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Abstract
A multiple linear regression model called MLR-3 is used for predicting the experimental n-octanol/water partition coefficient 
(log PN) of 22 N-sulfonamides proposed by the organizers of the SAMPL7 blind challenge. The MLR-3 method was trained 
with 82 molecules including drug-like sulfonamides and small organic molecules, which resembled the main functional 
groups present in the challenge dataset. Our model, submitted as “TFE-MLR”, presented a root-mean-square error of 0.58 
and mean absolute error of 0.41 in log P units, accomplishing the highest accuracy, among empirical methods and also 
in all submissions based on the ranked ones. Overall, the results support the appropriateness of multiple linear regression 
approach MLR-3 for computing the n-octanol/water partition coefficient in sulfonamide-bearing compounds. In this context, 
the outstanding performance of empirical methodologies, where 75% of the ranked submissions achieved root-mean-square 
errors < 1 log P units, support the suitability of these strategies for obtaining accurate and fast predictions of physicochemi-
cal properties as partition coefficients of bioorganic compounds.

Keywords Multiple linear regression · Empirical methods · n-Octanol/water partition coefficients · N-sulfonamides · 
SAMPL7 blind challenge

Introduction

The relevance of lipophilicity in the pharmaceutical sci-
ences has been known for over a century [1]. Lipophilicity 
is the affinity of a molecule for a lipophilic environment. 
The logarithm of the n-octanol/water partition/distribution 
coefficient of neutral and ionizable compounds −log PN and 
log DpH, respectively- are the gold standards of quantita-
tive descriptors of lipophilicity [2]. Thus, log PN has been 
used for predicting the ability of bioorganic compounds to 
cross cell membranes [3]. Nowadays, it is still being used 
for assessing the impact on pharmacokinetic parameters and 

potency [4], metabolism and excretion[5, 6], and toxicity [7] 
of research compounds.

To predict the log PN there are a plethora of computa-
tional methods [2] and SAMPL challenges aim to evalu-
ate them through blind predictions of physical properties 
[8]. In the framework of the SAMPL6 log PN challenge, 
several approaches were submitted: physical models, which 
made their predictions from molecular conformations using 
quantum mechanics (QM) and molecular mechanics (MM) 
methods, whereas empirical methods participated using two 
major categories, group contribution and quantitative struc-
ture–property relationships (QSPR) methods [9].

Multiple Linear Regression (MLR) analysis is a simple 
algorithm widely used in chemoinformatics. This method 
establishes a correlation between independent variables 
and the dependent variable [10]. Several MLR models have 
been built to predict the n-octanol/water partition coeffi-
cient of bioorganic compounds, which encompasses differ-
ent approaches based on calculated molecular descriptors 
[11], QM electronic descriptors [12], molecular holograms 
containing atom type information [13], volume and sur-
face area descriptors [14, 15], hydrophobic area and chain 
descriptors [15]. Accordingly, there are successful cases for 
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the prediction of log PN of organic compounds employing 
MLR approaches, especially for molecules within a close 
chemical space such as substituted aromatic drugs [15], 
polychlorinated diphenyl ethers [16], blocked tripeptides 
[17], fragment-like small molecules in the SAMPL6 log PN 
challenge [12], and sulfonamides [18].

Here, we report the results obtained by 3 different multi-
ple linear regression (MLR) models to reproduce the experi-
mental values of log PN for 22 sulfonamides in the SAMPL7 
log PN blind prediction challenge. The performance of MLR 
models is discussed together with an analysis of the com-
pound with the largest deviation between experimental and 
calculated log PN value. The method MLR-3 identified 
as “TFE-MLR” was the approach submitted for ranking 
purposes.

Methods

Dataset

The SAMPL7 blind challenge consisted of predicting the 
partition coefficient between water and n-octanol (log PN) 
of 22 N-acylsulfonamides synthesized by Ballatore Lab [19] 
(see Fig. 1). The set consisted of amide, oxetane, thietane, 
thietane-1-oxide, thietane-1,1-oxide, isoxazole and triazole 
N-acylsulfonamides derivatives. Most compounds in the 
dataset were achiral and just SM35, SM36 and SM37 had a 
chiral center. SMILES strings of the neutral molecules were 
provided by the organizers on the SAMPL7 website [20].

Multiple linear regression models

Taking into consideration the chemistry of the SAMPL7 
dataset (see Fig. 1), a total of 87 small molecules (see 
Table S1 and SI TFE-MLR_trainingset.xlsx) were chosen, 
based on the chemical space needed for the challenge, to 
build multiple linear regression models for predicting the 
experimental log PN of 22 N-sulfonamides proposed by 
the organizers of the challenge [20]. The chemical space 
of these molecules, including drug-like sulfonamides and 
smaller molecules, resembled the main functional groups 
present in the challenge dataset and the drug-like sulfona-
mides (see Fig. 2).

The SMILES codes and experimental log PN values 
were obtained from publicly available data in PubChem 
[21], DrugBank [22], and other specific sources [23–25]. 
These SMILES codes were transformed to sdf files using 
ChemmineOB package in R [26]. From the 87 molecules, 
five molecules were chosen randomly with the condition 
to be drug-like sulfonamides. This was done to mimic the 
nature of the blind challenge in terms of chemical space. 
In addition, we have sought to maintain a considerable 
number of observations to build up the model (~ 95%, 82 
molecules) -taking into consideration the small size of our 
set.

For the training set, multiple linear regression models 
(MLR) were used to find the existing relationship between 
a selected number of descriptors (di) and the experimental 
n-octanol/water partition coefficients (log PN,exptl.).

Fig. 1  Structures of 22 N-sulfonamides in the SAMPL7 log PN challenge dataset
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In Eq. 1, b stands for the intercept [27] and ci for the 
coefficients, which were estimated by regression analysis. 
The MLR models and the statistical analysis were done in R.

Training models used both functional group and molecu-
lar property-based descriptors (see Table 1).  In the former 
case, a straightforward functional group count was used as 
a descriptor; whereas in the latter case, molecular proper-
ties related to lipophilicity [11] were generated to obtain 
a better description of this physicochemical property. All 
used descriptors were computed using the packages Chem-
mineR [28] and ChemmineOB [26], however, the number 
of occurrence of a functional group was computed employ-
ing a modified in-house function of the packages mentioned 
before. Intercorrelations between descriptors were analyzed 
(see Fig. S1) as well as individual correlations for each 
descriptor to the experimental log PN values for the training 
set (see Table 1).

(1)log PN,exptl.=

n
∑

i=1

cidi + b

Fig. 2  Representation of a some small molecules of the training set 
which resembles the main functional groups in b molecules of the 
SAMPL7 dataset

Table 1  List of descriptors used in the present study and their coefficient of determination (R2) against experimental log PN values for the train-
ing set

Descriptor Definition R2

1.  RNH2 Count of primary amine groups 0.11
2.  R2NH Count of secondary amine groups 0.06
3.  R3N Count of tertiary amine groups 0.15
4.  ROPO3 Count of phosphate groups 0.00
5. ROH Count of alcohol groups 0.03
6. RCHO Count of aldehyde groups 0.00
7. RCOR Count of ketone groups 0.00
8. RCOOH Count of carboxylic acid groups 0.00
9. RCOOR Count of ester groups 0.06
10. ROR Count of ether groups 0.03
11.  RSO2NR Count of sulfonamide groups 0.03
12. RSR Count of thioether groups 0.00
13. RF Count of fluoroalkyl groups 0.13
14. RCl Count of chloroalkyl groups 0.01
15. RBr Count of bromoalkyl groups 0.01
16.  RSO2R Count of sulfone groups 0.00
17. C Count of carbon atoms 0.50
18. RINGS Count of rings

(aliphatic and aromatic)
0.30

19. AROMATIC Count of aromatic rings 0.34
20. HBA1 Count of hydrogen bond acceptors considering acceptor sites, i.e., the sum of lone pairs on the acceptor 

atoms
0.11

21. HBA2 Count of hydrogen bond acceptors considering acceptor counts, i.e., the sum of acceptor atoms 0.10
22. HBD Count of hydrogen bond donor atoms 0.02
23. PSA Polar surface area in Å2 0.05
24. MR Molar refractivity in  cm3/mol 0.41
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For the purpose of this study, 3 different models were 
tested to select the approach that best reproduces experi-
mental values of n-octanol/water partitions coefficients of 
neutral compounds. First, the approach labeled MLR-1, used 
the count of structural features represented by descriptors 
from 1 to 19 (see Table 1). Next, the second approach (MLR-
2) added descriptors related to intramolecular interactions 
as hydrogen bond acceptors sites (HBA1), hydrogen bond 
acceptors atoms (HBA2), and hydrogen bond donor atoms 
(HBD), descriptors from 1 to 22 (see Table 1). Finally, the 
last model (MLR-3) appended two computed atomic contri-
butions, the polar surface area (PSA) and molar refractivity 
(MR), descriptors from 1 to 24 (see Table 1). The perfor-
mance of all approaches was compared through statistical 
analysis (see Table 2).

For the test set, 5 sulfonamide-bearing drugs (see Fig. 3) 
were randomly chosen from the original set (see Table S1). 
A statistical comparison between the experimental log PN 
values for the test set and the forecasted value by our MLR 
methods, as well as other common approaches [15, 29, 30] 
(see Table S2) was made to further check the suitability of 
the 3 MLR models mentioned above (see Table 3). Besides, 
k-fold cross-validation with k = 5 was performed to validate 
the 3 models mentioned above (see Table S4).

Supported by statistical analysis and based on predictive 
power in both training and test set (see Fig. 4), the quan-
titative structure–property relationship (QSPR) approach 
summited to account for predicting the SAMPL7 exper-
imental log PN values was the method labeled MLR-3. 

Table 2  Statistical parameters 
of MLR approaches for 
predicting experimental log 
PN values for the training set 
(n = 82).a

R2, squared coefficient of determination; R2
adj

 , adjusted squared coefficient of determination; RMSE, root-
mean square error in log P units; s, residual standard error; F, Fisher ratio; p-value; statistical p value

Model R2
R2
adj

RMSE s F p-value

MLR-1 0.79 0.73 0.72 0.83 12.6 1.02 ×  10–14

MLR-2 0.82 0.75 0.68 0.80 12.2 1.30 ×  10–14

MLR-3 0.84 0.77 0.64 0.77 12.3 9.00 ×  10–15

Fig. 3  Structures and experimental log PN of 5 biologically active sulfonamide-bearing drugs chosen as prediction set

Table 3  Statistical parameters of the comparison between experi-
mental and predicted log PN values for the test set using the 3 MLR 
approaches and other common approaches

a MSE, mean signed error; MUE, mean unsigned error
b The bolded row represents the submitted approach
c Ref. [29]
d Ref. [15]
e Ref. [30]

Method MSEa MUEa RMSE R2

MLR-1 -0.04 0.51 0.66 0.72
MLR-2 0.00 0.31 0.40 0.90
MLR-3b 0.05 0.12 0.20 0.98
ChemAxonc 0.05 0.24 0.28 0.98
VLifeMDSd -0.73 0.90 0.97 0.72
DataWarriore -0.20 0.74 0.90 0.72
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Details of the model including the list of descriptors, their 
coefficients, and model parameters are listed in Table S3.

An additional test set, called DB40 (see SI TFE-MLR_
DB40.xlsx), was built by filtering the sulfonyl moiety in the 
DrugBank database (1102 molecules) and after removing 
molecules already used in the set of 87 small molecules 
mentioned above. Thus, a final set of 40 approved drugs and/
or drug-like molecules was tested with the MLR-3 method 
(see Fig. S5) to verify the applicability of the method in 
other biologically active sulfonyl-bearing drugs. Finally, by 
combining the training, test, SAMPL7, and DB40 datasets 
(149 molecules) and paying special attention to the worst 
predictions, the general performance of the MLR-3 method 
is also presented.

Results and discussion

The method presented in this work for predicting the log 
PN of 22 N-sulfonamides in the SAMPL7 challenge dataset 
corresponds to the “TFE-MLR” submission. The quantita-
tive structure–property relationship (QSPR) approach was 
based on the multiple linear regression model called MLR-3, 
as further described in the methods section.

The functional group descriptors with the main individual 
correlations (see Table 1) were the number of carbon atoms 
(R2 = 0.50), number of aromatic rings (R2 = 0.34), number of 
aliphatic rings (R2 = 0.30), count of tertiary amine, fluoro-
alkyl, and primary amine groups (R2 = 0.15, R2 = 0.13, and 
R2 = 0.11, respectively). The presence of representative func-
tional groups in the training set has a direct impact on the 
prediction of n-octanol/water partition coefficient, as this 
strategy has been exploited in a wide variety of formalisms, 
from atomic to fragmental strategies [31–33]. On the other 
hand, molar refractivity (R2 = 0.41), hydrogen bond accep-
tor site, and hydrogen bond acceptors atoms (R2 = 0.11 and 

R2 = 0.10, respectively) were the molecular property-based 
descriptors that best correlated the training model. Both 
descriptors have been employed to compute n-octanol/water 
partition coefficients in previous works [27], where molar 
refractivity was used as a surrogate of molecular size, whilst 
hydrogen bond counts reflected intermolecular interactions. 
For the sake of clarity, despite hydrogen bond descriptors 
(HBA1 and HBA2) [28] are correlated (see Fig S1), they 
give differentiated information (for details see Fig S2), i.e., 
HBA2 takes into account electron pairs on nitrogen atoms 
able to delocalize, whereas HBA1 does not.

We decided to submit the approach called MLR-3 
because it presented the most suitable statistical param-
eters (see Table 2) supported by cross-validation analysis 
(see Table S4). In addition, a preliminary prediction of 5 
biologically active sulfonamide-bearing drugs chosen as 
prediction set was surprisingly accurate using this model 
(see Fig. 3 and Table 3). In fact, our model outperforms the 
results obtained with common algorithms for log PN, e.g., 
ChemAxon [29] and DataWarrior [30], and MLR models 

Fig. 4  Comparison between experimental and predicted n-octanol/
water log PN using the MLR-3 model for the training (blue) and test 
(orange) set

Table 4  Calculated submission ID “TFE MLR”—and experimental 
n-octanol/water partition coefficient -log PN—determined for the 22 
sulfonamides included in the SAMPL7 dataset

a Bold value represents the compound with the largest deviation 
between theoretical and experimental value

Compound Calculated Experimental Δlog P (calc-exptl)

SM25 2.35 2.67 ± 0.01 − 0.32
SM26 1.19 1.04 ± 0.01 + 0.15
SM27 1.47 1.56 ± 0.11 − 0.09
SM28 1.87 1.18 ± 0.08 + 0.69
SM29 1.47 1.61 ± 0.03 − 0.14
SM30 2.74 2.76 ± 0.19 − 0.02
SM31 1.55 1.96 ± 0.14 − 0.41
SM32 1.98 2.44 ± 0.17 − 0.46
SM33 3.25 2.96 ± 0.21 + 0.29
SM34 2.06 2.83 ± 0.20 − 0.77
SM35 1.37 0.88 ± 0.02 + 0.49
SM36 2.64 0.76 ± 0.05 + 1.88a

SM37 1.45 1.45 ± 0.10 + 0.00
SM38 0.94 1.03 ± 0.07 − 0.09
SM39 2.21 1.89 ± 0.13 + 0.32
SM40 1.01 1.83 ± 0.05 − 0.82
SM41 1.45 0.58 ± 0.02  + 0.87
SM42 1.58 1.76 ± 0.03 − 0.18
SM43 0.38 0.85 ± 0.01 − 0.47
SM44 1.39 1.16 ± 0.03  + 0.23
SM45 2.66 2.55 ± 0.04  + 0.11
SM46 1.46 1.72 ± 0.01 − 0.26
RMSE 0.58
MUE 0.41
MSE 0.05
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trained with specific compounds as substituted aromatic 
drugs, e.g., VLifeMDS [15].

Table 4 shows the predicted log PN values for the 22 
N-sulfonamides in the SAMPL7 challenge dataset. The root-
mean-square error (RMSE) between fitted values using the 
MLR-3 model and experimental data is 0.58 log P units. 
As noted in Figures S3 and S4, our model has the lowest 
RMSE in the empirical methods category, contemplating 
the outstanding performance of these methods, where six 
out of the eight empirical ranked methods have a RMSE < 1 
in log P units. The second best RMSE of the ranked submis-
sions was Chemprop [34], which consists of message pass-
ing neural networks (MPNN) created by an MIT research 
group. Chemprop’s submitters used this MPNN with a pro-
cessed version of the OPERA [35] log P data set. This model 
has been used for different prediction purposes: properties, 
antibiotic probability, and SARS-Cov inhibition [34]. The 
third lowest RMSE was GROVER (graph representation 
from self-supervised message passing transformer) [36], 
which incorporates MPNN into the transformation to give 
more expressive encoders and flexibility. ffsampled_deep-
learning_cl1 entry also used a MPNN. This algorithm was 
based on a previously reported NN [37]. ClassicalGSG used 
NN for the prediction employing as inputs: molecular fea-
tures generated with a method called Geometric Scattering 
for Graphs (GSG) and classical molecular dynamics [38]. 
Finally, TFE_Attentive_FP used a graph neural network with 
a novel architecture called Attentive FP. This NN architec-
ture includes an attention mechanism that focuses on the 
most important parts of the inputs to achieve better predic-
tions [39].

Among the 17 participants/organizations allowed ranked 
submissions, which include physical (QM and MM) and 
empirical categories, our approach MLR-3 (submission id: 
“TFE-MLR”) is ranked at the  1st position as determined by 
the root-mean-squared error and mean absolute error (see 
Fig. S3). Comparing to physical methods, two Quantum 
Mechanics (QM) ranked methods (COSMO-RS and IEF-
PCM MST) and none Molecular Mechanics (MM) achieved 
an RMSE around 1 log P units (in ranked submissions). The 
less time-consuming, cheaper computational cost, and good 
performance make the simple multiple linear regression 
models, as well as other empirical approaches (e.g., machine 
learning), attractive strategies to compute lipophilic descrip-
tors as log PN. Despite most well-performing methods for 
computing log PN in the SAMPL7 blind challenge belonged 
to empirical methodologies [40], it must be kept in mind 
that it presents important disadvantages regarding strategies 
based on molecular mechanics and/or quantum chemistry. 
For instance, have a high dependence on the training set as 
this limits the coverage of molecules that can be predicted 
[41] (e.g., our approach was trained for predicting partition 
coefficients for drug-like sulfonamides compounds) and to 

the best of our knowledge, empirical methods are not able 
to assign a partition coefficient to a specific conformation 
of the molecule under analysis, these facts limit subsequent 
applications, e.g., the study of bioactive conformations, that 
MM and/or QM approaches can face.

For the sake of consistency with the results obtained for 
the training and test set, Table 5 reports statistical param-
eters of predicted log PN values for the 22 N-sulfonamides in 
the SAMPL7 challenge dataset using the 3 MLR approaches 
described in the methods section. As expected, the submit-
ted model obtained the highest accuracy among the MLR 
approaches tested. In addition, MLR-3 had a better perfor-
mance with the SAMPL7 set (RMSE = 0.58 log P units) than 
with our training set (RSME = 0.64 log P units, see Table 2).

Analyzing the difference between the predicted and 
experimental values, the notable outlier is the compound 
SM36 (see Table 4), which shows an error in the predicted 
log PN that roughly diverges 3 times the model uncertainty 
(RMSE = 0.64). In fact, SM36 is the only compound in our 
method with an absolute error larger than 1 log units. For 
the sake of comparison, it is worth noting that the three 
most accurate empirical methods (MLR-3, Chemprop, and 
GROVER) evidence the same tendency, the overestimation 
of the log PN of compound SM36 which amounts, on aver-
age, to 1.61 log units. Exclusion of SM36 improves signifi-
cantly the ability of prediction of our approach, reducing the 
RMSE by 26% and increasing the R2 by 51% (see Fig. 5).

The experimental log PN reported for SM36 is low 
considering the chemical structure of this compound. For 
instance, SM35 has a phenyl group in the sulfonamide 
moiety instead of the methyl group in SM36 (see Fig. 1). 
Thus, it is expected a higher log PN value for SM36 because 
benzene rings are significant lipophilic fragments [42–44], 
however, it was not the experimental observation for the pair 
SM35-SM36. Comparison of analogous situations in pairs 
of molecules: SM29-SM30, SM32-SM33, SM41-SM42, and 
SM44-SM45 reveals the conventional increase in the experi-
mental log PN resulting from the substitution of methyl for 
phenyl groups. Figure 6 depicts the experimental tendency 
observed in the log PN for phenyl/methyl analogs, which was 
the predicted situation employing our method except for the 
pair SM35–SM36.

Table 5  Statistical parameters of the comparison between experi-
mental and predicted log PN values for the 22 N-sulfonamides in the 
SAMPL7 challenge dataset using the 3 MLR approaches

a The bolded row represents the submitted approach

Method MSE MUE RMSE R2

MLR-1 0.03 0.62 0.73 0.13
MLR-2 0.12 0.51 0.66 0.24
MLR-3a 0.05 0.41 0.58 0.42
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Because the model was intended as a local model to accu-
rately determine the n-octanol/water log PN for the SAMPL7 
dataset, it provides an approach to test the reliability of other 
compounds that comply with the domain of application of 
our model, this means biologically active sulfonyl-bearing 
drugs. For this reason, we decided to test the DB40 set (see 
methods section for details) whose prediction power was less 
than that of SAMPL7 (RSME = 1.13, see Fig. S5), however, 
it can still represent an acceptable estimate considering that 
the variability of experimental values can often amount to 
0.6 units of log P [45].

Finally, we have used 149 compounds belonging to the 
training, test, SAMPL7, and DB40 datasets to further check 
the reliability of the MLR-3 model, where we have detected 
only six outliers exceed for 3 times the model uncertainty 
(see Fig. 7, top). Here, rosuvastatin (DB40 set) represents 

the largest absolute deviation (3.08), followed by other two 
compounds of the DB40 set, vardenafil (2.12) and tirofiban 
(2.10), next a compound of the training set, brinzolamide 
(1.97), then another compound of DB40 set, meloxicam 
(1.89), and finally, a compound of the SAMP7 set, SM36 
(1.88). In the case of rosuvastatin and brinzolamide, the 
predicted log PN value are 3.21 and 0.17, respectively (see 
SI TFE-MLR_DB40.xlsx and TFE-MLR_trainingset.xlsx), 
whereas DrugBank Database [22] reports experimental log 
PN values of 0.13 and − 1.80, respectively, but without avail-
able reference. Nevertheless, conducting a more exhaustive 
search in the literature it is reported experimental log PN val-
ues of 2.52 for rosuvastatin [46] and 0.82 for brinzolamide 
[47], which are in better agreement with the predicted value. 
Indeed, we implement those verified experimental values 
in the DB40 set, and taking into account that it is impera-
tive of being able to verify the sources of the experimen-
tal values, we decided to omit the values for vardenafil and 
tirofiban. Thus, a new set of 147 compounds was tested with 

Fig. 5  Comparison between experimental and the multiple linear 
regression method for determining the n-octanol/water log PN for 
the SAMPL7 dataset. Red point illustrates the outlier founded in our 
method. Top left, statistical analyses are shown for all compounds 
and bottom right, after exclusion of SM36

Fig. 6  Difference between experimental log PN of SAMPL7 phenyl/
methyl N-sulfonamides analogs. Δ log P corresponds to the differ-
ence between log PPhenyl analogous–log PMethyl analogous

Fig. 7  Comparison between experimental and predicted n-octanol/
water log PN using the MLR-3 model for 149 (top) and 147 (bottom) 
molecules from the training (blue), test (orange), SAMPL7 (light 
blue), and DB40 (unfilled dots) sets (top). In the second graph (bot-
tom), two values from the DrugBank dataset without providing the 
source were omitted and two experimental values were modified by 
those from confirmed experimental sources. Red points represent the 
outliers founded in both sets using our MLR-3 method (meloxicam 
and SM36 present the same deviation)
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our model (see Fig. 7, bottom) which reduces the RSME 
between predicted and experimental data to ∼ − 0.10 (log P 
units). The remaining outliers are SM36, whose peculiarities 
were explained above, and meloxicam which is a compound 
that our method was unable to properly determine its log PN 
value for own limitations of our local model, presumably due 
to lack of a correct description of crucial functional groups 
as enolic groups which can present several tautomeric forms 
and also favor conformations with specific intramolecular 
hydrogen bonds [48].

Overall, the results support the appropriateness of our 
multiple linear regression model for computing lipophilic 
descriptors as the n-octanol/water partition coefficient in 
drug-like sulfonamides compounds. Furthermore, the out-
standing performance of empirical methodologies, where 
75% of the ranked submissions achieved root-mean-square 
errors < 1 log P units, reinforce the suitability of these strate-
gies for obtaining fast and accurate predictions of physico-
chemical properties of bioorganic compounds.

Conclusions

Fast and accurate predicting of the n-octanol/water partition 
coefficient in compounds of pharmacological relevance is of 
utmost importance for evaluating their molecular quality. 
Within the framework of the blind partition coefficient chal-
lenge SAMPL7, we have explored the performance of a mul-
tiple linear regression model called MLR-3 for predicting 
the n-octanol/water partition coefficient of 22 sulfonamides. 
Taking into consideration the small number of molecules in 
our training set and the simplicity of the descriptors used, 
the results obtained have been encouraging and support the 
efficiency of the straightforward strategy presented here for 
computing n-octanol/water log PN. Even though the selec-
tion of training molecules was appropriate for the aim of this 
study, we are aware of the limitations of our model in terms 
of the application domain. In this context, future studies will 
be focused on the use of a more extensive and diverse set of 
experimental data to apply the approach developed here to 
other kinds of bioorganic compounds for the sake of having 
a generalized model.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 021- 00409-2.
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