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Heterogeneity of neuroendocrine transcriptional
states in metastatic small cell lung cancers and
patient-derived models
Delphine Lissa1,10, Nobuyuki Takahashi2,3,10, Parth Desai2, Irena Manukyan 4, Christopher W. Schultz2,

Vinodh Rajapakse2, Moises J. Velez5, Deborah Mulford6, Nitin Roper2, Samantha Nichols2, Rasa Vilimas2,

Linda Sciuto2, Yuanbin Chen7, Udayan Guha 8, Arun Rajan 8, Devon Atkinson 9, Rajaa El Meskini 9,

Zoe Weaver Ohler 9 & Anish Thomas 2✉

Molecular subtypes of small cell lung cancer (SCLC) defined by the expression of key

transcription regulators have recently been proposed in cell lines and limited number of

primary tumors. The clinical and biological implications of neuroendocrine (NE) subtypes in

metastatic SCLC, and the extent to which they vary within and between patient tumors and in

patient-derived models is not known. We integrate histology, transcriptome, exome, and

treatment outcomes of SCLC from a range of metastatic sites, revealing complex intra- and

intertumoral heterogeneity of NE differentiation. Transcriptomic analysis confirms previously

described subtypes based on ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 expression, and

reveal a clinical subtype with hybrid NE and non-NE phenotypes, marked by chemotherapy-

resistance and exceedingly poor outcomes. NE tumors are more likely to have RB1, NOTCH,

and chromatin modifier gene mutations, upregulation of DNA damage response genes, and

are more likely to respond to replication stress targeted therapies. In contrast, patients

preferentially benefited from immunotherapy if their tumors were non-NE. Transcriptional

phenotypes strongly skew towards the NE state in patient-derived model systems, an

observation that was confirmed in paired patient-matched tumors and xenografts. We pro-

vide a framework that unifies transcriptomic and genomic dimensions of metastatic SCLC.

The marked differences in transcriptional diversity between patient tumors and model sys-

tems are likely to have implications in development of novel therapeutic agents.
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Cancers that appear morphologically similar often have
markedly different clinical features, respond variably to
therapy, and have a range of outcomes. Tumor genomic

profiling has led to the identification of previously unrecognized
cancer subtypes, reflecting the biology and developmental origins
of cancer. Treatments based on molecular subtypes have sub-
stantially transformed the care of patients with some cancers,
notably including non-small cell lung cancer (NSCLC) marked by
significant declines in mortality1. However, in other cancers such
as small cell lung cancer (SCLC), the identification of molecular
subtypes has remained an elusive goal. SCLC is an exceptionally
lethal malignancy that accounts for 13% of all lung cancer with
>30,000 new cases/year in the United States alone1,2. In the
absence of clinically relevant molecular subgroups, SCLC lacks
effective targeted therapies and is treated as a homogeneous
disease with a one-size-fits-all approach.

The limited understanding of molecular subtypes in clinical
SCLC samples stands in contrast to the considerable intertumoral
morphologic and immunohistochemical heterogeneity that has
been recognized in SCLC models for decades3. A coherent
molecular explanation for this heterogeneity was recently pro-
posed, classifying SCLC into high and low neuroendocrine sub-
types based on relative expression of lineage-determining
transcription factors4. While the consensus nomenclature pro-
vides an important starting point for classifying SCLC, several
critical questions remain. A major unanswered question is whe-
ther the proposed subtypes – defined using human and murine
SCLC cell lines and limited number of primary tumor samples –
can robustly classify metastatic tumors, representing the majority
of SCLC cases. This is important because most SCLCs have
metastasized outside the chest at diagnosis5, and only about 5% of
cases are diagnosed at earlier stages and undergo resection6.
Other open questions include the relationship between molecular
subtypes and clinical features, the extent of inter- and intratu-
moral heterogeneity, plasticity between subtypes, and whether
subtypes engender specific therapeutic vulnerabilities. Moreover,
we have a limited understanding of the degree to which patient-
derived models accurately recapitulate the distribution of sub-
types seen in patients. A major barrier to clinical validation of the
proposed subtypes is the limited availability of high-quality
tumors for comprehensive molecular analyses. SCLC is often
diagnosed using fine needle aspirates, and biopsies at relapse are
not standard. Research biopsies are difficult to obtain due to rapid
cancer progression and patient comorbidities. Underscoring this
challenge, despite being a recalcitrant cancer with exceedingly
poor outcomes, SCLC is not represented in large-scale sequencing
efforts such as The Cancer Genome Atlas (TCGA).

Here, we evaluated SCLC biopsies from a range of metastatic
sites and sought to determine the impact of molecular char-
acteristics on SCLC phenotypes, providing a foundational
resource of 100 small cell tumors, integrating histology, tran-
scriptome, exome, treatment responses, and outcomes. Our
analyses provide a coherent portrait of the molecular subclasses of
metastatic SCLC, revealing intra- and intertumoral heterogeneity,
and identify a subtype characterized by chemotherapy-resistance,
with clinical implications. We also determine potential ther-
apeutic vulnerabilities exposed by NE differentiation that could be
advanced for clinical evaluation to optimize patient outcomes,
and to rationalize prospective subtype-specific clinical trials.

Results
Patients. We evaluated 100 small cell neuroendocrine cancers
(SCNC) acquired by biopsies from 72 patients, including 62
patients with SCLC and 10 patients with extrapulmonary small
cell cancer (EPSCC), by whole exome sequencing (WES) with

matched normal DNA, RNA sequencing (RNA-seq) and immu-
nohistochemistry (IHC) (Supplementary Table 1, Fig. 1a and
Supplementary Fig. 1). EPSCCs – aggressive neuroendocrine
tumors that arise de novo or due to lineage plasticity under
selective pressure of targeted therapies7 – were included given
convergent transcriptional and epigenetic programs8,9, and
similarities to SCLC histology and clinical course10. The tumor
samples – 88 SCLCs and 12 EPSCCs – underwent central his-
topathologic review confirming small cell carcinoma and
expression of neuroendocrine markers (Supplementary Table 2).

The median patient age at diagnosis was 62 years (range:
29–86). Fifty-four (75%) patients were diagnosed with extensive-
stage disease. All patients received first line platinum-based
chemotherapy, and in most cases (44/72, 61.1%) the tumor was
platinum-resistant, i.e., recurred within 90 days of first line
chemotherapy. Most patients had enrolled on clinical trials of
immunotherapy and DNA damage response-targeted agents (64/
72, 88.9%)11–14 at relapse. The median time from diagnosis to
tumor sampling was 8 months (range: 0–47) and a median of two
systemic therapies (range: 1–6) were administered previously.
Most tumors were obtained at relapse (82/100), 15 tumors at
diagnosis, and two during autopsy, and included 91 metastases
and nine primary tumors. A single tumor was available for 48
(66.7%) patients and sequential tumors for 11 (15.3%) patients,
with a median of 41 days (range: 3–645) between biopsies. Eight
(11.1%) patients had multiple tumors sampled at the same time-
point. Tumor sites represented included liver (29%), lymph nodes
(24%), and lung (16%). Detailed patient clinical characteristics are
available in Supplementary Table 3.

Heterogeneity of neuroendocrine differentiation between
SCNCs. While SCLC is defined by neuroendocrine differentia-
tion, a subset of SCLCs are characterized by reduced or lack of
expression of neuroendocrine markers3. Using previously pub-
lished gene signatures of neuroendocrine activity (Supplementary
Table 4)15–17, SCNCs were distributed across a continuum of
neuroendocrine gene expression, with two main categories; a
larger group defined by high expression of neuroendocrine genes
(NE) and a smaller group with low expression of NE genes (non-
NE) (Fig. 1b). Notably, despite little overlap among gene sets
(Supplementary Fig. 2), expression of the different signatures
strongly correlated with each other (Fig. 1c). We used the 50-gene
signature and applied single sample gene set enrichment analysis
(ssGSEA) to annotate each tumor as NE or non-NE. The score
ranges from −1 to 1, with positive and negative scores respec-
tively indicating NE and non-NE differentiation – a lower
negative score providing more confidence that neuroendocrine
differentiation is lacking15. Using this approach, most of the
tumors were classified as NE (65/100, 65%), including 67% (59/
88) of the SCLC and 50% (6/12) of EPSCC. At a global level, the
projection of RNA-seq data onto an unsupervised principal
component analysis (PCA)8 revealed distinct clustering between
NE and non-NE tumors (Fig. 1d). NE tumors strongly converged
toward neuroendocrine prostate cancer, whereas non-NE tumors
bordered lung adenocarcinoma on the trans-differentiation tra-
jectory from adenocarcinoma to small cell cancer. SCLC and
EPSCC clustered together underscoring the similarities between
the tumor types (Supplementary Fig. 3).

NE and non-NE tumors exhibited morphological features
reminiscent of SCLC cell lines with classical and variant features,
respectively18. NE tumors consisted mostly of small cells with
high nuclear-cytoplasmic ratios, finely granular chromatin
distributed throughout the nucleus, and inconspicuous nucleoli.
Non-NE tumors had relatively larger cells with moderate
amounts of eosinophilic cytoplasm, one or more prominent
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Fig. 1 Neuroendocrine differentiation defines distinct SCNC subtypes. a Pie charts summarizing patient and biopsy characteristics. b Heatmap of the 10-
gene16 (top panel), 50-gene15 (middle panel), and 70-gene (lower panel)17 neuroendocrine signatures. The 50-gene signature was derived from
differentially expressed genes between matched normal adrenal cortex and medulla, 25 genes each correlating positively and negatively with
neuroendocrine differentiation. The 70-gene and 10-gene signatures were derived from resistant prostate cancers with small cell or neuroendocrine
features. Neuroendocrine scores and subtypes (NE or non-NE) derived from the 50-gene signature, and histology are indicated above the heatmap.
c Pearson correlation between the three neuroendocrine signatures. R-squared values and the P-values are indicated (P < 2.2e-16). d Projection of 100
SCNC tumors onto the PCA developed by Balanis et al.8, to evaluate the degree of neuroendocrine differentiation (trajectory indicated by arrows).
e Representative photomicrograph images of H&E-stained small cell lung cancer of NE and non-NE subtypes. Black bars represent 50 μm (observations
were repeated independently two times). f Representative images of IHC staining for INSM1 (observations were repeated independently two times).
g Spearman correlation between INSM1 mRNA level and INSM1 H-score (n= 20 tumors). h Spearman correlation between 50-gene neuroendocrine
signature score and INSM1 H-score (n= 20 tumors). All tests are two-tailed. Abbreviations: NE Neuroendocrine differentiation; SCLC Small cell lung
cancer; EPSCC Extrapulmonary small cell cancer; TMM Trimmed Mean of M-values; FPKM Fragments Per Kilobase of Exon Per Million Fragments Mapped;
H&E Hematoxylin and Eosin; NEPC neuroendocrine prostate cancer; CRPC castration-resistant prostate cancer; PRAD prostate adenocarcinoma; LUAD
lung adenocarcinoma; PCA principal component analysis; NA not assessed.
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nucleoli, and an open chromatin configuration with peri-
nucleolar clearing (Fig. 1e). Nuclear expression of INSM1, a
super-enhancer-associated transcription factor that regulates
global neuroendocrine gene expression19, was positively corre-
lated with INSM1 gene expression and the neuroendocrine score
(Fig. 1f–h). Synaptophysin and chromogranin, membrane
glycoprotein markers of neuroendocrine differentiation20, were
also more frequently expressed in NE tumors (Supplementary
Fig. 4). Together these findings reveal the robustness of disparate
neuroendocrine signatures to classify SCNCs to distinct NE and
non-NE phenotypes, with substantial heterogeneity of neuroen-
docrine features between tumors.

Intratumoral heterogeneity of SCNC neuroendocrine differ-
entiation. Although SCLC models show evidence of tran-
scriptionally heterogeneous NE and non-NE cell
populations21–24, the extent of intratumoral heterogeneity in
metastatic SCLC patient tumors is poorly understood, hindered
by the lack of biopsy specimens. We sought to quantify the
abundance of neuroendocrine cells in individual tumors. Overall,
the relative proportion of neuroendocrine cells predicted by
CIBERSORT 25 was concordant with the grouping determined by
the 50-gene signature15 (Fig. 2a). Yet, there was substantial var-
iation in the predicted proportion of NE and non-NE cells within
each tumor ranging from 45–100% and 48–100%, respectively, in
NE and non-NE tumors. Heterogeneity was evident morpholo-
gically in some cases with variant-like tumor cells in a back-
ground of cells with classical features (Fig. 2b). Similar results
were obtained when SCLC subtype-specific gene signatures26,27

were applied, with varying subtype proportions noted within each
tumor (Supplementary Fig. 5).

The scarcity of SCLC tissue specimens has led to cell line and
mouse models from biopsies and circulating tumor cells (CTC)
being used to interrogate SCLC biology21,22,28,29. While biopsy
and CTC-derived xenograft (PDX and CDX) models are reported
to capture the mutational landscape and functional features of the
patient tumors, whether the models recapitulate the intratumoral
heterogeneity of patient tumors is not known. We sought to put
in context the magnitude of heterogeneity in our cohort and to
compare intratumor heterogeneity across patient tumors and
model systems. Metastatic and relapsed tumors from our cohort
had relatively lower proportion of NE cells compared with early-
stage, treatment-naïve SCLCs30 (median proportion of NE cells:
58.0% and 64.8%, respectively; Fig. 2c, Supplementary Fig. S6a),
indicative of decreased neuroendocrine differentiation with
tumor progression31 and chemotherapy32. In contrast, PDXs,
CDXs22,28, and cell lines33,34 harbored markedly higher propor-
tion of NE cells than patient tumors (median proportion of NE
component in CDX, PDX/CDX, cell lines: 94.5% vs. 93.0% vs.
89.0%; Fig. 2c, Supplementary Fig. 6a). Accordingly, neuroendo-
crine scores of patient tumors were significantly lower than those
of model systems (Supplementary Fig. 6b), which were enriched
with NE tumors (Supplementary Fig. 6c). To further investigate
the differences in heterogeneity of neuroendocrine differentiation
between PDX models and patient tumors, we generated PDX
models from patients with SCLC who underwent tumor biopsies
at relapse, and performed RNA-seq on patient-matched tumor
biopsy and xenograft tumor at the first passage (Supplementary
Table 5). Notably, PDX tumors showed significantly higher
proportion of NE cells (Fig. 2d, e) and neuroendocrine scores
(Supplementary Fig. 6d), compared with the corresponding
patient tumors. Of note, tumor purity was positively correlated
with the neuroendocrine score, suggesting that the paucity of
tumor microenvironment (TME) may partly account for the

higher neuroendocrine score observed in PDX tumors compared
with patient tumors (Supplementary Fig. 7a, b).

Sections of the same tumor and longitudinal tumors obtained
at multiple timepoints during the treatment course had similar
neuroendocrine scores and estimated proportion of NE/non-NE
cells (Supplementary Fig. 7c–e), suggesting overall stability of the
intratumoral phenotype. Variations were mostly noticeable in
tumors from different biopsy sites, indicative of inter-tumor
heterogeneity. It is to be noted that sequential biopsy samples in
this cohort were for the most part obtained at close intervals, and
only 4/11 cases were obtained more than 2 months apart.
Together these findings reveal substantial heterogeneity of
neuroendocrine features within individual tumors and marked
differences in transcriptional diversity between patient tumors
and model systems.

Neuroendocrine heterogeneity and expression of transcrip-
tional regulators. The recently proposed consensus nomen-
clature classifies SCLC based on expression of lineage-defining
transcription factors ASCL1, NEUROD1, POU2F3, and YAP1
(SCLC-A, -N, -P, and -Y respectively)4. We found higher
expression of ASCL1 and NEUROD1 in tumors classified as NE,
consistent with the important role of these transcription factors in
regulating neuronal and neuroendocrine differentiation35

(Fig. 2f). Expression of YAP1, a transcription factor regulated by
the Hippo signaling pathway was higher in tumors with non-NE
differentiation36, similar to other components of the Hippo
pathway (Supplementary Fig. 8a). POU2F3, a master regulator of
tuft cell identity37 was upregulated in two non-NE tumors from a
single patient and expressed multiple tuft cell lineage markers
including AVIL and IGF1R (Supplementary Fig. 8a).

An unsupervised hierarchal clustering based on expression of the
four subtype-defining transcription factors (Fig. 2g, Supplementary
Fig. 8b) identified three major clusters corresponding to SCNC-A
(cluster 1), SCNC-N (cluster 2) and SCNC-Y/-P (cluster 3). The
tumor categorization by transcription factor expression closely
aligned with the neuroendocrine signature-based classification
(88.9% agreement with Cohen’s kappa of 0.73). In addition, 19/24
(79%) biopsies obtained from the same patient were assigned to the
same cluster (Supplementary Fig. 8b, c). The few discrepant cases
either had comparable expression of all four genes, or co-expression
of ASCL1 and YAP1, as previously described38. Given that the 50-
gene signature may be more robust to noise, when clustering was
discordant with the NE subtype, tumors were re-classified using
expression of the transcription factor characterizing the subtype
with the greatest relative overall expression. Thus, most tumors were
classified as SCNC-A (n= 30, 41.7%), followed by SCNC-Y (n= 21,
29.2%), SCNC-N (n= 20, 27.8%) and SCNC-P (n= 1, 1.4%).
ASCL1 was frequently co-expressed with NEUROD1, while the
expression of POU2F3 was mutually exclusive of the other
transcription factors, as previously described4,22,38. A supervised
PCA of the expression of the four genes revealed three clusters
associated with the distinct molecular subtypes, further supporting
subtyping of SCNCs into these molecular categories (Fig. 2h,
Supplementary Fig. 8d). Three tumors classified as SCNC-N and Y
demonstrated high expression of ATOH1 and its downstream target
POU4F3 (Supplementary Fig. 9a). Genes differentially expressed in
ATOH1-high tumors were enriched for pathways related to hair-cell
and mechanoreceptor differentiation22,39 (Supplementary Fig. 9b, c).

To further characterize the distinct transcriptional features of
the subtypes, we evaluated the top 2000 differentially expressed
genes across SCNC-A, -N, and -Y tumors. A supervised PCA
revealed three distinct clusters associated with each molecular
subtype (Supplementary Fig. 10a). We created three subtype-
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specific gene signatures from the top 500 contributors to the first
and second principal components (Supplementary Data 1).
Interestingly, NEUROD1 and ASCL1 were among the top
contributing genes to PC2. YAP1 was not predicted to contribute
as strongly to PC1. However, another core component of the
Hippo signaling pathway, LATS2 kinase, which directly phos-
phorylates YAP1, and TGFBR2, whose downstream signaling was
shown to interact with the Hippo signaling pathway40,41, were
among the top 10 negative contributors to PC1. The unsupervised
analysis of the subtype-specific gene lists revealed three main
clusters, consistent with the expression of the three transcription

factors (Supplementary Fig. 10b). We also observed overlap with
previously published gene sets27,31,35,42, further supporting the
subtype-defining transcriptional signatures. Collectively, these
results demonstrate robust stratification of metastatic SCNCs by
the expression of the lineage-defining transcription factors.

Transcriptional programs associated with neuroendocrine
differentiation. Transcription factors function as molecular
switches to regulate the expression of cell-type or lineage-specific
target genes. We investigated whether the expression of the
subtype-defining transcription factors correlated with specific
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transcription profiles, contributing to inter- and intratumor het-
erogeneity. MYC paralogs are frequently activated in SCLC, with
individual paralogs overexpressed in a mutually exclusive
manner30. As a target of ASCL1, MYCL is highly expressed in
SCLC-A and necessary for its development35. MYC on the other
hand is a target of NEUROD1 and drives a non-NE
phenotype22,35,43. We found that MYCL expression was upre-
gulated in NE tumors of SCNC-A, whereas higher levels of MYC
was observed in non-NE tumors of SCNC-Y (Fig. 3a, b). There
were no differences in MYCN expression between NE and non-
NE tumors, but an elevated expression was noted specifically in
SCNC-N tumors.

Given the recently discovered role of MYC in driving the
temporal evolution of SCLC from NE to non-NE fate31,44, we
sought to estimate the intratumor heterogeneity in terms of
MYC-driven tumor progression. Using gene signatures expressed
during the course of NE to non-NE tumor transition31, tumors
were predicted to have cells at different stages of MYC-driven
progression (Fig. 3c). SCNC-A and SCNC-N subtypes harbored a
significantly higher proportion of the NE-high early time point
signature, whereas the non-NE late time point signature was
significantly enriched in the MYC-high, SCNC-Y subtype
(Fig. 3d). Analysis of serial sections revealed similar time-course
gene expression signatures among tumors, indicative of intratu-
moral homogeneity at a given time. Sequential biopsies and
biopsies from distinct sites exhibited more variations in the
proportion of cells in transition (Supplementary Fig. 10c).
Interestingly, in comparison to early-stage, treatment-naïve
SCLCs30, the metastatic and relapsed tumors in this cohort
harbored lower proportion of the mid-late time point signature
and a significantly higher proportion of the late time point
signature (Supplementary Fig. 10d).

The MYC-driven temporal shift of SCLC from NE to non-NE
state is promoted by activation of Notch signaling24,31. Several
Notch pathway genes identified as MYC targets were differen-
tially regulated, consistent with MYC expression in tumors31

(Supplementary Fig. 11a). NOTCH transcripts (NOTCH1, −2,
−3) and the NOTCH target RE1 silencing transcription factor
(REST) were downregulated in the NE subtypes (Fig. 3e, f). In
contrast, NOTCH inhibitory ligands DLL1 and DLL3 were
significantly upregulated in NE tumors of the SCNC-A subtype,
consistent with them being targets of ASCL124,45. Consistent with
Notch signaling promoting epithelial-mesenchymal transition
(EMT)46, non-NE tumors demonstrated higher expression of
mesenchymal marker vimentin (VIM) and transforming growth
factor beta (TGF-β), an inducer of EMT and negative regulator of
ASCL147,48. By contrast, the epithelial markers E-cadherin

(CDH2) and EpCAM were upregulated in NE tumors (Supple-
mentary Fig. 11b), and a higher EMT signature score49 was
associated with lower neuroendocrine scores (Fig. 3g). Of note,
we observed enrichment of two cancer-associated fibroblast
(CAF) subpopulation-specific signatures50 (inflammatory, iCAFs
and myofibroblastic, myCAFs) in non-NE tumors, consistent
with the role of CAFs in promoting EMT in cancer cells51

(Supplementary Fig. 11c).
To further confirm the association between SCLC molecular

subtypes and each gene significantly differentially expressed
between NE and non-NE tumors, we performed a PCA (Fig. 3h).
In agreement with our previous results, the PCA showed
convergent expression of ASCL1 with MYCL, DLL1, -3, CDH2
and EPCAM, NEUROD1 with MYCN, and YAP1/POU2F3 with
MYC, NOTCH1, -2, -3, REST, VIM, and TGFB1. Together, these
analyses demonstrate heterogeneity within individual tumors,
with each tumor harboring cells of more than one SCLC subtype
and various developmental stages, while being driven by a
dominant transcriptional program.

Biological features associated with neuroendocrine differ-
entiation. Next, we sought to understand the key biological fea-
tures of the SCLC subtypes that may in turn reveal subtype-specific
vulnerabilities. DNA replication stress is recognized as a SCLC
hallmark and nearly all the active chemotherapeutics in SCLC are
DNA damaging agents52. NE relative to non-NE tumors exhibited
marked upregulation of genes essential for cancer cells to cope with
the increased rates of replication (TOP2A, MCM3), and prevent
replication stress-induced DNA damage, including those related to
the DNA damage response (CHEK1, -2, TP53BP1, TOPBP1), cell
cycle progression (CDC25A, -B, -C, CDK1, -2, AURKA, -B, CDK1,
-2, PLK1, CCNB1, -2, CCNA2), and DNA repair (PARP1, -2,
BRCA1, RAD51, PRKDC) (Fig. 4a, S11d). Accordingly, signatures
of replication stress response53 and cell cycle54, correlated posi-
tively with neuroendocrine score (Fig. 4b, Supplementary Fig. 12a).
EZH2 which encodes a histone methyltransferase that promotes
chromatin compaction and transcriptional silencing was highly
expressed in NE tumors. Previous studies have noted the role of
EZH2 in acquired resistance to chemotherapy via SLFN11
silencing55,56. We found no difference in SLFN11 expression
between NE and non-NE tumors (Supplementary Fig. 11d).

Immune checkpoint inhibitors (ICI) are now part of
standard care of patients with SCLC, with benefit observed in a
small subset57–59. Evaluation of the immune contexture identified
greater expression of several immune-related genes in non-NE
tumors, including genes associated with antigen presentation
(B2M, HLA genes), IFN-γ signaling (IFIT1, -2, -3, IFITM),

Fig. 2 Intratumoral heterogeneity of neuroendocrine differentiation in patient tumors and model systems. a CIBERSORT analysis25 of the 50-gene
signature in 100 tumors grouped by NE subtype (left stacked bar chart). Relative proportion of NE and non-NE cells within each SCNC NE subtype (right
box plot) (n= 100 tumors; data are presented as mean ± SEM). Two-tailed Student-t test, ****P= 2.07e-20. b Representative photomicrograph images of
H&E-stained small cell cancer of the NE subtype with heterogenous morphological features (observations were repeated independently two times).
c Intratumoral proportion of NE cells based on CIBERSORT deconvolution in 84 recurrent and metastatic tumors from the current cohort and previously
described cohorts of 81 early-stage tumors30, 32 PDX, 120 CDX22,28 models, and 39 immortalized cell lines33,34. Kruskal–Wallis test followed by Dunn’s
multiple comparisons test with BH correction, ****P < 0.0001 (ranging from P= 2.13e-26 to 2.08e-07), *P= 0.023. d CIBERSORT analysis25 of the 50-
gene signature in six patient-matched tumor biopsies (T) and xenograft tumors (P). e Proportion of NE cells based on CIBERSORT deconvolution in 6 PDX
and corresponding donor patient tumors. Paired t-test, P= 0.048 (f) Box plots showing mRNA levels in NE and non-NE tumors for the four transcription
factors. Two-tailed Mann–Whitney U-test, ****P < 0.0001 (ranging from P= 2.53e-09 to 4.56e-05), **P= 0.00103, ns, not significant (n= 72 patients).
g Heatmap generated by unsupervised hierarchal clustering of the four transcription factors in 72 patients. Neuroendocrine scores and NE status derived
from the 50-gene signature, and the molecular subtypes derived from the clustering and the histology are indicated above the heatmap. h Supervised PCA
using the expression of the four transcription factors. Each dot represents a patient colored by the transcriptomic category. All tests are two-tailed. All box
plots indicate the inter-quartile range (IQR), the middle line corresponds to the median, and the upper and lower whiskers represent observations within
1.5*IQR (Q3+ 1.5*IQR or Q1− 1.5*IQR). Abbreviations: NE neuroendocrine differentiation; TMM Trimmed Mean of M-values; FPKM Fragments Per
Kilobase of Exon Per Million Fragments Mapped; PCA principal component analysis. PDX patient-delivered xenografts; CDX CTC-derived xenografts.
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cytotoxic T-cell activity and adaptive immune resistance (CD8A, -B,
CD4, CD274) (Fig. 4a, Supplementary Fig. S11e). Correspondingly,
gene signatures related to immune cell infiltration60,61, IFN-γ
signaling62, and antigen presentation63 were negatively correlated
with neuroendocrine score (Fig. 4c, Supplementary Fig. 12a). A
comprehensive analysis of tumor infiltrating immune cells using
ssGSEA60 and CIBERSORT25,64 revealed enrichment of several
immune cell populations in non-NE relative to NE tumors25,
including monocytes, macrophages, natural killer (NK) cells, T cells
and dendritic cells (Supplementary Fig. 12a–c), consistent with

previous studies65,66. The higher T-cell infiltration was confirmed
by CD3 IHC staining (Supplementary Fig. 12d).

To gain insights into biological pathways underlying the
neuroendocrine subtypes, we examined differentially enriched
genesets between NE and non-NE SCNC (Fig. 4d). Genes related
to cell cycle, proliferation, and DNA repair were enriched in NE
tumors, indicative of these tumors harboring a replication stress
phenotype, while immune response, metabolism and cell
adhesion genesets were enriched in non-NE tumors (Fig. 4e).
Consistently, gene ontology (GO) analysis of the subtype-specific
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transcriptional signatures revealed enrichment of DNA damage
response and cell cycle related genes in SCNC-N tumors, and
inflammation and immune response related genes in SCNC-Y
tumors (Supplementary Data 2). The most significantly enriched
metabolic pathways in non-NE tumors included lipid metabo-
lism, nicotinate, and nicotinamide metabolism (Supplementary
Data 3). The KEGG arginine and proline metabolic pathway,
whose role in MYC-driven SCLC was recently reported67, was
also significantly enriched in non-NE tumors (Supplementary
Fig. 12e). MYC was also shown to regulate purine biosynthesis
and ribosome biogenesis in SCLC68,69, however, the associated
KEGG pathways were similarly enriched in both tumor subtypes.

This analysis also revealed a subset of tumors (11/72, 15.3%)
with hybrid NE and non-NE phenotypes, remarkable for
enrichment of xenobiotic metabolism and drug transporter
genesets (Fig. 4d, f), reminiscent of the neuroendocrine variant
(NEv2, also termed SCLC-A2) subtype described in SCLC cell
lines42. NEv2-like tumors were more likely to be derived from
liver metastases (9/11, 81.8%), and NEv2-like score was
significantly higher in liver metastases compared with other
biopsy sites (Supplementary Fig. 12f). To exclude the possible
confounding influence of biopsy site, we compared tumors from
liver biopsies and other metastatic sites. Among the 90 pathways
specifically upregulated in liver-derived tumors, none were
overlapping with NEv2-like pathways (Supplementary Table 6).
Collectively, these analyses define biological processes unique to
NE and non-NE SCNC. The NEv2-like subset of tumors with
mixed NE and non-NE gene expression may represent a
transitional, high-plasticity cell state70, that may portend drug
resistance and poor prognosis.

Genomic alterations associated with neuroendocrine differ-
entiation. We next sought to evaluate the genomic alterations
across NE and non-NE tumors. WES was performed on 34
SCNCs including 27 SCLCs and 7 EPSCCs; Supplementary
Fig. 1). Tumor mutation burden (TMB) was significantly higher
in NE tumors (Fig. 5a). Consistent with the major role of tobacco
mutagenesis in SCLC most tumors harbored smoking signatures
(SB4, 5 and 29)71. There were no significant differences in
mutational signatures between NE and non-NE tumors (Fig. 5b).
Somatic alterations and/or copy number loss of TP53 and RB1
were frequently observed (TP53 27/34, 79.4%; RB1 26/34, 76.5%)
(Fig. 5c), with a higher frequency of RB1 alterations in NE
compared with non-NE tumors (20/22, 90.9% vs. 6/12, 50.3%,
P= 0.013 by Fisher’s exact test), as described previously36.
Consistent with loss of NOTCH function promoting neu-
roendocrine differentiation, NOTCH1 mutations were observed
only in NE tumors (4/22, 18.2% NE vs. 0/12, 0% non-NE).
Chromatin modifier genes were more frequently altered in NE
compared with non-NE tumors (14/22, 63.6% vs. 1/12, 8.3%, in

NE vs. non-NE, respectively, P= 0.003 by Fisher’s exact test).
Gain or amplification of MYCL was also more frequent in NE
tumors (13/22, 54.5% vs. 1/12, 8.3%, P= 0.0011 by Fisher’s exact
test). Together these analyses reveal relative genomic homo-
geneity between neuroendocrine subtypes, with notable excep-
tions of RB1, NOTCH, MYCL, and chromatin modifiers.

Treatment responses and survival of NE subtypes. Although
several studies have suggested that SCLC subtypes may have
unique therapeutic vulnerabilities, these are largely based on
preclinical models and investigated dependencies to a single gene,
pathway, or drug37,43,67,68,72–74. We leveraged the transcriptomic
data and detailed clinical annotations to study potential subtype-
specific therapeutic vulnerabilities. All patients received
platinum-based chemotherapy as their first line treatment. Most
patients in our cohort (64/72, 88.9%) were treated at relapse with
ICI in monotherapy or in combination with a poly (ADP-ribose)
polymerase (PARP) inhibitor12,14, or ataxia telangiectasia and
rad3 related (ATR) inhibitor plus topotecan11,13. Five patients
received both combinations sequentially. Only patients (60/72,
83.3%) with tissue sampling prior to study treatment were
included in the subgroup analysis.

There were no significant differences in the clinical character-
istics (Supplementary Table 1) or survival between patients with
NE and non-NE tumors (median OS, 13.7 vs. 14.3 months; HR,
1.28; 95% CI, 0.75–2.17) (Fig. 6a). Patients treated with ICI had
significantly shorter PFS than patients receiving ATR inhibitor
(median PFS, 1.7 vs. 2.8 months; HR, 1.85; 95% CI, 1.06–3.23,
log-rank p-value= 0.03) (Supplementary Fig. 13a, b). Among
ICI-treated patients, those with non-NE tumors derived greater
clinical benefit compared to patients with NE tumors (30.8% vs.
7.1%; Chi-square, P= 0.046) (Fig. 6b). In agreement with recent
observations linking Notch activation, non-NE differentiation
and tumor immunity14, tumors of patients with clinical benefit
from immunotherapy tended to have higher expression of Notch
pathway genes than those without clinical benefit (Supplementary
Fig. 13c). Patients with NE tumors had higher overall response
and clinical benefit when treated with ATR inhibitor compared to
immunotherapy (ORR: 33.3% vs. 7.1%; Chi-square, P= 0.027
and clinical benefit rate: 46.7% vs. 7.1%; Chi-square, P= 0.0024)
(Fig. 6b, Supplementary Fig. 13d). Patients with NE tumors had
significantly shorter PFS and a trend towards shorter OS when
treated with immunotherapy compared with ATR inhibition
(median PFS, 1.5 vs. 2.8 months; HR, 2.37; 95% CI, 1.19–4.70;
log-rank p-value= 0.012, Fig. 6c; median OS, 2.9 vs. 6.2 months;
HR, 1.65; 95% CI, 0.85–3.23; log-rank p-value= 0.14, Supple-
mentary Fig. 13e). Multivariate analysis revealed investigational
therapy as the only variable significantly associated with PFS
(Fig. 6d). Patients with NE tumors were more likely to progress
on immunotherapy than with ATR inhibition after adjusting for
age, sex, smoking, stage at diagnosis, platinum sensitivity and

Fig. 3 SCNC subtypes exhibit unique transcriptional programs. a, b, e, f Box plots showing mRNA levels in NE and non-NE tumors or in SCNC molecular
subtypes, for (a, b) the MYC family of genes and (e, f) the Notch signaling pathway. Two-tailed Mann–Whitney U-test, ****P < 0.0001, ***P < 0.001,
**P < 0.01, *P < 0.05, ns, not significant (n= 72 patients). c CIBERSORT analysis25 of the gene signatures derived at different time points of MYC-driven
tumor transition toward a non-NE phenotype31, in 72 patients grouped by molecular subtype. d Box plot of the relative proportion of early, mid/late and late
tumor phenotypes within each SCNC molecular subtype. Two-tailed Mann–Whitney U-test with BH adjustment, ****P < 0.0001, *P < 0.05 (n= 72
patients). g Pearson correlation between the 50-gene signature score and an epithelial-mesenchymal transition (EMT) score determined by ssGSEA49.
Pearson’s R value and P-value are indicated. h Supervised PCA of gene expression data for 12 selected genes associating with SCNC transcriptome subtype,
MYC, and Notch signaling. Each dot represents a patient colored by the transcriptomic category. Gray arrows correspond to PCA loadings. All tests are
two-tailed. All box plots indicate the inter-quartile range (IQR), the middle line corresponds to the median, and the upper and lower whiskers represent
observations within 1.5*IQR (Q3+ 1.5*IQR or Q1− 1.5*IQR). Abbreviations: NE neuroendocrine differentiation; TMM Trimmed Mean of M-values; FPKM
Fragments Per Kilobase of Exon Per Million Fragments Mapped; PCA principal component analysis; EMT epithelial-mesenchymal transition; ssGSEA single
sample gene set enrichment analysis.
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number of systemic therapies (HR, 2.87; 95% CI, 1.1–7.5;
P= 0.031).

Importantly, patients with NEv2-like tumors had significantly
poorer OS compared with the rest of the cohort (9.8 vs.
15.0 months; HR, 2.45; 95% CI, 1.25–4.79; log-rank p-value =
0.0072) (Fig. 6e). The association remained significant after
adjusting for co-factors including age and stage at diagnosis, sex,
and platinum sensitivity (HR, 2.32; 95% CI, 1.16–4.65; P= 0.018)
(Supplementary Fig. 13f). Consistently, compared with the other
subtypes, the NEv2-like subtype was more likely to have a higher

proportion of platinum-resistant tumors (9/11, 81.8% vs. 35/61,
57.4%) and liver metastasis (11/11, 100% vs. 16/61, 26.2%), an
independent predictor of poor prognosis in SCLC (Supplemen-
tary Fig. 13g, h). Furthermore, none of the five patients with
NEv2-like subtype tumors responded to ATR inhibition (Supple-
mentary Fig. 13i), and these patients had shorter PFS (2.3 vs
3.8 months; HR, 2.69; 95% CI, 1.77–9.39; Supplementary Fig. 13j)
and significantly shorter OS (2.7 vs 9.6 months; HR, 3.62; 95% CI,
1.02–12.78; log-rank p-value = 0.033; Supplementary Fig. 13k)
than patients with other subtypes treated with ATR inhibition.
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These findings suggest that differential treatment responses in
SCNC subtypes and warrants prospective testing in well-defined
cohorts.

Discussion
SCLC is an exceptionally lethal malignancy, which to date is
treated as a homogenous disease with identical treatments for all
patients. While SCLC molecular subtypes defined by neu-
roendocrine differentiation have been described in human pri-
mary tumors and cell lines, the biological features or therapeutic
vulnerabilities of metastatic SCLC are not known. Here, we pre-
sent an integrative analysis of histology, expression profiles,
genetic alterations, and outcomes of metastatic SCLC, repre-
senting the spectrum of neuroendocrine differentiation. Our
findings from the largest such cohort reported to date: (i) confirm
transcriptional subtypes driven by neuroendocrine differentiation
in metastatic and recurrent SCLCs, (ii) reveal remarkable intra-
tumor heterogeneity of neuroendocrine differentiation in meta-
static SCLCs, notably not recapitulated in patient-derived model
systems, (iii) identify a clinical subtype with hybrid NE and non-
NE phenotypes defined by drug resistance and particularly poor
outcomes, and (iv) reveal potential subtype-specific vulnerabilities
related to high replication stress and Notch-driven immune
activation, respectively in NE and non-NE tumors. These findings
(Fig. 7) have implications for rationally targeted treatment
approaches and may ultimately help improve clinical outcomes
for patients with this historically recalcitrant cancer.

Metastatic tumors from our cohort exhibited co-expression of
NE and non-NE gene programs at varying levels in nearly all
cases, with a higher proportion of tumors exhibiting co-
expression of ASCL1 and NEUROD1 than early-stage tumors
and preclinical models4,30. Studies in preclinical models and
relapsed SCLC samples show transcriptional flexibility resulting
in higher non-NE differentiation in more advanced and
treatment-resistant tumors31,32. A higher frequency of non-NE
tumors were observed in our cohort of metastatic and relapsed
tumors than previously reported early-stage, treatment naïve
tumors4,27,38, supporting the notion that therapy selects for and
promotes dynamic evolution of SCLCs to a more non-NE
phenotype21,27,31,32. Non-NE tumors of SCNC-P subtype were
however less frequent, likely due to their exceptionally poor
prognosis27. The role of YAP1 as a subtype-defining marker
remains unclear. Although our results are in agreement with
recent work reporting YAP1 expression in a subset of SCLCs75,
other studies suggest that YAP1 does not define a distinct
subgroup27,38. Serial sampling of larger cohorts over their treat-
ment course and further dissection of intratumoral heterogeneity
using single-cell RNA-seq (scRNA-seq) will be needed to clarify
the plasticity between subtypes.

We also observed intertumoral heterogeneity at the genomic
level with inactivating NOTCH1 and RB1 mutations, and MYCL

amplifications occurring at higher frequency in the NE subtype
tumors31,36. Importantly, NE tumors were significantly more
likely to harbor mutations in chromatin modifier genes, sup-
porting the role of epigenetic dysregulation in the development of
NE features.

While PDXs are documented to largely recapitulate the poly-
genomic architecture of human tumors29,76, direct comparisons
of molecular characteristics between patient tumors and model
systems are limited. We found that patient-derived models are
notably enriched for NE programs than human SCLC, an
observation that was confirmed in an independent cohort of
patient-matched tumors and PDXs. The lack of SCLC tran-
scriptional diversity in model systems may be due to clonal
selection for a dominant transcription factor under experimental
conditions or represent tumor evolution in the absence of
TME components. The positive correlation between tumor purity
and neuroendocrine score supports this last hypothesis. These
findings have potential implications for clinical translation of
PDX therapeutic responses77.

The prognostic and predictive significance of neuroendocrine
subtype classification is not well defined. Non-NE SCLC defined
by lack of INSM1 expression was associated with increased che-
moresistance and a trend towards shorter patient survival in a
previous report36. We found no significant difference in overall
survival between the SCLC subtypes. However, exploration of the
predictive significance of neuroendocrine subtype classification
for investigational therapies revealed that NE tumors pre-
ferentially respond to replication stress targeted therapies, while
ICI-treated patients with non-NE tumors derived greater benefit
compared to those with NE tumors. The subtype-specific vul-
nerabilities hypothesized here need to be tested in prospective
clinical trials. Finally, we identified a subset of SCNCs char-
acterized by enrichment of xenobiotic and drug transporter
pathways, and exceptionally poor response to treatment and
survival. Interestingly, the NEv2-like subtype was more frequently
identified in liver biopsies. Previous studies have shown that liver
metastasis is an independent predictive factor of poor survival in
SCLC78–80, in line with the high aggressiveness of the NEv2-like
subtype. Further studies are warranted to evaluate core biological
characteristics and therapeutic targets in this chemo-resistant
subtype.

Our study has several limitations. First, due to the limited tissue
availability, the intratumoral heterogeneity, the TME composition
and the EMT were inferred computationally through ssGSEA and
CIBERSORT deconvolution of bulk RNA-seq data. Although our
results are generally in agreement with findings from scRNA-seq31,66

and SCLC cell lines33, which lack the TME, they remain to be vali-
dated by unbiased approaches. Secondly, the outcomes of the ICI-
treated cohorts may have been confounded by combination therapy
with PARP inhibitor, but multiple studies suggest no added benefit to
combining PARP inhibitors with ICI12,77. Finally, subtype-specific

Fig. 4 SCNC subtypes are characterized by distinct biological features. a Heatmap of 25 DDR and 14 immune genes in 100 tumors. Neuroendocrine
scores and NE status derived from the 50-gene signature are indicated on top. b, c Pearson correlation between the 50-gene signature score and (b) a
replication stress response score53 or (c) an antigen processing and presenting machinery (APM) signature score63. Pearson’s R values and P-values are
indicated. A box plot of the distribution of the signature scores between NE and non-NE tumors is shown on the right of each graph. Two-tailed
Mann–Whitney U-test, ****P= 3.79e-07, ***P= 0.0004 (n= 72 patients). d Heatmap clustered with Pearson’s correlation and average linkage of the top
1000 pathways differentially regulated between NE and non-NE tumors. The NEv2-related pathways are highlighted by a purple square on the heatmap (e)
Distribution of correlations between neuroendocrine scores and selected pathway gene sets from BioCarta, Hallmark, KEGG, PID and Reactome. f Box plot
of the NES for four xenobiotic metabolism and drug transporter pathways in NEv2-like and other tumors. Two-tailed Mann–Whitney U-test, ****P < 0.0001
(ranging from P= 1.72e-07 to 1.43e-06) (n= 72 patients). All tests are two-tailed. All box plots indicate the inter-quartile range (IQR), the middle line
corresponds to the median, and the upper and lower whiskers represent observations within 1.5*IQR (Q3 + 1.5*IQR or Q1− 1.5*IQR). Abbreviations: NE
Neuroendocrine differentiation; TMM Trimmed Mean of M-values; FPKM Fragments Per Kilobase of Exon Per Million Fragments Mapped; DDR DNA
damage response; ssGSEA single sample gene set enrichment analysis; NES Normalized Enrichment score.
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treatment vulnerabilities will require further validation in a
prospective study.

In conclusion, this study provides comprehensive analyses of
transcriptomic and genetic heterogeneity in metastatic SCLC,
along with detailed clinical annotation and outcomes, illustrating
the genetic and transcriptional complexity in SCLC patient

tumors, and provide a rational framework for prospectively tar-
geting the intertumoral heterogeneity.

Methods
Study design. We undertook a retrospective study of genomic and clinical char-
acteristics in transcriptomically defined NE differentiated SCNC samples from patients
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who received care at the National Cancer evaluated the contributions of transcriptomic
NE differentiation subtype-specific therapeutic vulnerabilities to combinations of (1)
ATR inhibitor berzosertib and topoisomerase inhibitor topotecan (ClinicalTrials.gov #
NCT02487095; NCI protocol #15-C-0150) (n= 27 patients); and (2) immune
checkpoint inhibitor durvalumab and PARP inhibitor olaparib (ClinicalTrials.gov #
NCT02484404; NCI protocol #15-C-0145) (n= 18 patients) or immune checkpoint
inhibitor alone (n= 25 patients). Details of the two clinical studies were previously
reported11–14. We also sequenced tumor samples collected from SCNC patients who
were enrolled in the NCI thoracic malignancies natural history protocol (Clinical-
Trials.gov # NCT02146170; NCI protocol #14-C-0105). NIH IRB, Office of Human
Subjects Research Protections at NCI approved the studies; all patients provided
written informed consent for tumor and matched normal sample sequencing.

SCLC patient derived xenograft model. Eight-week-old male and female NSG
mice (NOD.Cg-Prkdc scid Il2rg tm1Wjl/SzJ; # 005557, The Jackson Laboratory,
Bar Harbor, ME) were implanted subcutaneously with fresh patient-needle biopsy
supported with Matrigel (Corning). For each PDX, one mouse was used to start the
expansion and then two mice at each passage. Consistent 7 × 7 mm3 were
implanted from passage P1 to P3 while maintaining tumor stock at each passage.
Mice were monitored daily, with caliper measurements and body weights recorded
bi-weekly; caliper monitoring was performed three times per week if necessary, for
close monitoring. The patient derived xenograft (PDX) model was well char-
acterized for consistency and reliability in vivo and at the histopathological level for
small cell lung cancer and similarity with patient histopathology of origin.

The PDX tumor stock are viably frozen to ensure early passage of the model are
well preserved. For any study plan with the model, the SCLC-PDX is revived
through tumor passage in increasing number of recipient mice; for quality control
the histopathology of donor tumors is verified at every passage as well as the take
up rate. Before implanting any preclinical study cohort, we ensure that take up rate
is at 100% in 2 donor passages prior study cohort implant. Mouse handling and
procedures were conducted under an approved Animal Study Protocol according
to Frederick National Laboratory Animal Care and Use Committee guidelines.
Mice were on 12 h light/dark cycle. Temperature of the rooms was between
68–74F, and humidity range was 30–70%.

DNA and RNA sequencing. FFPE tumor tissue samples or frozen tumor samples
in selected samples were prepared for RNA-Seq and WES. One hundred nano-
grams of DNA was sheared to approximately 200 base pairs (bp) by sonication
(Covaris, Woburn, MA). Exome enrichment was performed using SureSelect
Clinical Research Exome Kits according to the manufacturer’s instructions (Agi-
lent, Santa Clara, CA) and RNA enrichment was performed using TruSeq RNA
Exome Library Prep according to manufacturer’s instructions (Illumina, San
Diego). Paired-end sequencing (2 × 75 bp) was performed on an Illumina Next-
Seq500 instrument. The sequences were compared to the human reference genome
hg19 using internally developed ClinOmics somatic Bioinformatic Pipeline v3.1.
Peripheral blood DNA extracted from individual patients was used for germline
exome sequencing. In brief, raw sequencing data in FASTQ format were aligned
against the reference human genome (hg19) with BWA. The Genome Analysis
Toolkit (GATK) and HaplotypeCaller (HAPLOC) were used for germline SNV and
indel calling; whereas Strelka was used for somatic single nucleotide variant (SNV)
and small indel calling. ANNOVAR was used to functionally annotate genetic
variants. Variants with variant allele frequency (VAF) > 0.10, tumor sequencing
depth > 50, and matched germline sequencing depth > 50 were considered.
FACETS algorithm was used to determine total and allele-specific DNA copy
number from WES. RNA was extracted from FFPE tumor cores using RNeasy
FFPE kits according to the manufacturer’s protocol (QIAGEN, Germantown, MD).
RNA-seq libraries were generated using TruSeq RNA Access Library Prep Kits
(TruSeq RNA Exome kits; Illumina) and sequenced on NextSeq500 sequencers
using 75 bp paired-end sequencing method (Illumina, San Diego, CA). For tran-
scriptomic analyses, raw RNA-Seq count data were normalized for inter-gene/
sample comparison using TMM-FPKM, followed by log2(x+ 1) transformation, as
implemented in the edgeR R/Bioconductor package81.

GSEA, ssGSEA and score-based gene signatures. The GSEA and enrichment
plots comparing between tumors with high expressions of ATOH1 and POU4F3
and those without (Supplementary Fig. 7C) were performed using Qlucore Omics

Explore. Gene pattern from the Broad Institute was used for ssGSEA projection.
ssGSEA enrichment scores were computed using the GSVA R/Bioconductor
package82 and gene sets obtained from MSigDB83. Additionally, specific gene lists
were used to derived ssGSEA scores, including previously described gene sets for
the neuroendocrine differentiation15–17, EMT49, CCS84, CAFs50, APM63, IIS60,61,
and IFN-γ and expanded immune gene62 signatures.

We previously developed the repstress gene signature that characterizes the
cellular response to replication stress at a functional network level53. Briefly, we
leveraged cellular characteristics that portend high replication stress such as (i)
MYC amplification (ii) sensitivity to CHK1/WEE1 inhibitors (iii) high expression
of phosphorylated Chk1, and (iv) high neuroendocrine differentiation in 67 SCLC
cell lines, and developed the 17 gene signature (SRSF1, SUV39H1, GINS1, PRPS1,
AURKB, TNPO2, ORC6, CCNA2, LIG3, MTF2, GADD45G, POLA1, POLD4,
POLE4, RFC5, RMI1, RRM1). The score was computed as weighted sum of
standardized (Z-score) transcript expression for the 17 genes.

Analysis of differentially regulated biological pathways between NE vs. non-
NE SCNCs. To gain insights into biological pathways underlying the NE phenotypes,
we examined differentially regulated biological pathways between NE and non-NE
SCNCs. First, Hallmark, Reactome, PID, BioCarta, and KEGG gene sets were
retrieved from MSigDB83 and pathway scores were obtained by ssGSEA for each
sample. Applying NE or on-NE differentiation status of each tumor as described
above, we identified most differentially regulated 1000 pathways between NE vs. on-
NE SCNCs. Initially each pathway scores were z score-normalized among all tumors
and stepwisely restricted adjusted P value (obtained by unpaired Student t test fol-
lowed by Benjamini–Hochberg test), until we identified the most differentially
regulated 1000 pathways between NE and non-NE SCNCs using Qlucore Omics
Explorer. We then clustered tumors based on the differentially regulated pathway
scores by Euclidean distance, complete-linkage non-hierarchical clustering method
(Fig. 4d). In addition to previously known pathways upregulated in NE (cell cycle &
proliferation, DDR & replication) or non-NE SCNCs (immune response, cell adhe-
sion, metabolism) as indicated in Fig. 4e, we identified 100 co-clustered pathways
regulating drug metabolism highly upregulated in specific tumors (Fig. 4d). The
upregulation of similar drug metabolism pathways was recently reported in a tran-
scriptional subtype named “NEv2 subtype”42. Therefore, we named these pathways as
“NEv2-like pathways”. To define tumors upregulating these pathways, the ssGSEA-
based scores of the 100 pathways were summed up in each tumor and z score-
normalized across all the SCNC tumors. Tumors with z-scored NEv2-like pathway
summed score >1 were defined as NEv2-like subtype, representing a total of 11
tumors. Lastly, regarding the enrichment of samples obtained from liver lesions in
NEv2-like subtype, we evaluated differentially upregulated pathways in samples from
liver lesions compared with others by false discovery rate of <1% of unpaired Student
t test followed by Benjamini–Hochberg test (Supplementary Table 9).

CIBERSORT deconvolution. CIBERSORT is a tool developed by Newman et al.25

to quantify specific cell types in bulk cell population, using gene expression data.
The analyses were run on the CIBERSORT website at http://cibersort.stanford.edu.
We applied NE signature15, LM6, a leukocyte RNA-Seq signature matrix com-
prised of six peripheral blood subsets64, and a gene expression signature matrix
consisting in four cellular stages of MYC-driven tumor progression31. For each run,
100 permutations were performed and quantile normalization was disabled.

IHC staining and INSM1 histochemical score determination. IHC stains for
synaptophysin (1:20; 790–4407, Roche), chromogranin (1:50; 760–2519, Roche)
and INSM1 (1:1,000; sc-271408, Santa Cruz), were performed at National Institutes
of Health (NIH), laboratory of Pathology, according to manufacturer’s instruction.
IHC-stained slides were scanned using the 40X magnification of NanoZoomer
S360 Hamamatsu slide scanner. INSM1 H-score was calculated based on the
equation: 1 x (% of weakly stained nuclei) + 2 x (% of moderately stained nuclei) +
3 x (% of strongly stained nuclei).

Hematoxylin and eosin (H&E) staining and neuroendocrine features. H&E
staining was done using standard protocols85. Neuroendocrine features morpho-
logically were assessed by a pathologist who was blinded to the results of the
neuroendocrine score and were estimated based on nuclear features as well
described albeit in cell lines data sets with “classical” morphology as cells with

Fig. 5 Genomic alteration profiles of SCNC subtypes. Genomic characteristics of NE (n= 22) and non-NE (n= 12) tumors. a Bar graph of TMB in 34
patients. Two-tailed Mann–Whitney U-test, **P= 0.0021. b Mutational signature proportions71. c Neuroendocrine status (NE vs. non-NE), 50-gene
signature score, histology (SCLC vs. EPSCC) and smoking status (former/current vs. never). Top heatmap indicates mutations in genes of TP53, RB1,
NOTCH paralogues, and chromatin modifiers90. Bar charts on the right of the heatmap indicates frequency of mutations in NE vs. non-NE tumors. Bottom
heatmap shows copy number alteration of TP53, RB1, and MYC paralogue genes. Box plots indicate the inter-quartile range (IQR), the middle line
corresponds to the median, and the upper and lower whiskers represent observations within 1.5*IQR (Q3+ 1.5*IQR or Q1− 1.5*IQR). Abbreviations: NE
neuroendocrine differentiation; TMB total mutational burden; COSMIC The Catalog of Somatic Mutations in Cancer; SCLC small cell lung cancer; EPSCC
extrapulmonary small cell cancer.
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dense chromatin and absence of a conspicuous nucleoli and “variant” morphology
as cells with relatively larger size, clear chromatin, and a conspicuous nucleoli86.

CD3+staining and tumor infiltrating lymphocyte (TIL) calculation. IHC
staining for CD3 (pre-diluted; 790–4341, Roche) was done on multiple tissue
sections of SCNC cases. IHC-stained slides were scanned using the 40X

magnification of NanoZoomer S360 Hamamatsu slide scanner. TIL were calculated
in the intratumoral areas based on previously mentioned consensus guidelines87

and were objectively assessed using QuPath – an open-source platform for digital
pathology imaging analysis88 and using previously validated settings for
melanoma89. Quality control of cell segmentation was performed by a pathologist.
CD3+ TIL were counted per tumor area millimeter-square and converted into
logarithm (base 10) for further correlation studies.
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Clinical benefit rate at 3 months. The clinical benefit rate was defined as the
percentage of patients who achieved a best overall response of complete response or
partial response or stable disease (including unconfirmed partial response) for at
least 3 months after start of treatment, according to Response Evaluation Criteria
in Solid Tumors (RECIST) v1.1.

Statistical methods. R studio version 1.3.1093 (R Foundation for Statistical
Computing), GraphPad Prism version 8.1.2 (GraphPad Software), STATA software
version 16.0 (Stata-Corp), and Qlucore Omics Explorer version 3.6(2.2) (Qlucore
AB) were used to generate figures and statistical analyses. All tests were two-tailed
and p-values less than 0.05 were considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data generated in this study (including phenotype, RNA-Seq and WES from human
tumors) have been deposited in the database of Genotype and Phenotype (dbGaP) under
accession code phs002541.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs002541.v1.p1&phv=492899&phd=&pha=&pht=11494&phvf=&phdf=&-
phaf=&phtf=&dssp=1&consent=&temp=1]. The individual-level data are available for
download by authorized access only [https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&
page=login]. The dbGaP request procedure to access individual-level data is described here
[https://dbgap.ncbi.nlm.nih.gov/aa/dbgap_request_process.pdf]. Please refer to the release
notes for more details [https://ftp.ncbi.nlm.nih.gov/dbgap/studies/phs002541/phs002541.v1.
p1/release_notes/Release_Notes.phs002541.SCLC_ChemoRefractory.v1.p1.MULTI.pdf].
There are no limitations to who may access this data, and access will be granted within a

month of request. Source data are provided with this paper. Additional publicly available
datasets were used in this study, including early-stage SCLC tumors under accession code
EGAS00001000925, PDX (Supplementary Data 4), CDX [https://zenodo.org/record/
3574846#.YQLVuI77RPY] and cell line retrieved from CellMiner CDB: Small Cell Lung
Cancer [https://discover.nci.nih.gov/SclcCellMinerCDB/]. Source data are provided with
this paper.
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