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ABSTRACT

The Biological General Repository for Interaction
Datasets (BioGRID: https://thebiogrid.org) is an open
access database dedicated to the curation and
archival storage of protein, genetic and chemical in-
teractions for all major model organism species and
humans. As of September 2018 (build 3.4.164), Bi-
oGRID contains records for 1 598 688 biological in-
teractions manually annotated from 55 809 publica-
tions for 71 species, as classified by an updated set
of controlled vocabularies for experimental detec-
tion methods. BioGRID also houses records for >700
000 post-translational modification sites. BioGRID
now captures chemical interaction data, including
chemical–protein interactions for human drug tar-
gets drawn from the DrugBank database and man-
ually curated bioactive compounds reported in the
literature. A new dedicated aspect of BioGRID an-
notates genome-wide CRISPR/Cas9-based screens
that report gene–phenotype and gene–gene relation-
ships. An extension of the BioGRID resource called
the Open Repository for CRISPR Screens (ORCS)
database (https://orcs.thebiogrid.org) currently con-
tains over 500 genome-wide screens carried out in
human or mouse cell lines. All data in BioGRID is
made freely available without restriction, is directly
downloadable in standard formats and can be readily
incorporated into existing applications via our web
service platforms. BioGRID data are also freely dis-
tributed through partner model organism databases
and meta-databases.

INTRODUCTION

Biological interaction networks, as aggregated from a
plethora of individual protein or genetic interactions, as
well as interactions of RNA, DNA, membranes, carbohy-
drates and small molecule metabolites, serve as a framework
for understanding gene–phenotype relationships and the
mechanistic basis for all cellular functions (1,2). The charac-
terization of molecular and functional interactions between
genes, their products and biomolecules has been instrumen-
tal in interpreting genetic associations related to cancer and
other diseases in a myriad of different contexts (3–6). These
efforts have been tremendously accelerated by the devel-
opment of unbiased high-throughput (HTP) methods for
the detection of gene–phenotype relationships, protein in-
teractions, genetic interactions and chemical interactions.
Such methods have been progressively refined to increase
coverage and resolution, and newer techniques are gener-
ating other types of biological data that had not been pre-
viously available at such a large scale (7). In particular, re-
cent genome-wide genetic screens based on CRISPR/Cas9
genome editing technology have enabled the rapid charac-
terization of gene–phenotype relationships both in cell lines
derived from a variety of tissue types and in vivo mouse
models (8,9). CRISPR/Cas9 approaches have also been de-
vised to allow systematic exploration of gene–gene interac-
tions in human cells (10,11). These comprehensive maps of
gene function promise to further accelerate biomedical re-
search and drug discovery (12,13).

The biological network paradigm has been used to facil-
itate drug target selection, interpret drug resistance or off-
target effects, and forms the basis for targeted therapies and
personalized medicine (14,15). An on-going challenge, how-
ever, is the unstructured nature of the biomedical literature,
i.e., free form text, that cannot be easily parsed for compu-
tationally tractable data elements such as protein or genetic
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interactions. A primary goal of biomedical data curation
is thus to convert text-, figure- and table-based experimen-
tal information from the biomedical literature into discrete,
consistently structured records that can be easily parsed,
combined and computed. To this end, the accurate anno-
tation of protein, genetic and other forms of interaction
data from the literature by a host of databases and meta-
databases has expedited the formulation of both intuitive
and more formal models of cellular functions (16), as well
as the interpretation of complex genome-wide association
studies for a wide variety of disease phenotypes (17).

The Biological General Repository for Interaction
Datasets (BioGRID: https://thebiogrid.org) was first de-
veloped as an open-access centralized repository for pro-
tein and genetic interaction data reported in the biomed-
ical literature (18). Since its inception in 2003, BioGRID
has amassed almost 1.6 million biological interactions sup-
ported by published experimental data in humans and
other major model organisms including the bacterium Es-
cherichia coli, the budding yeast Saccharomyces cerevisiae,
the fission yeast Schizosaccharomyces pombe, the plant Ara-
bidopsis thaliana, the nematode worm Caenorhabditis el-
egans, the fruit fly Drosophila melanogaster, the zebrafish
Danio rerio, and the mouse Mus musculus, among many
others. BioGRID has also grown in scope to include the cu-
ration of post-translational modifications (PTMs) and the
annotation of chemical interactions between genes/proteins
and bioactive small molecules. BioGRID curation is gov-
erned by controlled experimental vocabularies and guided
by text mining methods. BioGRID data content is up-
dated and freely distributed to the biomedical community
as monthly releases, as well as through partnerships with
model organism databases (MODs) such as Saccharomyces
Genome Database (SGD) (19) or WormBase (20), vari-
ous meta-databases for interaction data, and general data
portals, such as NCBI (21) or UniProt (22). Since the previ-
ous update (23), a new resource within BioGRID called the
Open Repository for CRISPR Screens (ORCS) has been de-
veloped to house and distribute large-scale CRISPR screen
datasets across multiple model organism species (see https:
//orcs.thebiogrid.org). BioGRID thus provides the biolog-
ical, biomedical and computational biology research com-
munities with a rigorously annotated resource to help drive
discovery in fundamental and clinical research.

DATABASE GROWTH AND STATISTICS

Since our 2017 update in the NAR Database Issue (23), the
number of curated interactions housed in BioGRID has in-
creased by 32%. As of September 2018 (version 3.4.164),
BioGRID contained 1 295 777 interactions derived from
HTP studies and 302 911 interactions derived from low-
throughput (LTP) studies for a total of 1 598 688 (1 238 062
non-redundant) interactions. These correspond to 774 460
(578 582 non-redundant) protein interactions and 824 228
(675 685 non-redundant) genetic interactions (Table 1; Fig-
ure 1). These data were directly extracted from 55 809 man-
ually annotated peer-reviewed publications (1437 HTP and
54 372 LTP studies) identified from the biomedical literature
by keyword searches, text-mining approaches, and direct
user submissions. All interactions reported in BioGRID are

directly supported by experimental evidence that is catego-
rized according to a structured set of interaction types that
map to the experimental detection methods in the PSI-MI
2.5 standard (24). BioGRID also currently contains data on
726 378 protein PTMs (419 472 non-redundant) from 4742
publications, an increase of ∼600 000 PTMs since our pre-
vious update, as derived primarily from HTP studies.

In 2018, Google Analytics reported that BioGRID re-
ceived on average 114 151 page views and 12 100 unique
visitors per month. We estimate that these page views cor-
respond to perusal of ∼24 million interactions by BioGRID
users in 2018. These statistics do not include the widespread
dissemination of BioGRID records by various partner
databases, which include the MODs SGD (19), PomBase
(25), Candida Genome Database (CGD) (26), WormBase
(20), FlyBase (27), the Arabidopsis Information Resource
(TAIR) (28), ZFIN (29) and Mouse Genome Database
(MGD) (30) and the meta-database resources NCBI (21),
UniProt (22), Pathway Commons (31), STRING (32) and
others. In 2018, the BioGRID user base was located pri-
marily in the USA (28%), followed by China (13%), India
(7%), United Kingdom (6%), Germany (5%), Canada (4%),
Japan (4%), France (3%) and all other countries (30%).

CURATION STRATEGY AND SPECIFIC PROJECTS

All curation activity in BioGRID continues to be con-
trolled by an internal dedicated database called the Inter-
action Management System (IMS), which is used to ad-
minister triaged lists of publications for curation for dif-
ferent projects, to standardize all aspects of curation based
on controlled vocabularies for experimental evidence and
gene names, and to track individual curator contributions.
BioGRID now contains interaction data for 71 different
model species, an increase of five species from the previ-
ous update. As BioGRID now maintains annotation sup-
port for 350 species, an increase of over 100 species since the
previous update, the database is well positioned to rapidly
incorporate data for additional new species as opportunities
arise.

BioGRID continues to maintain complete coverage of
the primary literature for the main model yeasts S. cere-
visiae (now at 736 850 total interactions and 535 436 non-
redundant interactions) and S. pombe (now 72 172 total in-
teractions and 58 711 non-redundant interactions). These
datasets are also redistributed through SGD (19) and Pom-
Base (25). Extensive curation of protein interactions is also
carried out for the model plant A. thaliana (28), now under-
taken in collaboration with the BAR database (see below).
Other model organism curation is carried out in conjunc-
tion with the respective MODs but is not comprehensive
due to limitations in curation capacity.

In order to maximize data content and facilitate access
to large-scale interaction datasets across species, BioGRID
endeavors to curate all publications that contain HTP pro-
tein and genetic interaction data. For example, BioGRID
annotated almost 13 000 cell envelope protein interactions
from an HTP study on a mass spectrometry-based pro-
tein interaction network for E. coli (33). In another ex-
ample, 326 790 binary and 19 847 ternary genetic inter-
actions detected in S. cerevisiae by synthetic genetic array
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Figure 1. Increase in data content of BioGRID from March 2010 (release 2.0.62) to September 2018 (release 3.4.164). Left panel shows the increase of
annotated protein interactions (red), genetic interactions (green) and total interactions (blue). Right panel shows the number of curated publications that
contained protein or genetic interaction data (blue) versus the total number of publications examined by curators (red).

Table 1. Increase in BioGRID data content

September 2016 (3.4.140) September 2018 (3.4.164)

Organism Type Nodes Edges Publications Nodes Edges Publications

Arabidopsis thaliana PI 9479 41 918 2168 9571 42 635 2283
GI 246 298 125 304 350 154

Caenorhabditis elegans PI 3277 6341 190 3281 6350 193
GI 1123 2330 31 1130 2336 34

Drosophila melanogaster PI 8236 38 638 454 8855 54 593 2792
GI 1042 9979 1 482 2958 13 440 4156

Escherichia coli PI 108 109 17 2161 12 917 26
GI 4000 166 137 15 4009 171 245 16

Homo sapiens PI 20 914 365 547 25 383 22 800 449 842 27 631
GI 1577 1663 283 2169 5229 322

Mus musculus PI 11 892 38 163 3529 12 958 44 575 3744
GI 275 309 176 336 377 192

Saccharomyces cerevisiae PI 6299 131 659 8074 6897 164 530 9112
GI 5719 212 092 7880 5956 572 320 8887

Schizosaccharomyces pombe PI 2946 12 817 1247 2984 13 134 1334
GI 3208 57 847 1459 3377 59 038 1551

Other organisms ALL 9688 14 814 2250 11 307 17 319 2609
Total ALL 65 031 1 072 173 47 223 69 216 1 598 688 55 809

Data is drawn from monthly release 3.4.140 and 3.4.164 of BioGRID. Nodes refer to genes/proteins, edges refer to interactions. PI, protein (physical)
interactions; GI, genetic interactions.

(SGA) screens were curated from two recent publications
(34,35). With respect to human data, 84 295 protein interac-
tions have been curated since the previous update, including
32 761 new interactions reported in the BioPlex 2.0 dataset
based on an affinity capture-mass spectrometry pipeline
(36). Other large-scale human protein interaction data types
added to BioGRID include 8744 interactions generated by
BioID proximity labeling/capture followed by mass spec-
trometric identification, as reported in 25 publications. Ge-
netic interactions detected in human cell lines by large-scale
CRISPR/Cas9 screens have also been curated by BioGRID
(see CRISPR/Cas9 screen section below). BioGRID cura-
tors frequently work with authors for deposition and/or re-
lease of large datasets prior to publication. Pre-publication
data records are fully archived and searchable but are ex-
cluded from BioGRID downloads until conversion into full
BioGRID records upon publication of the dataset.

The colossal and ever-increasing human biomedical liter-
ature, now at 18 million publications deposited in PubMed,
presents an impasse for the limited throughput of manual
curation approaches. This problem is exacerbated by the
fact that only a fraction of candidate publications returned
by PubMed queries contain experimentally validated inter-
action data, such that curators spend considerable effort
on inspection of non-relevant publications (Figure 1). This
problem can be partly alleviated by the use of text-mining
approaches to rank publications for the likelihood of con-
taining interaction data. Although automated information
extraction systems are still inferior to expert manual cura-
tion based on precision/recall metrics (37,38), natural lan-
guage processing (NLP) methods can boost manual anno-
tation throughput (39). BioGRID is a longstanding partic-
ipant in the BioCreative consortium that aims to develop
and benchmark biomedical text-mining approaches (40).
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Since the previous update, BioGRID has contributed to
the generation of high-quality reference sets for annotating
PubMed abstracts and full text articles (41) and for extrac-
tion of protein interactions that are disrupted by natural or
synthetic mutations (Doğan et al., in press).

Given that complete coverage of the literature is not fea-
sible, the BioGRID curation strategy focuses in part on
deep curation for specific themed projects on critical bio-
logical processes and/or specific diseases. A themed project
begins with expert consultation and PubMed literature
searches to define an extensive set of candidate publica-
tions. The publication set is prioritized with an algorithm
that uses NLP to extract syntactic features and machine
learning to rank abstracts based on higher-order features
(42). The ranked publications are then curated, and the
gene list recursively expanded based on interaction datasets.
Such themed curation projects on biological processes in-
clude inflammation, chromatin modification, autophagy,
the ubiquitin-proteasome system (UPS), the DNA dam-
age response (DDR), phosphorylation-based signaling and
stem cell regulators. Themed curation projects focused on
particular diseases include cardiovascular disease and hy-
pertension, glioblastoma (GBM), Fanconi Anemia (FA),
diabetes and prevalent infectious diseases, such as tubercu-
losis and HIV.

We have continued to expand coverage in each current
themed curation project. For example, in the UPS project
we have compiled 596 293 sites (312 296 non-redundant)
of ubiquitin modification on ∼10 000 human proteins and
44 074 sites on ∼3600 yeast proteins, an increase of over
3.5× for human sites and 1.2× for yeast sites compared
to the previous BioGRID update. Most of these sites are
drawn from HTP mass spectrometry studies that detect the
presence of a GG ubiquitin remnant on substrate peptides
(43). We have also curated an additional 76 304 interac-
tions associated with proteins and enzymes of the UPS.
Similarly, for the autophagy and DDR projects we have
added a further 1845 and 2710 interactions respectively.
Our disease-themed project on GBM, an aggressive and
largely intractable form of brain cancer with limited treat-
ment options (44), has progressed in collaboration with ex-
perts in the Stand Up to Cancer (SU2C) Stem Cell team
(see www.standup2cancer.ca). A set of 56 GBM-associated
genes known to be either mutated or of altered copy number
in patient-derived tumor samples (45,46) has yielded a cu-
rated network of 12 200 interactions from 3173 publications
so far. Biological interactions for all extant themed projects
are updated through general BioGRID curation and in pe-
riodic dedicated curation drives.

Two new themed projects have recently been undertaken
in collaboration with groups supported by the Biomedi-
cal Data Translator (see https://ncats.nih.gov/translator). In
one project, BioGRID curators have captured interactions
associated with the FA pathway, which helps to mediate the
DDR and is implicated in a variety of human cancers (47).
In consultation with FA experts, BioGRID curators assem-
bled a core list of 53 DDR genes associated with the 20
known core FA genes, originally defined by genetic comple-
mentation groups in human patients. Using these gene lists
as entry points, we have curated 12 960 interactions from
over 2200 publications. A second new themed project as-

sociated with the Biomedical Data Translator has focused
on Maturity Onset Diabetes of the Young (MODY), an
autosomally inherited disease characterized by genetic de-
fects in pancreatic �-cells that compromise insulin produc-
tion (48). At present, 14 genes are genetically linked to var-
ious MODY subtypes and four of these genes (HNF1A,
HNF4A, HNF1B and GCK) are known to account for
>90% of MODY cases (49). From these 14 entry points,
a MODY network of 483 protein interactions has been cu-
rated from 149 publications to date. The FA and MODY in-
teraction datasets will be used as inputs and benchmarks for
predictive computational methods being developed through
the Biomedical Data Translator initiative.

MODEL ORGANISM DATABASE AND META-
DATABASE PARTNERS

In addition to collaborating with experts in themed cura-
tion project efforts, BioGRID actively works together with
MOD and meta-database resources in order to facilitate
the widespread propagation of BioGRID records. The Bi-
oGRID curation and software teams will work with all in-
terested collaborators on curation of interaction data in or-
der to maximize curation efficiency and impact. This pro-
cess also provides an opportunity for cross-validation of
shared records. Any interaction record within BioGRID
that originates from an external resource without modifi-
cation is clearly attributed as such and hyperlinked to the
original source database throughout the BioGRID website
search portal and in all associated download files.

This type of partnership is illustrated by data sharing
with FlyBase, the MOD for the fruit fly D. melanogaster
(27). In the 3.4.150 build of BioGRID, we incorporated
a comprehensive update from FlyBase that validated >48
000 previously curated D. melanogaster interactions and
incorporated an additional 19 000 interactions that had
not yet been curated by BioGRID. All of these interac-
tions are clearly marked throughout BioGRID as having
the source ‘FlyBase’. In a continuation of this collabora-
tion, a subsequent update from FlyBase will add ∼8000 ad-
ditional interactions in an upcoming release of BioGRID.
In another example, an on-going collaboration with the S.
pombe database, PomBase (25) aims to share manually cu-
rated protein and genetic interactions with BioGRID in or-
der to minimize duplication of curation effort. Recent new
collaborations have been forged with emerging databases,
such as the Bio-Analytic Resource for Plant Biology (BAR),
which will help to disseminate BioGRID plant interaction
data and reciprocally provide BioGRID with ∼13 000 A.
thaliana interactions (50). BioGRID also works closely with
the Gene Ontology (GO) consortium (51) as opportunities
arise, for example in the use of GO interaction evidence
codes to direct BioGRID curation.

GENETIC INTERACTION CURATION

The unambiguous representation of genetic interactions is
challenging due to both the complex phenotypes that may
be monitored and the specific genetic context of an interac-
tion, which may involve alleles of multiple interacting genes.
To reconcile and unify the various genetic interaction ter-
minologies used within different model organism research
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communities, BioGRID has collaborated with WormBase
(20) to develop a new standardized Genetic Interactions
Structured Terminology or GIST (Grove et al., in prepa-
ration). The GIST has been designed to precisely specify
genetic interactions using a universal genetic interaction
terminology and is supported by other MODs, including
SGD (19), CGD (26), PomBase (25), ZFIN (29), FlyBase
(27) and TAIR (28). Implementation of GIST across the
different MODs will aid the interpretation of genetic inter-
actions, as well as the integration of large volumes of ge-
netic interaction data across multiple species. In order to
accommodate all possible genetic interaction scenarios, the
GIST has been organized in a modular format using a struc-
tured set of genetic terms that are completely independent
from any phenotype(s) that might be linked to the interac-
tion. To effectively describe complex phenotypes that arise
in all species from yeast to metazoans, including humans,
the GIST is designed to be used in conjunction with all rel-
evant species- or tissue-specific phenotype ontologies such
that the type of genetic interaction is curated as a separate
entity with each specific phenotype that is scored. This ap-
proach allows BioGRID and the MODs to make use of
deep species-specific phenotype ontologies across model or-
ganisms and humans, including the Ascomycete Phenotype
Ontology (52), Uberon (53), the Human Phenotype Ontol-
ogy (54), and the Monarch Initiative (55). As much as pos-
sible, the GIST has been designed to allow reconciliation of
existing terms used by different resources. For example, of
the various yeast genetic interactions currently annotated in
BioGRID, 11 of the existing BioGRID terms map to 7 of
the new GIST terms to allow for automated back-mapping
of more than 572 300 LTP and HTP yeast genetic inter-
actions associated with over 600 unique phenotypes (52).
BioGRID will implement the GIST for forward curation
of genetic interactions in human and model organisms, in-
cluding yeast, worm, fly, mouse and zebrafish. The use of
standardized GI terms within the GIST framework will also
facilitate the cross-species integration of large genetic inter-
action datasets produced by HTP methods.

CHEMICAL INTERACTIONS

Comparatively few data resources combine chemical–
protein interaction data with relevant protein interactions
but include STITCH (56), ConsensusPathDB (57), Su-
perTarget (58) and IntAct (59). To extend our curation
breadth to chemical interactions and facilitate network-
based approaches to drug discovery, BioGRID has incorpo-
rated chemical–protein interaction records from DrugBank
(60) and now manually curates small molecule–gene and
–protein interactions. In order to incorporate chemical–
protein interaction data into BioGRID, a minimal inter-
operable set of fields compatible with the various annota-
tion systems used across different chemical databases was
developed. We examined the content of major chemical in-
teraction databases, including DrugBank (60), BindingDB
(61), CTD (62), PharmGKB (63), ChEMBL (64) and oth-
ers to determine the fields common to each resource. Based
on this analysis, a minimal unified record structure was de-
signed that contains: the target protein with both UniProt
and GeneID identifiers; generic chemical name, synonyms

and/or brand name; the class of agent, such as small
molecule or biologic; the structural formula of the agent;
CAS and/or ATC identifiers; the molecular action or effect
of the agent; associated citations; and the original database
source. This minimal record structure allows for efficient
import of data into BioGRID and effective interoperabil-
ity between multiple chemical databases. Relevant database
sources for all of the associated records are clearly cited
with linkouts to each database, thereby allowing users the
option of directly accessing the original source of data for
more detailed information. BioGRID has imported manu-
ally curated chemical–target data records from DrugBank
(60), which contains >10 560 experimental and approved
drugs and >4 490 proteins. The downloadable DrugBank
files were parsed and drug-target interactions mapped to
the minimal unified chemical record structure in BioGRID.
The automated mapping of data was validated by exten-
sive curator review to resolve any inconsistencies and ensure
data integrity. Currently, BioGRID contains 27 785 chem-
ical interactions manually curated by DrugBank involving
5035 small molecules and 2527 protein targets from 21 or-
ganisms, including human, HIV-1, Candida albicans and Es-
cherichia coli. The vast majority of the curated chemical in-
teractions involve human proteins, which represent 92% of
the current collection. All chemical-gene/protein interac-
tions can be found in the results summary page (Figure 2),
rendered in the on-line BioGRID viewer, and downloaded
in standard formats.

Recently, BioGRID curators have manually curated in-
teractions for over 140 chemical inhibitors/activators of
human enzymes involved in the ubiquitin-proteasome sys-
tem (UPS). Conjugation of the small protein modifier ubiq-
uitin controls the stability, localization and/or activity of
much of the proteome (65). These small molecules tar-
get a broad spectrum of UPS-related proteins including
the core cascade of E1, E2 and E3 enzymes that me-
diate substrate ubiquitination, proteasome subunits and
deubiquitinating enzymes (DUBs). Aside from conven-
tional drug-like inhibitors/activators of UPS enzymes, Bi-
oGRID has curated novel bi-functional molecules de-
signed to bridge heterologous substrates to E3 ubiquitin
ligases to induce the degradation of specific target pro-
teins. These bivalent ligands (BVLs) are known as PRO-
TACs (protein-targeting chimeric molecules), SNIPERs
(specific and non-genetic IAP-dependent protein erasers)
and HaloPROTACs (66,67). In general, these compounds
consist of two covalently linked ligands that recruit a spe-
cific E3 ubiquitin ligase to a target protein, thereby in-
ducing target ubiquitination and proteolysis. Due to the
unusual nature of these bivalent compounds, new record
structures were devised to capture the key molecular at-
tributes and mechanisms of action. These new standard-
ized fields, as displayed in the Chemical View for the
recruited E3 ligase, include the following: internally as-
signed BVL designation (e.g., Bivalent ligand #), Method
(e.g., PROTAC/SNIPER/HaloPROTAC), Type (e.g., small
molecule/polypeptidic), Action (e.g., degradation), Dataset
(e.g., PubMed identifier), Interaction Type (e.g., recruited
E3 ligase), Related Proteins (e.g., target protein name), and
a Standardized BVL name that appears as an additional
note in the details section. This nomenclature system can
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Figure 2. Example of result summary page for chemical interactions of the E3 ubiquitin ligase VHL. (A) Details for Bivalent ligand 52, a PROTAC com-
posed of a ligand for VHL and a ligand for the degradation targets EFGR and ERBB2 (68). (B) Additional notes display the BVL name in a standardized
format based on details provided in the original paper. (C) Chemical-protein interactions curated by BioGRID also include other small molecule inhibitors
of UPS enzymes, in this case VH298 as an inhibitor of VHL. External links to ChemSpider provide additional chemical information.

also be used to describe compounds that directly stabilize
E3–substrate interactions, such as the pthalimide class of
immunomodulatory (IMiD) drugs (67).

For visualization in a network graph, BVL-type
molecules are assigned an internal display designation in
the format ‘Bivalent ligand #’, with the number sequen-
tially incremented for each additional curated BVL. This
designation allows display of complex names and imme-
diately identifies the compound in question as a bivalent
ligand. The original published descriptions for BVLs are
also displayed in the format ‘Compound name(Recruited
E3:E3 Ligand - Target: Target Ligand)’ in the Chemical
View details for each relevant E3 and target protein. For
example, a particular PROTAC that targets the epidermal
growth factor receptor (EGFR) for degradation (68) has
been curated in BioGRID as Bivalent ligand 52 with the
standardized BVL name ‘compound 1 (VHL:Ligand 9 –
EGFR:lapatinib)’ to indicate that it is called ‘compound 1’
in the original publication and is composed of two linked
moieties, a ligand for the E3 enzyme subunit VHL named
Ligand 9 and a ligand for the EGFR called lapatinib.
The BioGRID Chemical View display has been modified
to show entities pertinent to BVLs, i.e. the E3 ubiquitin
ligase, the bivalent small molecule ligand, and the target
protein (Figure 2). The viewer displays BVL information

on the relevant protein result pages for the E3 enzyme
and degradation target. PROTACS were only curated
if experimentally confirmed to cause degradation of the
intended target. If a single PROTAC (i.e. with the same
E3- and target-binding moieties) was shown to degrade
multiple targets, then each E3-target-BVL relationship
was curated as a single BVL designation with all targets
listed. To date, 62 different PROTAC-like molecules that
target 116 proteins have been annotated from 46 different
publications by BioGRID curators. This set of 167 curated
chemical–protein interactions represents most if not all
available published BVL-type compounds to date.

CRISPR/CAS9 SCREEN CURATION

The development of the budding yeast deletion collec-
tion almost 20 years ago enabled a new era of system-
atic high-throughput screens that revolutionized the map-
ping of gene–phenotype relationships (69). Subsequently,
RNAi-mediated knockdown approaches in model organ-
isms and mammalian cell lines enabled conceptually simi-
lar genome-wide screens, but these methods were hampered
by incomplete knockdown and off-target effects. Recent
development of complex genome-wide knockout libraries
based on precise CRISPR/Cas9 sequence-specific endonu-
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clease technology has enabled true loss-of-function genetic
screens in mouse and human cell lines (8). Cas9 expressed
in cell lines can be programmed with a complex library
pool of single-guide RNAs (referred to as sgRNAs or gR-
NAs) to efficiently generate double strand breaks at targeted
loci across the genome and thereby yield a pool of loss-of-
function mutants due to error prone repair of the break; the
cell line pool can then be used to carry out a systematic se-
lection screen for viability or any other desired phenotype
(8,70). The Cas9 nuclease has also been engineered to allow
large-scale transcriptional activation and repression screens
(71). The high fidelity, efficiency and relative simplicity of
CRISPR/Cas9-based genome-wide screens has led to a del-
uge of publications on phenotypic screens in cell lines de-
rived from humans and other species.

As CRISPR/Cas9 genome-wide experiments are still
in their infancy, experimental methods and data analy-
sis vary substantially from one publication to another.
We thus developed a working minimal information about
CRISPR/Cas9 screens (MIACS) record structure to rep-
resent common parameters shared among more than 100
distinct screens published to date. The BioGRID standard
includes the variables sgRNA library name, Cas9 variant
(CRISPRn, CRISPRi, CRISPRa), methodology, enzyme,
cell line, cell type, organism, experimental set up, duration,
selection conditions, screen type, phenotype, throughput,
screen format, score type, analysis method and reported sig-
nificance thresholds. To ensure curation consistency, we uti-
lized terms from multiple established ontologies including
EFO (72), BTO (73) and CLO (74), and developed CRISPR
screen-specific controlled vocabularies for each MIACS cat-
egory based on pilot curation of the original genome-wide
screens (75–77). Our CRISPR curation strategy is gene-
based rather than at the individual gRNA-level and there-
fore includes original gene-level quantitative data for each
published screen. Curators thus capture details on original
scoring schemes and analytical methods, which currently in-
clude BAGEL (78), CasTLE (79), CERES (80), MAGeCK
(81), RANKS (82) and others. Score types and confidence
indicators (p-, q- and/or FDR values) are reported as in
the original source publication, with hits assigned according
to the reported significance thresholds. When no clear cut-
offs are provided in the publication, significance thresholds
are inferred based on the number of hits reported or by as-
signing a conventional p/q/FDR value of <0.05. Datasets
are then organized to provide a ranked display list of genes
for the screen. A description of standard vocabularies and
CRISPR screen curation can be found on the BioGRID
help page.

AN OPEN REPOSITORY FOR CRISPR SCREENS
(ORCS) AT BIOGRID

To house and distribute comprehensive collections of
CRISPR screen datasets across multiple model organ-
ism species we have developed the Open Repository for
CRISPR Screens (ORCS) within BioGRID (https://orcs.
thebiogrid.org). BioGRID ORCS provides a unified ware-
house for all published CRISPR screen data and a straight-
forward user-friendly interface for searching, filtering and
downloading of CRISPR screen datasets. Recently es-

tablished repositories such as GenomeCRISPR (83) and
PICKLES (84) provide raw screen data, author-processed
data and/or re-scored data. To maintain consistency with
authors’ published conclusions, ORCS reports only pub-
lished scores for screen data. ORCS displays results at the
publication-, screen- and gene-level with original scores
and significance thresholds, along with information about
associated analytical methods and other metadata when
available. Current screen formats in ORCS include nega-
tive and positive selection screens based on viability and
other phenotypic readouts in conjunction with nuclease-
mediated knockout (CRISPRn), transcriptional activation
(CRISPRa) and transcriptional inactivation (CRISPRi) li-
brary designs. To date, BioGRID ORCS has annotated
505 screens from human and mouse cell lines drawn from
36 publications that in total applied 14 different statistical
methods.

BioGRID ORCS searches can be performed by identifier
(gene name, sequence identifier, third-party database identi-
fier), by publication (PubMed ID, author name, keyword),
and by controlled vocabulary terms in more than a dozen
MIACS categories. All results are presented in an easy to
navigate tabular format and are internally hyperlinked to as-
sociated BioGRID records to allow recursive searches (Fig-
ure 3). Upon clicking on any identifier, publication or screen
result, users are taken to a details page that shows curated
scores, gene annotations and manually assigned controlled
vocabulary terms. Screens can also be visualized by a line
graph that depicts an overall score distribution for the en-
tire screen. In addition, results can be filtered to provide
more focused datasets for inspection. Genes that scored sig-
nificantly within a screen are highlighted within all search
results throughout the site. All screen data available on
the BioGRID ORCS website are freely available for down-
load (see https://downloads.thebiogrid.org) in multiple tab-
delimited formats and also as the original supplementary
files associated with the publication. Custom datasets can
also be generated on-the-fly to include only those identifiers,
publications or screens of interest to the user.

For developers, we have built a comprehensive BioGRID
ORCS web service with the necessary mechanisms for au-
tomated retrieval of BioGRID ORCS screen datasets via
standard software tools and platforms. Detailed documen-
tation on how to utilize these interfaces can be found in
the BioGRID Wiki (https://wiki.thebiogrid.org/doku.php/
orcs:webservice). We have also generated a series of sim-
ple open source example programs in Python to illustrate
different approaches (https://github.com/BioGRID/ORCS-
REST-EXAMPLES). Downloads, web service datasets
and example programs are freely accessible to all par-
ties under the MIT license (https://en.wikipedia.org/wiki/
MIT License).

BioGRID ORCS curation and data content will be
tightly integrated with interaction data elsewhere in Bi-
oGRID. For example, to date, 13 papers curated in Bi-
oGRID ORCS also contain protein and/or genetic inter-
actions curated in BioGRID. Reciprocal internal hyper-
links between ORCS and BioGRID for all genes and shared
PMIDs are provided when applicable. High-throughput
CRISPR-based genetic interaction datasets for human and
other species will become prevalent as multiplex CRISPR

https://orcs.thebiogrid.org
https://downloads.thebiogrid.org
https://wiki.thebiogrid.org/doku.php/orcs:webservice
https://github.com/BioGRID/ORCS-REST-EXAMPLES
https://en.wikipedia.org/wiki/MIT_License
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Figure 3. Example of screen summary result page in BioGRID ORCS. (A) Annotated screen details. (B) Score distribution graph. (C) Screen search and
filter functions. (D) Sort function for screen scores and annotation. Genes scored as significant in the original publication are designated by ‘Yes’ in the hit
column.

screening technologies are refined and expanded. Only a
handful of such CRISPR-based genetic interaction screens
have been published so far. For example, a recently cu-
rated publication identified ∼3000 human genetic interac-
tions in two different cancer cell lines based on a CRISPRi
approach in which 458 query genes were crossed to each
other and control genes, resulting in the systematic pertur-
bation of 222 784 gene pairs (11). High confidence nega-
tive and positive genetic interactions were identified using
a stringent cutoff score and 5% FDR, and all genetic in-
teractors with their corresponding scores were uploaded in
BioGRID. The integration of CRISPR-based genetic inter-
action network data with phenotypic screens will undoubt-
edly provide many new insights into gene function and ge-
netic network structure.

DATABASE AND INFRASTRUCTURE IMPROVE-
MENTS

We have continued to enhance usability throughout the en-
tirety of the BioGRID web interface. Recent improvements
to the underlying software and hardware have allowed an

increase in page load speeds of 30%, thereby ensuring that
users obtain results in a timely manner even under peak
load conditions. Moreover, database improvements and up-
grades to latest software versions have decreased search re-
sult load times, even for large wildcard style searches, which
encourages users to test different search terms with mini-
mal time commitment. We have continued to improve our
graphical user interfaces (GUI) to ensure all result views
are straightforward and easy to comprehend, particularly
for new users of the website. With respect to underlying
database architecture, we continue our migration toward
a microservice-based architecture that will underpin Bi-
oGRID 4.0 (see Future Developments) and all other Bi-
oGRID projects. This structure will improve scalability and
facilitate the development of on-the-fly filtering, custom
download generation, automated curation pipelines, text-
mining enhancements, multi-platform accessibility for mo-
bile devices and the web-based network viewer.

To reduce ambiguity caused by inconsistent gene nomen-
clature that pervades the biomedical literature, all Bi-
oGRID tools rely on a comprehensive annotation system
that is designed to collapse redundant results and correct



Nucleic Acids Research, 2019, Vol. 47, Database issue D537

for common non-standard nomenclature pitfalls. This strat-
egy allows BioGRID to present a comprehensive set of syn-
onyms for all genes and a unified search result for users. The
inclusion of synonyms can also help the user disambiguate
different gene functions. The BioGRID annotation system
combines many online resources that include Entrez Gene,
UniProt, Ensembl, RefSeq, HGNC, SGD, CGD, MGI,
FlyBase, WormBase, TAIR, PubMed and GenBank to aid
in this process. Our latest annotation updates now support
more than 77 million systematic names, aliases, official sym-
bols and external identifiers from Ensembl, UniProt, NCBI,
Entrez-Gene, GenBank, SGD, PomBase, WormBase, Fly-
Base, MGD, HGNC, MGD, TAIR, VectorBase, BeeBase,
ZFIN and HPRD, among other sources. When applicable,
relevant results within the site are hyperlinked to these asso-
ciated resources providing an accessible means of retrieving
additional details for any individual gene or associated pub-
lication. This underlying annotation resource underpins all
BioGRID tools and technologies including newly released
projects such as BioGRID ORCS. For instance, although
screens currently reported in ORCS represent only two dif-
ferent organisms, H. sapiens and M. musculus, the flexi-
ble annotation platform will allow expansion to additional
model organism species as screen datasets are reported in
the literature.

Since moving all BioGRID project websites, databases,
and scripts to the cloud in previous years (see 2013,
2015 and 2017 NAR updates), BioGRID has supported
a consistent increase in usage while continuing to main-
tain >99.99% uptime accessibility on all systems. As us-
age has increased, the resources needed to meet demand
have been increased in parallel. Since the previous update,
we have doubled the CPU, storage, and memory available
on all BioGRID servers and continued to add additional
servers when required. Recently, we migrated all BioGRID
pre-generated download files, such as monthly interaction
updates, to a cloud-based content delivery network (CDN)
that provides rapid and decentralized access to all files any-
where in the world via a 40 Gigabit network infrastructure.
This enhancement ensures that BioGRID download files
are readily and rapidly accessible in all contexts, such as for
manual downloads or script-based retrieval for more com-
plex computational pipelines.

While BioGRID does not record any personal informa-
tion about users, we have recently improved security and
privacy of all communications with BioGRID websites,
tools, web services and resources, by completing a top-to-
bottom transition to Secure Sockets Layer (SSL) support
for all user-facing projects. This transition enforces top-
of-the-line encryption across the entirety of the BioGRID
project space, ensuring communication between users and
our websites is secure and private. For users still accessing
BioGRID resources via older http-based communication,
we recommend that links and connections be updated to
the https versions (e.g., https://thebiogrid.org).

The most recent major point release of BioGRID (ver-
sion 3.5, release date October 2018) includes a newly-
designed BioGRID project page format that serves as a uni-
fied entry point to project-specific data. Project pages en-
able access to all data associated with a particular curation
theme through the use of tags that identify every gene as-

sociated with a given project. Advanced search filters allow
interrogation of interaction data within the project theme,
and search result annotation has been redesigned to include
detailed popups that provide publication information and
experimental evidence. Statistics for projects have been im-
proved to support a graphical pie-chart display that can be
customized by the user. Project pages are formatted in a
new responsive layout model that automatically adapts to
support users with both large display and small screen di-
mensions, such as mobile devices. An initial themed project
page has been released for the curation of protein and ge-
netic interactions of all kinases, phosphatases and associ-
ated subunits in the budding yeast S. cerevisiae, termed the
kinome (Figure 4, see http://yeastkinome.thebiogrid.org).
This project began as a systematic HTP mass spectrometry-
based study that reported 1844 interactions for all proteins
in the kinome (85). The kinome project dataset now extends
to 97 397 genetic and protein interactions, as well as 3853
post-translational modifications curated from over 4700
publications (86). This new project page replaces a previous
static site for the original dataset (www.yeastkinome.org)
and will be updated monthly with version control through
on-going S. cerevisiae curation. Project pages for other cu-
ration themes will be progressively implemented through
addition of gene-tag classifiers for all genes associated with
each theme-based curation project.

DATA DISSEMINATION

All BioGRID data records can be searched via standard
web search page interfaces or downloaded in a num-
ber of standardized tabular (tab, tab2 and mitab) and
structured (PSI-MI 1.0 XML, PSI-MI 2.5 XML, JSON)
formats (https://downloads.thebiogrid.org). The BioGRID
(https://wiki.thebiogrid.org/doku.php/biogridrest) and
BioGRID ORCS (https://wiki.thebiogrid.org/doku.php/
orcs:webservice) REST web services support over 1000
active projects worldwide that perform over 100 000
queries per month with an average return of ∼3.5 million
interactions per month. For example, the REST service
enables the direct comparison of all data in BioGRID
to real time experimental data in the ProHits mass spec-
trometry LIMS (87). The IMEx consortium PSICQUIC
API interface (88) also currently sends >170 000 queries
per month to BioGRID from third party plugins. In
addition to our work with the MODs on various curation
projects, BioGRID datasets are also made available via
third party meta-databases, resources, and query tools.
For example, BioGRID interaction data is available as a
hyperlink for all gene and protein entries in the widely-used
NCBI and UniProt databases, respectively (21,22). Other
major meta-database resources that disseminate BioGRID
data include STRING (32), Pathway Commons (31),
Gene Mania (89), InnateDB (90) and FlyAtlas (91) (see
https://wiki.thebiogrid.org/doku.php/partners for full list).
BioGRID data is also now disseminated through the Net-
work Data Exchange (92), which allows users to visualize
and explore networks drawn from BioGRID records (see
https://goo.gl/Zu6bTe).

We have continued to update BioGRID Wiki documen-
tation on all tools and resources (see http://wiki.thebiogrid.
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Figure 4. S. cerevisiae kinome project page at BioGRID. (A) Description of project with hyperlinks to resources and downloads. (B) Project-level statistics.
(C) Searchable project gene list and annotation.

org). In early 2016, we released two protocol papers that
outline key functions in step-by-step processes to aid new
users in using the platform (93,94). BioGRID also contin-
ues to maintain an active e-mail help desk to assist users and
facilitate the direct deposition of large datasets (biogridad-
min@gmail.com). Finally, all new source code has been de-
posited at our GitHub organizational page (https://github.
com/BioGRID) and we continue to update both our Twit-
ter feed (https://twitter.com/biogrid) and YouTube chan-
nel (https://www.youtube.com/user/TheBioGRID) with the
latest BioGRID news and feature updates.

FUTURE DEVELOPMENTS

BioGRID will continue to annotate protein, genetic and
chemical interaction data from the primary biomedical lit-
erature with a particular focus on HTP protein and ge-
netic interaction data, large-scale CRISPR screen data,
and themed human curation projects. The BioGRID cura-

tion pipeline will be further enhanced with improved text-
mining tools in conjunction with text-mining groups and
the BioCreative consortium. Collaborations with diverse
database partners, including MODs, phenotype databases,
and chemical databases will serve to disseminate BioGRID
curation data and foster cooperative curation efforts. We
will continue to provide resources and support for the prop-
agation of BioGRID data through partner databases. Ma-
jor new improvements are anticipated for BioGRID and the
linked BioGRID ORCS resource as we work towards Bi-
oGRID 4.0 as a comprehensive renewal of the database in-
frastructure and user interface. A revision of the Interaction
Management System is nearing completion and will specifi-
cally facilitate curation of complex experimental techniques
and higher-order interaction data types across all BioGRID
projects. Through these efforts, BioGRID will continue to
strive to provide a wide range of curated biological interac-
tion data for the biomedical research community.

http://wiki.thebiogrid.org
https://github.com/BioGRID
https://twitter.com/biogrid
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DATA AVAILABILITY

All data, software and resources referred to in this publica-
tion are available at the following URLs:

https://thebiogrid.org/
https://orcs.thebiogrid.org/
https://github.com/BioGRID
https://yeastkinome.org/
http://yeastkinome.thebiogrid.org/
https://downloads.thebiogrid.org/
https://webservice.thebiogrid.org/
https://phosphogrid.org/
https://www.youtube.com/user/TheBioGRID
https://twitter.com/biogrid
https://orcsws.thebiogrid.org/
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