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Abstract

Background: Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type Il
secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals.
In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA
pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in
media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified.

Methodology/Principal Findings: In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA)
and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the
T3SS pilus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS
alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a o>*-enhancer binding protein) of
Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity
assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM
supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL
were observed in bacterial cells grown in MM supplemented with OCA/TCA.

Conclusion/Significance: The induction of T3SS expression by OCA and TCA is moderated through the rsmB-RsmA
pathway. This is the first report of plant phenolic compounds that induce the expression T3SS genes of plant pathogenic
bacteria.
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Introduction

Dickeya dadantii (formerly Erwinia chrysanthemi) is an opportunistic
plant pathogen that causes soft-rot, wilt, and blight diseases on a
wide range of plant species. This bacterial pathogen produces a
large battery of pectinases for disassembly of the plant cell wall [1].
In phytobacteria, a type III secretion system (T3SS) or
hypersensitive response and pathogenicity (Hrp) system, which is
responsible for the secretion and translocation of effector proteins
into the host cells, is considered a major virulence factor in
pathogenesis [2,3]. Genome sequencing has revealed that D.
dadantiz 3937 (Ech3937) has a complete set of genes for the T3SS
apparatus. The T3SS in D. dadantiz has also been reported to play a
role in pathogenicity [4-8].

The expression of T3SS genes in phytobacteria is repressed
when bacterial cells are cultured in complex media, but is induced
in the plant apoplast or in close contact with host cells [9-14].
Expression of T3SS genes is also induced in minimal medium
(MM), which is considered to mimic plant apoplastic conditions
[14]. The T3SS of Ech3937 is regulated by two major regulatory
pathways, the HrpX/HrpY-HrpS-HrpL. and the GacS/GacA-
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rsmB-RsmA pathways [15,16]. In the HrpX/HrpY-HrpS-HrpL
pathway, the HrpX/HrpY, which is a two-component system
(TCS), activates the gene encoding HrpS, which is a 6°*-enhancer
binding protein (Fig. 1). The HrpS protein activates the expression
of an alternative sigma factor, ArpL. HrpL is required for the
expression of genes encoding the T3SS effectors and structural
components such as the units of the needle, the needle extension,
and the translocon [16]. In the GacS/GacA-rsmB-RsmA pathway,
the RsmA protein promotes the decay of hpL mRNA [15,17].
rsmB is an untranslated regulatory RNA that binds RsmA and
neutralizes its negative regulatory effect of RsmA by forming an
inactive ribonucleoprotein complex [15,17-20]. Although the
signal molecule for GacS autophosphorylation is still unknown, the
TCS GacS/GacA is reported to up-regulate rsmB [15,17].
Although several environmental factors (e.g., low pH, low
temperature, and the absence of complex nitrogen sources in
media) were found to influence the expression of T3SS genes in
phytobacteria, no specific plant inducer for /7p gene expression has
been identified [12,13,21-24]. Several phenolic acids were
reported to play dominant roles in defense signaling in plants
[25,26]. Recently, efflux pump genes of Ech3937 were found to be
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Figure 1. Model of plant phenolic compounds o-coumaric acid (OCA) and t-cinnamic acid (TCA) that induce expression of the type
11l secretion system (T3SS) genes of Dickeya dadantii 3937 (Ech3937). The T3SS and Gac-Rsm regulatory cascades of Ech3937 were adopted as

described [15,16,19,20].
doi:10.1371/journal.pone.0002973.g001

induced by phenolic acids [26], which have been suggested to be
essential for the pathogenesis of the bacterium by enhancing the
resistance to antimicrobial plant chemicals [27]. Since one major
role of T3SS of phytopathogens is to neutralize the host defense
system during bacterial invasion, it is possible that Ech3937
induces expression of T3SS genes by recognizing certain phenolic
compounds in plants. To identify plant compounds that induce the
expression of T'3SS genes, we focused on elucidating the effect of o-
coumaric acid (OCA), t-cinnamic acid (T'CA), and salicylic acid
(SA) on frp expression and on the T3SS regulatory pathway.

In this study, two novel plant phenolic compounds, OCA and
TCA, that induce the expression T3SS genes of Ech3937, is
described. In addition, the regulatory effect for T3SS gene
induction by these two phenolic compounds is elucidated.

Results

T3SS gene expression is induced by plant phenolic

compounds

Our previous efforts to screen the plant up-regulated genes in
Ech3937 demonstrated that dspF and fpA were expressed in planta
[28]. Phenolic compounds constitute an important class of organic
substances produced by plants. The phenolic compound SA is a
signaling molecule that plays a role in host defenses. OCA and TCA
are the biosynthetic precursors of SA and are also reported to induce
the expression of defense-related genes in plants [29,30]. We
examined OCA, TCA, and SA to elucidate their effect on the
expression of T3SS genes. The expression of the T3SS gene ipNwas
examined in MM and MM supplemented with OCA, TCA, and SA,
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at concentrations of 0.05, 0.1, and 0.2 mM, respectively. Compared
with minimal /7p-inducing medium (MM) alone, the average GI'P
fluorescence intensity of bacterial cells of Ech3937 (phrpN) (Table 1)
was increased approximately 4-fold when 0.05 mM of OCA and
TCA were added to the medium (Fig. 2). The addition of SA did not
result in increased GFP fluorescence intensity of Ech3937 (Fig. 2).
No obvious inhibition of bacterial growth was observed when OCA,
TCA, and SA were added into the MM at the concentration below
0.2 mM (Fig. 2; Supplementary Fig. S1).

Since OCA and TCA induced the expression of ipN, we further
investigated the effect of these two phenolic compounds on the
expression of additional T3SS genes /pd and dspE by qRT-PCR.
Compared with MM alone, a significantly higher amount of dsp £ and
hpA mRNA was observed in Ech3937 supplemented with OCA
(Fig. 3). As in previous work [31], the promoter activities of Ech3937
were determined by collecting the average GI'P fluorescence intensity
of total bacterial cells (Total) from a flow cytometry although three
parameters were measured, including average GFP fluorescence
intensity of total bacterial cells (Total), average GFP fluorescence
intensity of GFP expressing bacterial cells (GFP"), and the percentage
of GFP expressing bacterial cells of the total bacterial cells (GFP*%).
Compared with MM alone, the average GI'P fluorescence intensity of
total bacterial cells (Total) of Ech3937 (phrpA) was doubled when
0.1 mM of OCA and TCA were added to the medium (Table 2). The
mip, whose protein product contains an ATPase conserved domain,
was used as a reference gene in this study as in previous work [31].
Similar mzp expression was observed in Ech3937 (pmrp) when the
bacterial cells were grown in MM and MM supplemented with
0.1 mM OCA and TCA, respectively (Table 2).
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Table 1. Strains, plasmids, and DNA primers used in this study.

Strains, plasmids and primers Characters or sequences (5’ to 3')? Reference or source

Strains

E. coli
E. coli DH50a F~ ¢80lacZAM15 AlacZYA-argF)U169 deoR recA1 endA1 hsdR17 phoA supE44 thi-1 gyrA96 relA1 i~ Invitrogen, CA
E. coli TOP10 F~ mcrA Amrr-hsdRMS-mcrBC) ¢p80lacZAM15 AlacX74 deoR recA1 araD139 Al(ara-leu)7679 galU Invitrogen, CA

galK rpsL endA1 nupG

D. dadantii
Ech3937 Wild type, Saintpaulia (African violet) isolate Hugouvieux-Cotte-Pattat, N.
Ech-Rif Ech3937 rifampicin resistant random mutant [15]
Ech137 AgacA:kan constructed from Ech-Rif; Km® [15]
Ech138 AiaaM:kan; Km® [15]
Ech148 transposon miniHimar RB1 insertion in rsmB, Km® This work
Ech149 transposon miniHimar RB1 insertion in gacS, Km® This work
Ech3937 (pAT) Ech3937 containing pPROBE-AT [33,34]
Ech3937 (phrpA) Ech3937 containing phrpA; Ap® This work
Ech3937 (phrpN) Ech3937 containing phrpN; ApR [32]
Ech3937 (phrpl) Ech3937 containing phrpL; Ap® [32]
Ech3937 (phrpS) Ech3937 containing phrpS; Ap" This work
Ech3937 (pmrp) Ech3937 containing pmrp; Ap® [31]
Ech-Rif (phrpA) Ech-Rif containing phrpA; Ap® [15]
Ech137 (phrpA) Ech137 containing phrpA; Ap? Km®? [15]
Ech138 (phrpN) Ech138 containing phrpN; Ap® KmR [32]
Ech148 (phrpN) Ech148 containing phrpA; Ap® KmR This work
Ech149 (phrpN) Ech149 containing phrpA; Ap® Km® This work

Plasmids
pPROBE-AT Promoter-probe vector, Ap® [33,34]
pCR2.1-TOPO PCR cloning vector, Ap® Km® Invitrogen, CA
phrpA pProbe-AT derivative with PCR fragment containing 412-bp hrpA promoter region, Ap? This work
phrpN pProbe-AT derivative with PCR fragment containing hrpN promoter region, Apt [32]
phrpL pProbe-AT derivative with PCR fragment containing hrpL promoter region, Ap® [32]
phrpS pProbe-AT derivative with PCR fragment containing 709-bp hrpS promoter region, Ap® This work
Pmrp pProbe-AT derivative with PCR fragment containing mrp promoter region, Ap® [31]

Primers
phrpA_F GTGCCGATAGCCAGTGAT This work
phrpA_R TGCTGCTGCGTTAGAAAG This work
phrpS_F CAGATTGTATTTGCGGATTG This work
phrpS_R CGGATTCATTGCTATTCCTTAT This work
rplU_RTF GCGGCAAAATCAAGGCTGAAGTCG [32]
rplU_RTR CGGTGGCCAGCCTGCTTACGGTAG [32]
hrpY_RTF CGGCGACGGGCGTAATGAA This work
hrpY_RTR TTTCGGCGATGGCATTGACC This work
hrpS_RTF TGGAAGGCGAAACCGGCACC This work
hrpS_RTR GCACGGCGGCGCAGTTCAC This work
hrpL_RTF GATGATGCTGCTGGATGCCGATGT [32]
hrpL_RTR TGCATCAACAGCCTGGCGGAGATA [32]
hrpA_RTF CAGCAATGGCAGGCATGCAG [32]
hrpA_RTR CTGGCCGTCGGTGATTGAGC [32]
dspE_RTF GATGGCGGAGCTGAAATCGTTC [32]
dspE_RTR CCTTGCCGGACCGCTTATCATT [32]
rsmB_RTF AGAGGGATCGCCAGCAAGGATTGT This work
rsmB_RTR CGTTTGCAGCAGTCCCGCTACC This work
gacA_RTF GCG CTG CCC AGG AAC GTT CT This work
gacA_RTR CGG CCG TGG GTG GAG TCA T This work

2Ap®, ampicillin resistance; Km®, kanamycin resistance.

doi:10.1371/journal.pone.0002973.t001
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Figure 2. The promoter activities of ArpN in Dickeya dadantii
3937 (Ech3937) grown in MM and MM supplemented with 0.05,
0.1, and 0.2 mM OCA, TCA, and SA at 12 h and 24 h post-
inoculation. GFP intensity was determined on gated populations of
bacterial cells by flow cytometry and analyzed with the Cell Quest
software (BD Biosciences, San Jose, CA). The growth of Ech3937 in MM
supplemented with different concentrations of OCA, TCA and SA was
recorded.

doi:10.1371/journal.pone.0002973.g002
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The effect of phenolic compounds at levels relevant in
plants can induce T3SS

We analyzed whether the effect of phenolic compounds is at
levels that are physiologically relevant in plants. The potato plant
1s one of the natural hosts of D. dadantui. Montesano et al. [29]
reported that the concentration of the phenolic compound TCA in
healthy potato leaves was approximately 0.5 uM, and that TCA
accumulated to 10 UM in the leaves after exposure to cell-free
culture filtrate (CF) of the phytopathogen E. carotovora. To
mvestigate whether the level of the phenolic compounds in plants
is able to induce the expression of the T3SS gene apVN, we further
examined its expression with concentrations of TCA equivalent to
that in potato leaves. Ech3937 (phrpN) was grown in MM
supplemented with 0.2, 0.5, 5 and 10 uM of TCA, respectively.
Compared with Ech3937 (phrpN) in MM alone, a 1.5- to 1.8-fold
increase of GIFP intensity was observed in the bacterial cells grown
in MM supplemented with 0.2 and 0.5 uM TCA (Table 3).
Compared with Ech3937 (phrpN) in MM, a 3- to 3.5-fold higher
GFP intensity was observed in the bacterial cells grown in MM
supplemented with 5 and 10 uM of TCA (Table 3). These
observations suggest that physiologically relevant concentrations of
phenolic acids can induce Zp\.

Effect of OCA on IAA biosynthesis pathway

Since an induction of the expression of krpA, hrpN and dspE was
observed in Ech3937, the regulatory mechanism of these phenolic
compounds on the T3SS pathway was investigated. Our previous
work demonstrated that the expression of T3SS genes dspE, hipA,
and /rp/N was reduced in an eaM mutant Ech138; aaM encodes an
enzyme in the pathway for indole-3-acetic acid (IAA) biosynthesis
[32]. To investigate whether IAA biosynthesis is involved in
induction of T3SS by the phenolic compounds, the expression of
hrpN in the wild-type Ech3937 and Ech138 was compared with the
addition of OCA. As expected, the expression of /7pN was reduced
in an aM mutant background. However, a similar induction ratio
of pN by OCA was observed in wild-type Ech3937 and Ech138
at each time point of bacterial growth (Table 4). These results
suggest that OCA does not induce T3SS expression through IAA
biosynthesis pathway.

H

Relative expression ratio (MMOCA/MM)

hpS hrpL dspE hrpA

rsmB

gacA

Figure 3. The relative mRNA level of hrpS, hrplL, dspE, hrpA, rsmB, and gacA of Dickeya dadantii 3937 (Ech3937) in MM supplemented
with 0.1 mM OCA compared to those in MM without OCA. The amount of mRNA was determined by qRT-PCR. Three replicates were used in
this experiment. The p-value was calculated using Relative Expression Software Tool as described by Pfaffl et al. [41]. There is no significant difference
between MM and MM supplemented with OCA for gene expression of hrpS and gacA with the p>0.5, but gene expression of hrpL, dspE, hrpA, and
rsmB are significantly different between MM and MM supplemented with 0.1 mM OCA with p<<0.003.

doi:10.1371/journal.pone.0002973.g003
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Table 2. The expression of hrpA, hrpN, hrpL, and hrpS of
Dickeya dadantii 3937 (Ech3937) in MM, MM supplemented
with 0.1 mM OCA (MMOCA), and MM supplemented with
0.1 mM TCA (MMTCA).

Gene Promoter® MM MM+OCA  MM+TCA
Ech3937 (phrpA) ® Total 41.0%2.5 82.2+0.6 77.7%0.3
GFP* 120.5*£2.5 170.3%4.1 167.6*=13.1
GFP*% 31.0+1.8 46.5+1.1 448+3.5
Ech3937 (phrpN) Total 43.0%4.3 94.4+3.2 102.8%1.1
GFP* 15091125 210.1£20.8 194.2*21.6
GFP*% 27.1%3.1 442+46 52.6*+6.3
Ech3937 (phrpl) Total 13.7£1.2 19.1+0.2 18.8%+1.0
GFP* 248+1.0 29.8+0.3 29.5+0.7
GFP*% 41.7*4.2 54.9+0.8 543+33
Ech3937 (phrpS) Total 62.6+1.6 56.4+0.7 53.5*1.8
GFP* 63.7*1.8 57.3+0.7 55.0%1.7
GFP*% 98.1+0.3 98.2+0.1 97.0+0.3
Ech3937 (pAT) Total 1.920.0 2.0x0.0 1.920.0
GFP* 28.1+38.3 35.1%£32.2 0
GFP*% 0 0 0

*The promoter activities were compared at 12 h of grown in the media. GFP
intensity was determined on gated populations of bacterial cells by flow
cytometry. GFP intensity was determined on gated populations (10,000-15,000
events) of bacterial cells by flow cytometry. The fluorescence intensities were
collected, including average GFP fluorescence intensity of total bacterial cells
(Total), average GFP fluorescence intensity of GFP expressing bacterial cells
(GFP*), and the percentage of GFP expressing bacterial cells of the total
bacterial cells (GFP*%).

PValues (Mean Fluorescence Intensity) are a representative of at least 3
experiments with similar results. Three replicates were used in this experiment.
The value is present as average of three replicates with standard deviation
(SD).

doi:10.1371/journal.pone.0002973.t002

Effect of OCA on HrpX/HrpY-HrpS-HrpL pathway

To investigate whether the OCA induces the T3SS through
HrpX/HrpY-HrpS-HrpLL pathway, the promoter activities and
mRNA levels of ipS and fpL of 3937 was examined in MM and
MM supplemented with 0.1 mM OCA. Similar ApS promoter
activities and /rpS mRNA levels were observed between bacterial
cells grown in MM and MM supplemented with OCA or TCA
(Table 2 and Fig. 3). Compared with MM alone, a slightly higher
promoter activity of i7pL was observed in Ech3937 (ipL) grown in
MM supplemented with OCA and TCA (Table 2). However,
Ech3937 cultures with the supplementation of 0.lmM OCA
produced about 3-fold more ApL mRNAs than those grown in
MM alone at 12 h of growth ($<<0.01) (Fig. 3). These results
suggest that OCA does not activate T3SS expression through
HrpX/Y-HrpS-HrpLL pathway and these phenolic compounds
induce /pL expression at a post-transcriptional level.

rsmB up-regulates hrpL gene expression at a post-
transcriptional level

The pPROBE-AT is a promoter-probe reporter plasmid [33,34].
Since the gfp of pPPROBE-AT contained its own ribosome binding
site, promoter activities of bacterial cells were measured when a
promoter region was inserted into this vector [31]. In E. carotovora,
RsmA-rsmB regulated hrpL expression at the post-transcriptional
level [15,17]. In this study, a 7zsmB mutant Ech148 was constructed,
and a reduced amount of Z7pL. mRINA was observed in this mutant in
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comparison with 3937 (Fig. 4). However, similar promoter activity of
hipL was observed between the wild-type bacterium and ArsmB
mutant Ech148 (Table 5). Similar promoter activity and mRNA
level of upS were observed between 3937 and Ech148 mutant. These
results suggested that the reduced amount of z7pL mRNA in Ech148
was due to the lack of 7smB RNA to quench the activity of RsmA in
Ech148. In addition, compared to Ech3937, a lower expression of
downstream T3SS genes hpA and ApN was observed in mutant
Ech148 (Table 5), which was due to a reduced amount of /pL
mRNA in this mutant (Fig. 4).

Table 3. The expression of hrpN of Dickeya dadantii 3937
(Ech3937) in MM and MM supplemented with different
amount of TCA and SA respectively.
12 h 24 h
MM? Total® 41.6*3.6 91.3%115
GFP* 196.8+6.6 19451143
GFP*% 20.0+2.3 46.1x7.3

TCA*®

0.2 uM Total 65.1+£6.9 163.1+25.5
GFP* 200.0£11.4 250.7£20.2
GFP*% 31.5%3.2 64.2+54

0.5 uM Total 735*43 158.8+21.0
GFP* 228.0+8.9 251.4+18.0
GFP*% 31.4*3.2 62.6+6.7

5 uM Total 134.7£5.7 266.1+14.5
GFP* 287.9+24.0 357.4+9.1
GFP*% 46.3+2.2 74.1%2.9

10 uM Total 147.8£18.5 2843+123
GFP* 304.1£26.7 397.7£7.7
GFP*% 48.0+3.2 71.1%34

SA®

0.2 uM Total 53.8+4.0 105.6+28.7
GFP* 199.6*3.1 2193*7.0
GFP*% 259*25 47.0+11.8

0.5 uM Total 49.6+6.0 99.6+18.8
GFP* 205.0%2.6 190.9£14.5
GFP*% 23.1%33 50.9%6.1

5uM Total 50.0+3.0 97.7+9.0
GFP* 200.2+1.6 194.0%1.0
GFP*% 238+13 49.4+45

10 uM Total 52.1*+24 104.7£3.2
GFP* 217.4%5.0 196.2+7.4
GFP*% 22.9+0.7 52.5*3.1

#Minimal medium (MM) alone and MM supplemented with different
concentrations of t-cinnamic acid (TCA) or salicylic acid (SA).

The promoter activities of hrpN were measured at 12 and 24 h of growing in
the media. The fluorescence intensities were collected, including average GFP
fluorescence intensity of total bacterial cells (Total), average GFP fluorescence
intensity of GFP expressing bacterial cells (GFP*), and the percentage of GFP
expressing bacterial cells of the total bacterial cells (GFP*%). Three replicates
were used in this experiment. The value (Mean Fluorescence Intensity) is
present as the average of three replicates with standard deviation. The GFP
intensities of Ech3937 (pAT) grown in MM were 2.2+0 and 3.4*0.1 at 12h and
24h respectively.

doi:10.1371/journal.pone.0002973.t003
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Figure 4. The relative level of mRNA of hrpL and hrpS in Dickeya
dadantii 3937 (Ech3937) and rsmB mutant Ech148 grown for 12 h
in minimal medium. The amount of mRNA was determined by qRT-
PCR. Three replicates were used in this experiment. The p-value was
calculated using Relative Expression Software Tool as described by Pfaffl
et al. [41]. There is no significant difference between Ech3937 and Ech148
for gene hrp$S with the p>0.3, but gene expression of hrpL is significantly
different between Ech3937 and Ech148 with p<<0.008.
doi:10.1371/journal.pone.0002973.9004
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Table 4. The expression of hrpA or hrpN of Dickeya dadantii 3937 (Ech3937), gacA mutant Ech137, jaaM mutant Ech138, rsmB
mutant 148 and gacS mutant Ech149 in MM and MM supplemented with 0.1 mM OCA (MMOCA).
Gene Promoter® 6h 12h 24h
MM MMOCA MM MMOCA MM MMOCA
Ech3937 (pAT) P Total 1.9+0.0 2.0*+0.0 1.9£0.0 2.0+0.0 1.8+£0.0 1.9+0.0
GFP* 3.9+6.7 8.0*+7.1 28.1£38.3 35.1£32.2 16.3*£7.2 10.7%0.0
GFP*% 0 0 0 0 0 0
Ech-Rif (phrpA) Total 12.7+0.2 17.5%0.2 22104 513%1.5 16.1£1.2 49.2+0.8
GFP* 100.84.5 106.7*:4.8 111.2x£1.7 142.8*2.1 67.1+3.7 97.7x24
GFP*% 8.1£0.5 12.0+0.3 16.2+0.2 33.4*+0.5 19.7x25 48.0£0.3
Ech137 (phrpA) Total 4.7+0.0 4.9+0.1 5.5*0.0 5.9%0.1 7.6x0.0 8.3*0.0
GFP* 19.3*£4.2 183*3.4 14.9+0.9 154*0.3 14.0*0.0 14.3*0.3
GFP*% 2.2+0.1 24+0.1 43+0.3 6.2+0.4 184*0.3 23.3%0.3
Ech3937 (phrpN) Total 18.8*£2.4 314%3.2 29.5%3.1 91.4+8.0 325%2.0 78.1+7.9
GFP* 151.3+9.8 171.7£10.8 149.2+8.6 232.6+36.2 98.9+6.3 1624+11.4
GFP*% 104£2.1 164*2.5 17713 38.5%3.2 30.9£3.2 46.9+3.5
Ech138 (phrpN) Total 5.6*0.7 9.1£1.6 11.3x0.9 32.6*+5.0 17.3*15 38.7%£53
GFP* 68.6+8.4 69.6+6.7 95.2+7.0 115.3*£4.5 90.5*+1.1 105.8%£7.5
GFP*% 3.3*0.6 8.2*16 84*03 25754 163x1.8 345+26
Ech148 (phrpN) Total 4.3+0.1 3.8+0 4.2*0.1 3.9%+0.1 4.8+0.2 4.8+0.1
GFP* 16.7*3.2 15.2*£0.9 22.9+9.2 27.8%75 22.8+6.4 23.6%6.1
GFP*% 0.6%+0.1 0.4+0 1.6+0.3 0.8+0.2 2.69+1.0 23+04
Ech149 (phrpN) Total 46+0.2 3.6+0.3 4.7%0.3 3.9+0.2 4.6+0.2 54+0.2
GFP* 148+1.3 26.7+15.4 17.1£1.3 36.0£13.4 326+12.2 37.8%125
GFP*% 0.6*0.3 0.3*+0 26*1.2 0.9+0.2 2.2*0.1 29%*0.1
*The promoter activities were compared at 6, 12, and 24 h of bacterial growth. The fluorescence intensities were collected, including average GFP fluorescence intensity
of total bacterial cells (Total), average GFP fluorescence intensity of GFP expressing bacterial cells (GFP*), and the percentage of GFP expressing bacterial cells of the
total bacterial cells (GFP*%).
bValues are a representative of at least two experiments with similar results. Three replicates were used in this experiment. The value is present as the average of three
replicates with standard deviation (SD).
doi:10.1371/journal.pone.0002973.t004

OCA induces T3SS through rsmB-RsmA pathway

The TCS GacS/GacA up-regulates rsmB and RsmA-rsmB
regulates frpL at the post-transcriptional level (Fig. 1). To
investigate if OCA induces the T3SS through the RsmA-rsmB
pathway, the promoter activities of hpA or hrp/N'were compared in
the wild-type bacterium, ArsmB mutant Ech148, AgacS mutant
Ech149 and AgacA mutant Ech137 carrying phrpA or phrpN
grown in MM and MM supplemented with OCA respectively.
The wild-type showed a higher GFP intensity grown in MM
supplemented with OCA in comparison to MM alone. However,
similar GFP intensity was observed in Echl137, Echl48 and
Ech149 cells grown in MM and MM supplemented with OCA at
each time point of bacterial growth (Table 4). The effect of OCA
on the expression of gacA and rsmB was further examined by qR'T-
PCR. Our results show that, compared with Ech3937 in MM
alone (normalized to 1), a significantly higher 7smB mRNA (relative
expression ratio 1.4, p=0.003) was observed in the bacterium
grown in MM supplemented with OCA (Fig. 3). However, no
significant difference in the level of gacd mRNA was observed in
Ech3937 grown in MM and MM supplemented with OCA (Fig. 3).
These results suggest the OCA and TCA induce the T3SS
through the rsmB-RsmA pathway.
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Table 5. The promoter activities of hrpS, hrpL, hrpA and hrpN
of Dickeya dadantii 3937 (Ech3937) and rsmB mutant Ech148
grown in minimum medium.
Gene Promoter® 6h 12h
Ech3937 (pAT) ° Total 2.1+0.1 2.9+0.6

GFP* 126*1.6 29.9+10.3

GFP*% 0 0
Ech3937 (phrpS) Total 35.9+1.1 107.4%+0.9

GFP* 39.6+0.9 108.0*£1.1

GFP*% 88.0+1.1 99.5+0.2
Ech148 (phrpS) Total 30.6+2.0 90.6+3.3

GFP* 33.1*+1.9 90.9*+3.4

GFP*% 90.4*+1.8 99.8%0.1
Ech3937 (phrplL) Total 4.7+0.2 10.0%1.1

GFP* 16.3%1.2 16.5+£2.2

GFP*% 33+04 34.1%3.2
Ech148 (phrpL) Total 53%+0.0 9.0%+0.1

GFP* 143%+0.5 14.1+0.1

GFP*% 34+0.2 29.9+1.1
Ech3937 (phrpA) Total 7.6*0.1 90.7*6.5

GFP* 58.0*+1.7 176.4%9.2

GFP*% 56*0.2 49.8+4.8
Ech148 (phrpA) Total 4.7+0.1 8.5+0.1

GFP* 16.5+£0.5 16.0+£0.2

GFP*% 1.5%0.2 21.6+0.9
Ech3937 (phrpN) Total 42+0.3 63.7+3.4

GFP* 79.0+4.7 231.4£33.0

GFP*% 1.9+0.3 26.6+2.5
Ech148 (phrpN) Total 2.5%+0.1 3.84+0.1

GFP* 353*6.2 30.3*+1.8

GFP*% 0.3£0.1 14%0.2
*The promoter activities were compared at 6 and 12 h of bacterial growth. The
fluorescence intensities were collected, including average GFP fluorescence
intensity of total bacterial cells (Total), average GFP fluorescence intensity of
GFP expressing bacterial cells (GFP*), and the percentage of GFP expressing
bacterial cells of the total bacterial cells (GFP*%).
bValues are a representative of three experiments with similar results. Three
replicates were used in this experiment. The value is present as the average of
three replicates with standard deviation (SD).
doi:10.1371/journal.pone.0002973.t005

Discussion

Plants have multifaceted strategies to deal with microbial
pathogens by producing a wide array of antimicrobial compounds,
such as phenolic compounds [26]. In the SA biosynthesis pathway
in plants, TCA is converted to OCA through ortho-hydroxylation.
SA is produced by B-oxidation of OCA [35]. An increase of the
phenolic acid TCA was observed in potato leaves at 2 h after
exposure to CIF from FE. carotovorum [29]. In addition, TCA was
shown to induce the expression of defense-related genes drd-1 (a
defense-related alcohol dehydrogenase), pinll (proteinase inhibitor
II), chtB4 (basic chitinase) and chtd2 (acidic chitinase) of potato,
suggesting that TCA may play a role in defense signaling in plants.
The T3SS is considered one of the major virulence factors in many
bacterial pathogens. T3SS delivers effectors into host cells [36].
One major role of T3SS of phytopathogens is to disable the host
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defense system during bacterial invasion. In this work, an
approximately 1.7-fold higher GFP intensity was observed in
Ech3937 (phpN) grown in MM supplemented with 0.5 uM of
TCA (roughly the level of TCA in potato leaves) in comparison to
bacterial cells grown in MM alone (Table 3). However, an
approximately 3-fold higher GFP intensity was observed in the
bacterial cells grown in MM supplemented with 5 uM of TCA
(the level of TCA in potato leaves induced by CF). This result
indicates that Ech3937 may modulate its T3SS expression to
mnvade hosts by sensing the basal level of TCA in healthy host
plants. In addition, due to the accumulated level of the phenolic
compound in hosts caused by bacterial infection, a higher
expression of T3SS may be induced in the bacterial cells for a
defensive response against the plant responses.

In this study, a higher amount of mRNAs of dspE and hrpA was
observed when OCA or TCA were added into MM (Fig. 3). No
induction was observed in /7pS when these two plant phenolic
acids were added to the MM. Since a significant increase of
mRNA of ApL but only a slight increase of the Arpl promoter
activity of Ech3937 was observed when these two plant phenolic
acids were added into the MM (Table 3; Fig. 3), it is plausible that
dspE, hrpA and hrpN are induced by an alternative regulatory
pathway and not the HrpX/HrpY-HrpS pathway. In this study,
OCA and TCA were unable to enhance /pA or hp/N expression of
the ArsmB, AgacS, and AgacA mutants of Ech3937 (Table 4). In
addition, an increased mRNA level of rsmB in the wild-type
Ech3937 was observed when OCA and TCA were added in MM
(Fig. 3). These results suggest that these phenolic compounds
regulate T3SS through 7smB-RsmA pathway. Since the expression
of rsmB of Ech3937 is up-regulated by TCS GacS/GacA [15], our
results suggest that OCA/TCA may induce the T3SS gene
expression by modulating the mRNA level of rsmB through
activation of GacS/GacA. Compared with MM alone, there was
no increase in gacd mRNA of Ech3937 when the bacterial cells
were grown in MM supplemented with OCA (Fig. 3). In TCS, the
activity of histidine kinase and response regulator is stimulated by
the phosphorylation of histidine and aspartate residues of these
TCS proteins respectively [37]. In this work, the activation of TCS
GacS/GacA by OCA may result from the phosphorylation of the
GacA protein through GacS. Thus, the amount of mRNA of gacA
may not be increased when OCA is supplemented in MM. In the
envl-ompR TGS, the role of EnvZ is primarily as a phosphodonor
for response regulator OmpR activation [38]. Disruption of envg,
the sensor kinase did not reduce the level of mRNA of the response
regulator ompR. However, at this stage, we can not rule out the
possibility of other unknown regulator(s) affected by OCA and
further up-regulating the expression of rsmB. Finally, compared
with Ech3937 in MM, a slightly higher promoter activity of ArpL
was observed in the bacterial cells grown in MM supplemented
with OCA. With the complexity of the T3SS regulatory system
revealed in Ech3937, we can not rule out that other alternate
regulatory pathways may also play a role in T3SS induction by
OCA and/or TCA.

In summary, two T3SS inducers, OCA and TCA, were
identified in this study. The induction of T3SS gene expression
by these two phenolic compounds is moderated through the rsmB-
RsmA pathway. With the similarity of these global virulence
regulatory systems of T3SS among plant and animal pathogens,
the roles of plant phenolic compounds on Ech3937 unveiled in this
study will foster efforts for the future development of antimicrobial
reagents (e. g., development of phenolic compound analogues that
block the T3SS regulatory pathway) and strategies for pathogen
control in many fields, including agriculture, medicine, and the
food industry.
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Materials and Methods

Bacterial strains, plasmids, media and chemicals

The bacterial strains and plasmids used in this study are listed in
Table 1. E. coli was grown in LB broth at 37°C and D. dadantii was
grown in MM at 28°C [32]. Antibiotics (ug/ml) used were:
ampicillin, 100; kanamycin, 50. Primers used for Polymerase
Chain Reaction (PCR) in this report are also listed in Table 1.
OCA, TCA and SA were purchased from Sigma-aldrich (St.
Louis, MO). A transposon miniHimar RBI was used to construct a
mutant library of 3937 in the Yang Lab (unpublished data). For
this purpose, E. coli S17-1 A-pir (pMiniHimar RB1) (E. coli S17-1
A-pir cells carrying plasmid pMiniHimar RB1) was used as a
donor in mating with Ech3937 [39]. The miniHimar RBI carries
an R6KY origin of replication. To locate the disrupted region
containing the MinifHimar RBI, the chromosomal DNAs of these
mutants were digested by BamH]1, followed by self-ligation and
sequencing [39]. Two of the transposon mutants, ArsmB (Ech148)
and AgacS (Ech149), identified in the mutant library were used in
this study.

FACS analysis

FACS analysis of promoter activity of frpA, krpL, hipN, and hipS
was carried out as described [31]. Briefly, the wild-type Ech3937
and the mutant strains carrying the promoter reporter plasmid
were grown on LB broth at 28°C overnight and transferred to
appropriate media. For FACS analysis, samples were collected by
centrifugation, washed with 1X phosphate buffer saline, and re-
suspended in 1X PBS to ca 10° CFU/ml prior to being run in a
FACS Calibur flow cytometer (BD Biosiences, CA). Among all the
flow cytometry assays that we tested, the gated event number of
each individual assay was constantly around 10000-15000 events.
To avoid debris, electronic background, and undesired clumps in
the bacterial samples, a Gate R1 was set up, which was based on
light scatter for the flow cytometry assay.
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qRT-PCR analysis

Bacterial strains were grown in MM. Total RNA from the
bacterial cells was isolated by using the TRI reagent method
(Sigma, MO) and treated with Turbo DNA-free DNase kits
(Ambion, TX) as described [31]. An iScript cDNA Synthesis Kit
(Bio-Rad, Hercules, CA) was used to synthesize cDNA from
0.5 ug of treated total RNA. The Real Master Mix (Eppendorf,
Westbury, NY) was used for qRT-PCR reactions to quantify the
cDNA level of target genes in different samples. The 7p/U was used
as the endogenous control for data analysis [40]. gqRT-PCR data
were analyzed using Relative Expression Software Tool as
described by Pfaffl et al. [41].
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per ml was obtained according to the numbers of the colonies
growing on the plates at different dilutions. Three replicates were
used in this experiment.
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