When applied to survival
data, statistical modeling methods (e.g., Cox regression models)
usually focus on optimal fitting to the data. And correspondingly,
they favor continuous variables (if variables can be treated as
continuous) instead of discretizing continuous variables, which
can cause a loss in the information contained in the data.

On the other hand, when stratifying the data is needed,
such as staging the patients as AJCC and grouping patients
by EACCD as shown in this research, obtaining a well-defined
rule to classify the patients into various categories becomes
another important issue, in addition to achieving a high survival
prediction accuracy. In this scenario where both stratification
and prediction are of main concern, treating age as continuous
is inconvenient. The simplest approach is then to find a cutoff
for age. In this study, we showed that when using EACCD to
groups, with a high prediction accuracy, 51,291 patients of well-
differentiated thyroid cancer, 55 is the best cutoff of age among
the three choices of 45, 55, and 65. This finding supports the use
of 55 as an age cutoff in the current AJCC staging system (8th
edition) for thyroid cancer.

Comparing EACCD vs. AJCC 8th Edition
The EACCD prognostic system TNMA based on dataset
1 can be compared with the AJCC staging system in
terms of stratification and prediction. We showed earlier
that the EACCD system TNMA (C-index = 0.8583) has
a significantly higher survival prediction accuracy than
the AJCC staging system (C-index = 0.8387). Below
we compare the two systems by examining how they
stratify patients.

There is a strong inter-system association between AJCC
staging and EACCD grouping. Table 4 presents the distribution
of patients of each AJCC stage over the 7 groups of
EACCD system TNMA. Note that the upper right and lower
right corners of the table are filled with 0. We see that
the higher stage the patient is assigned to by the AJCC
system, the higher-risk group the patient is assigned to by
the EACCD, and vice versa. In fact, the assignment to
ordered stages and the assignment to ordered groups have a
Spearman’s rank correlation of 0.8798 with a p-value of 1.7
× 10−13.

EACCD has a more rigorous grouping scheme than AJCC.
A notable combination is T4aN1bM1A1 (32 cases), which
is considered Stage II according to the AJCC system. This
combination has a 5-year disease-specific survival rate of 77.1%,
yet the Stage II 5-year disease-specific survival rate is more
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FIGURE 4 | Disease-specific survival of AJCC stage groups defined in the 6th column in Table 2. The 5-year disease-specific survival rates for 5 stages are listed on

the right side of the figure.

FIGURE 5 | C-index curves based on dataset 2. The red curve is the C-index

curve from the dendrogram using 5 factors T, N, M, A, and H. The blue curve

is the C-index curve from the dendrogram using 4 factors T, N, M, and A. The

optimal number of groups is 7 for both systems, and the corresponding

C-index values for the red and blue curves are, respectively, 0.8512 and

0.8425 (p-value = 0.00052).

than 95% (based on dataset 1). In contrast, EACCD assigns
T4aN1bM1A1 to group 5 of the system TNMA whose 5-
year disease-specific survival rate is around 76% (based on
dataset 1).

In the EACCD system TNMA, a combination with a lower
level of one selected factor (adjusting for the other three factors)
is almost always assigned into a prognostic group with an
equal or more favorable survival. The only two exceptions are:
T1N0M1A2 (group 6, 33 cases, 5-year survival = 55.1%) and
T2N0M1A2 (group 5, 35 cases, 5-year survival = 80.7%), and
T4bN0M0A1 (group 3, 121 cases, 5-year survival = 94.1%) and
T4bN1aM0A1 (group 2, 83 cases, 5-year survival = 97.4%).
Though the assignments are concordant with the observed
survival, they may counter to our usual understanding of levels of
factors. This problem is caused by inaccurate estimates of survival

TABLE 3 | Contingency table between EACCD grouping and AJCC staging on

the basis of T, N, M, A, and dataset 1 that contains the SEER well-differentiated

(papillary + follicular) thyroid cancer patients diagnosed 2004–2010.

AJCC/EACCD 1 2 3 4 5 6 7 Total

FOLLICULAR

I 3,668 3 25 0 0 0 0 3,696

II 5 659 15 0 2 0 0 681

III 0 0 0 33 2 0 0 35

IVA 0 0 0 0 42 7 0 49

IVB 0 0 0 0 16 67 13 96

Total 3,673 662 40 33 62 74 13 4,557

PAPILLARY

I 41,634 463 180 0 0 0 0 42,277

II 436 2,569 461 0 30 0 0 3,496

III 0 0 0 388 128 0 0 516

IVA 0 0 0 0 192 89 0 281

IVB 0 0 0 0 19 118 27 164

Total 42,070 3,032 641 388 369 207 27 46,734

due to small sample sizes and will be corrected when more data
are available. We note that this problem does not occur with
AJCC staging.

In summary, the EACCD prognostic system TNMA has a
higher prognostic accuracy than the AJCC staging system; in
stratification of patients, EACCD grouping and AJCC staging
are positively associated though each has its own advantages
and disadvantages.

Comparing EACCD With Other Models
Other efforts have been made to expand the AJCC staging system
by integrating additional factors. Two major approaches are
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TABLE 4 | Contingency table between EACCD grouping and AJCC staging on

the basis of T, N, M, A, and dataset 1 that contains the SEER well-differentiated

(papillary + follicular) thyroid cancer patients diagnosed 2004–2010.

AJCC/EACCD 1 2 3 4 5 6 7 Total

DIFFERENTIATED (FOLLICULAR +PAPILLARY)

I 45,302 466 205 0 0 0 0 45,973

II 441 3,228 476 0 32 0 0 4,177

III 0 0 0 421 130 0 0 551

IVA 0 0 0 0 234 96 0 330

IVB 0 0 0 0 35 185 40 260

Total 45,743 3,694 681 421 431 281 40 51,291

available in the literature, one based on Cox regression modeling
(28) and the other on tree modeling (29).

Cox regression modeling, focuses on optimal fitting
to the data, can achieve a high accuracy in survival
prediction. The main downside is that no clear rule
can be extracted from the output (e.g., the nomogram)
to stratify patients into risk groups analogous to
AJCC stages.

Traditional survival tree modeling, partitioning the
space of values of factors into disjoint and non-overlapping
regions, can be used to explicitly define prognostic groups.
However, tree models in general do not provide a high
prediction accuracy.

In contrast, the EACCD approach introduced in this
paper computes the survival difference between any two
cohorts of patients and utilizes these differences to stratify
patients, where the number of groups from stratification
is determined by potentially largest C-index. Therefore,
this approach takes into account both stratification
and prediction.

Limitations
The gold standard disease-specific survival data were used in
this study. Although the SEER cause-specific death classification
is determined by also taking into account other elements
(e.g., tumor sequence, site of the original cancer diagnosis,
and comorbidities), death certificate errors can be problematic
in estimating the cause-specific survival. Another limitation
is including combinations with at least 25 cases, which
excludes some combinations that contain a few patients
with very poor prognosis. The impact of this requirement
on combination sizes will be minimized as more data
become available.

CONCLUSIONS

We have introduced a novel machine learning approach EACCD
to create prognostic systems for cancer patients. Using data from
the SEER national cancer registry andmachine learningmethods,
we were able to create a computational prognostic system TNMA
based on T, N, M, and age for differentiated thyroid carcinoma
that had a significantly higher survival prediction accuracy than
the AJCC staging scheme. We showed that adding histology
into the model TNMA only improved performance slightly. We
also showed that 55 is the best cutoff of age in our approach
of stratifying patients. Although the EACCD prognostic system
TNMA has a significantly higher prediction accuracy in
survival, the EACCD grouping and AJCC staging are strongly
positively correlated.

The EACCD approach can be applied to validate/expand
other prognostic systems utilized in clinical practice such
as EORTC, AGES, AMES, and MACIS. Future interesting
applications of EACCD could include studying molecular
markers, such as T1799A point BRAFmutation, TERTmutation,
and HRAS mutation (31) as these become available in
cancer registries. As new variables/factors become important
for clinical decisions, they can be integrated with others
in a data-driven approach by EACCD to provide timely
refinements and further optimization in patient classification and
outcome prediction.
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