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Abstract
A variety of genome-wide profiling techniques are available to investigate complementary aspects of genome struc-
ture and function. Integrative analysis of heterogeneous data sources can reveal higher level interactions that
cannot be detected based on individual observations. A standard integration task in cancer studies is to identify
altered genomic regions that induce changes in the expression of the associated genes based on joint analysis of
genome-wide gene expression and copy number profiling measurements. In this review, we highlight common
approaches to genomic data integration and provide a transparent benchmarking procedure to quantitatively com-
pare method performances in cancer gene prioritization. Algorithms, data sets and benchmarking results are avail-
able at http://intcomp.r-forge.r-project.org.
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INTRODUCTION
Genome-wide profiling technologies, in particular

microarrays and next-generation sequencing, are

used to characterize disease-associated changes at

various levels of genome function. Identification of

the key players—genes, chromosomal regions or

biological processes—is a fundamental step toward

mechanistic characterization of the disease and

revealing molecular targets for potential therapeutic

intervention. Genomic, transcriptomic, epigenomic

and proteomic measurements characterize different

aspects of genome regulation and function that are

particularly relevant for cancer research [1, 2].

Integrative analysis has been used to prioritize disease

genes or chromosomal regions for experimental test-

ing, to discover disease subtypes [3, 4] or to predict

patient survival or other clinical variables [5].

Co-occurring genomic observations are increasingly

available in private and public repositories, such as

the Cancer Genome Atlas database [6] and the

Leukemia Gene Atlas [7], promoting wide access

to data resources. However, the lack of algorithmic

implementations forms a bottleneck hampering inte-

grative approaches.
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The integration of gene expression (GE) and copy

number (CN) data to identify DNA CN alterations

that induce changes in the expression levels of the

associated genes is a common task in cancer studies

[8]. The detection of chromosomal regions with

exceptionally high statistical association between

CN and GE can pinpoint disease genes and potential

cancer mechanisms [9, 10]. First, high-throughput

analyses were reported about a decade ago [11–13],

evidencing a clear cis-dosage effect of CN alterations

on GE levels [14–16]. Although the downstream

effect of CN alteration on GE is still a focus of on-

going research [17, 18], a systematic quantitative

comparison of alternative approaches for integrating

GE/CN data has been missing, as recently high-

lighted by Huang et al [8]. Hence, we designed a

quantitative benchmarking procedure to compare

12 publicly available methods for cancer gene priori-

tization based on integrative analysis of CN/GE pro-

filing data on two simulated and three real case

studies. In the following sections, we give a meth-

odological overview, introduce the analysis pipeline

and discuss the benchmarking results.

QUANTIFYINGASSOCIATIONS
BETWEENGE AND CN
The available implementations for the integrative

analysis of GE and CN can be roughly divided in

four main categories. In this section, we provide a

general overview of these approaches with further

references to individual algorithms.

Two-step approaches
A comparison of GE levels between groups of sam-

ples with distinct CN status aims at revealing

CN-induced transcriptional responses. Several

approaches separately either first assess the alterations

in each data set and then compare the results from

both or assess alterations in GE in genes or genomic

regions previously identified by an assessment of CN

alterations to model changes in GE based on the CN

signals [16, 19]. This corresponds to the biological

intuition concerning the cis-regulatory effect of CN

alterations. In the first step, samples and genes are

grouped based on estimated CN levels, estimated

probabilities of CN alterations [20] or quantiles

[21]. In the second step, differential GE is quantified

either between such groups or independently (with

respect to a reference sample) using standard

approaches for GE analysis such as the t-test which

assesses the difference between two sample groups

based on Gaussian assumptions [13]. Nonparametric

[20, 22] and permutation-based alternatives [23, 24,

36] have also been suggested to relax the normality

assumptions of the t-test. Cancer-associated changes

often affect chromosomal regions with varying sizes,

which potentially contain multiple genes. Therefore,

some methods have been designed to specifically

detect large regions affected by CN alteration

rather than prioritize individual genes [19, 24].

Nevertheless, the regional modeling of GE and

CN data can help to pinpoint individual driver

genes whose expression is most notably affected by

a larger chromosomal alteration.

Regression approaches
Another class of tools uses regression models, gener-

ally with CN as the predictor and GE as the response

variable, again exploiting the biological intuition

concerning the cis-regulatory effect of CN alter-

ations. Both linear [12] and nonlinear regression

models [25] have been proposed. Univariate linear

regression models have been designed to model the

associations between individual CN and GE probes

[26], as well as multiple and/or multivariate linear

regression models that combine statistical power

across multiple probes targeting adjacent genes or

chromosomal positions [14, 26–28]. Regression

models are theoretically related to correlation ana-

lysis. For instance, the square of Pearson’s correlation

coefficient estimates the proportion of variance in

the response variable that is explained by the pre-

dictor in a univariate linear regression. In case, vari-

ables are standardized beforehand, the regression

coefficient of the predictor variable equals Pearson’s

correlation coefficient.

Correlation-based approaches
DR-Correlate [21] and a modified version of

Ortiz-Estevez algorithm [16] use correlation-based

analysis to scan over the genome and detect loci

with exceptionally high associations between CN/

GE. To address potential shortcomings with respect

to a biologically inadequate reflection of CN and GE

abnormalities by ordinary correlation analysis,

Schäfer et al. [29] substitute sample means by the

reference medians, and Lipson et al. [30] use

quantile-based analysis to obtain improved correl-

ation coefficients. Furthermore, canonical correlation

analysis (CCA) has been suggested to identify general

linear associations between CN and GE data through
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flexible detection of weighted combinations of

probes, which reveal maximal correlations between

the two data sources. This is expected to more effi-

ciently distinguish the relevant shared variation of the

GE/CN data from the data set-specific effects [34].

Various modifications for dimensionality reduction

and model regularization have also been proposed

based on principal component analysis [31] and

penalized approaches based on LASSO, elastic net

or other constraints to obtain sparse or regularized

versions of CCA [5, 32–34]. Although regularization

may reduce overfitting and sparsity can simplify in-

terpretation of the results, setting the appropriate

regularization parameters may be a challenging task.

Latent variable models
Latent variable approaches are used to model directly

the data-generating processes. For instance, the pint/

simcca algorithm [34] decomposes GE and CN data

sets into shared and independent Gaussian compo-

nents based on regularized probabilistic CCA. A

comparison of the shared and data set-specific signals

is used to pinpoint chromosomal regions with ex-

ceptionally high levels of dependence between the

GE/CN observations. Related matrix decompos-

ition models and iterative, dependence-seeking pro-

jections have been suggested based on generalized

singular value decomposition [3] and independent

component analysis [35]. The advantage of latent

variable models in comparison with the two-step-,

correlation- or regression-based approaches is that

they explicitly model both the signal and noise in

the data, and take into account the uncertainty in

the model by integrating over the unknown latent

variables. These properties help distinguishing signal

from noise in a robust manner, but often come at an

increased computational cost.

BENCHMARKINGTHE
ALGORITHMS
Manual literature search in PubMed and Google

Scholar using combinations of the keywords ‘gene

expression’, ‘copy number’, ‘integration’ and inspec-

tion of the Bioconductor repository (http://www

.bioconductor.org) were performed to identify avail-

able implementations, yielding 12 algorithms that

were applicable for cancer gene prioritization based

on integrative analysis of GE/CN data (Table 1).

The source code for Ortiz-Estevez [16] was obtained

from the authors. An automated benchmarking

pipeline was created to compare method perform-

ance on two simulated data sets and three real case

studies (http://intcomp.r-forge.r-project.org).

Each method was used to prioritize candidate

cancer genes, followed by a comparison with a

golden standard list of known cancer genes, and

ranking of the methods based on receiver operating

characteristic (ROC) analysis of the prioritized gene

lists and running times. Investigating the true positive

rate among the top findings complemented the

standard area under curve (ROC/AUC) analysis,

which considers the overall prioritized gene list.

Default parameters for each method were used

where possible. The following exceptions were

made to apply the algorithms to cancer gene priori-

tization. In DR-Correlate [21], empirical P-values

from 1000 random gene permutations were used

to rank the genes. The DR-Correlate t-test option

was not applicable on the Ferrari simulations due to

the low number of replicate samples. CNAmet

[24, 36] requires called CN values and provides sep-

arate lists for amplifications and deletions; thus, the

two lists were pooled and ranked based on the

P-values. Moreover, to enable an unbiased AUC

comparison of CNAmet with all other methods

(that prioritize all genes), random ranks were assigned

to genes labeled by CNAmet with no P-value

(nonsignificant genes). With intCNGEan [20], the

weighted Mann–Whitney test with univariate ana-

lysis was used with an effective P-value threshold of

0.1. In pint/simcca [34], segmented CN data were

used only when the resolution of the CN platform

was higher than the resolution of the GE microarray.

In PREDA/SODEGIR, we used ‘spline’ for

smoothing, 1000 random gene orderings of the

output regions and the median AUC as an unbiased

output for gene prioritization.

For all methods, GE and CN probes were

matched by selecting for each GE probe the closest

CN probe within the same chromosomal arm.

One-to-one matching between the GE and CN

data was required in the real case studies [34, 37];

in simulation experiments, the original simulation

procedures [19, 29] were followed as described

below. The preprocessing of CN data depends par-

tially on the platform resolution. On the latest

high-density SNP arrays, for instance, segmentation

strategies are essential for estimating the CN for in-

dividual genes [8]. Various approaches consider to

investigate only certain genomic regions at a time,

e.g. to avoid bias, and propose different strategies to
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select the size of the chromosomal region, including

fixed windows in terms of consecutive probes or base

pairs [28, 30, 34], chromosome arms or minimal

common regions [26] or performing kernel regres-

sion [19], where the probe signals are modeled with a

smoothing function which accounts for the

nonuniform distribution of the genes along the

genome.

Simulated data
Two simulated data sets were generated by roughly

following Schäfer et al. ([29]; ’Schäfer’ data) and

Bicciato et al. ([19]; ’Ferrari’ data). The simulations

are based on general assumptions regarding the asso-

ciations between the (altered) CN and GE signals in

genome-wide profiling studies, as detailed in the ori-

ginal publications. For the ‘Schäfer’ data set, CN and

GE values are drawn from a normal mixture where

two components represent aberrations of different

extent for each locus; 100 samples were created for

each input with mixing proportions of either 10% or

90% for the affected and normal regions. Varying

noise levels were imposed using multiple variance

parameters (0.25, 0.5, 1, 2 and 4 times an adjusted

median absolute deviation of the data). The data

points are organized in 16 equally sized blocks to

mimic affected regions. The ‘Ferrari’ data with six

samples was created by manipulating a renal cell car-

cinoma data set through permutation of loci and

adding or subtracting constants to both CN and

GE values within 10 blocks of 10 Mbp. Normal

control data was generated by subtracting the

median across the samples [19].

Real case studies
We investigated two publicly available breast cancer

data sets [12, 13] and a leukemia study [38].

Expert-curated lists of known breast cancer genes

[39] and leukemia genes from the Cancer Gene

Census [40] were used as the ground truth for the

benchmarking experiments, respectively. The pre-

processed ‘Hyman’ data set [13] contains 14 breast

cancer cell lines, 7489 genes and 48 known breast

cancer genes. The preprocessed ’Pollack’ data set [12]

contains 41 breast cancer samples, 4287 genes and 38

known breast cancer genes. The preprocessed

‘Mullighan’ data set consists of 171 acute lympho-

blastic leukemia (ALL) samples divided into 9 sub-

types [38, 41], 2162 genes in the matched CN/GE

data and 39 known leukemia genes. A combination

of standard algorithms was used to preprocess the

500 K Affymetrix CN data [42–44] and the

Affymetrix GE data [45–47] for the Mullighan data

set. The CN data (Affymetrix Human Mapping

500 K) was downloaded from ftp://ftp.studje.org

and normalized with CRMA v2 [42]. The

log-additive model from the CRMA v1 algorithm

[43] was used for probe summarization. Data values

from the Nsp and Sty array of the 500 K set were

combined and segmented with CBS [44].

Table 1: Summary of the comparison algorithms

Implementation CN preprocessing Methodology Significance scoring Reference

CNAmet (R) Called Custom statistic; PPT; aberrant regions [24]
Two step [36]

DR-Correlate/t-test (BC) Raw/segmented Two step PPT; P-values [21]
DR-Correlate (BC) Raw/segmented COR PPT; P-values [21]
edira (R) Raw/segmented Custom statistic; NT; P-values [29]

COR
intCNGEan (R) cghCall object Custom statistic; PNT; P-values [20]

Two step
Ortiz-Estevez (R) Raw/segmented Two step PNT; P-values [16]
PMA (CRAN) Raw/segmented LV; COR PLV; P-values [56]
PREDA/SODEGIR (BC) Raw/segmented Custom statistic; PPT; aberrant regions/ [19]

Two step q-values [48]
pint/simcca Raw/segmented LV; COR PLV; P-values [34]
SIM (BC) Raw/segmented REG PT; P-values [26]

The implementations are available through Bioconductor (BC); CRANor R source code (R).The CN preprocessingmethods requiredby each algo-
rithm are listed. COR, correlation analysis; REG, regression analysis; LV, latent variables analysis; PT, parametric test; NT, nonparametric test;
PNT, permutation test based on statistic of nonparametric test; PPT, permutation test based on statistic of parametric test; PLV, permutation
test based on latent variable score.
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GE profiles of the same ALL specimens, measured

with the Affymetrix HG-U133A platform, were ob-

tained from GEO (GSE12995; [45]) and prepro-

cessed with the RPA algorithm [46] and

EntrezID-based custom chip definition file (v13;

[47]). The reference for GE and CN data was

defined as the median normalized log ratios across

all samples. In all data sets, probes with no

EntrezID or location information and probes map-

ping to multiple locations or in sex chromosomes

were excluded. Missing values were imputed by

Gaussian random samples using the mean and vari-

ance of the data.

RESULTS
The cancer gene prioritization performance of the

comparison methods as quantified by the AUC ana-

lysis is summarized in Figure 1 (for the ROC curves,

see Supplementary Figure S1). The highest median

ranking across the five benchmarking data sets was

obtained by edira (1), followed by Ortiz-Estevez (4)

and pint/simcca (4). Each of these three methods

outperformed the others on at least one data set.

Note that the performance of edira with the

‘Schäfer’ data set and of PREDA/SODEGIR with

the ‘Ferrari’ data set needs to be carefully interpreted,

since these simulations were originally constructed to

follow the particular modeling assumptions of these

algorithms in the original publications [19, 29]. The

complete benchmarking results are available at the

project website.

Considering the true-positive rate among the

top 200 genes of each algorithm, pint/simcca had

the highest median ranking (1), followed by

edira, Ortiz-Estevez and PREDA/SODEGIR (3;

Supplementary Figure S2). These methods had sys-

tematically the highest median rankings with mul-

tiple thresholds (20, 50 and 100 top genes). Notably,

although edira and PREDA/SODEGIR had the

highest AUC scores on the Schäfer data, most of

other algorithms outperformed these methods with

respect to known true positives among the top find-

ings in this data set.

Differences regarding the running times were con-

siderable (Supplementary Table S1). Specifically,

edira and PMA were the fastest methods with less

than 1 min running time in all data sets, closely fol-

lowed by Ortiz-Estevez with a maximum running

time of <3 min. The number of permutations in sig-

nificance testing affects remarkably the running times

of CNAmet, DR-Correlate, intCNGEan and

PREDA/SODEGIR, although in the latest version

of PREDA/SODEGIR a parallelized version has

been implemented to reduce computation time [48].

DISCUSSION
Prioritization of disease genes is a key-modeling task

in functional genomics [49–52]. This review pro-

vides an overview and quantitative benchmarking

Figure 1: AUCvalues in ROC analysis quantify cancer gene prioritization performance of the methods for the five
benchmarking data sets. High values indicate high true-positive versus false-positive ratio among the top findings;
the dashed line indicates the expected AUC value for a random gene list (AUC¼ 0.5). The methods have been
ordered by their median rank across all data sets. For the ROC curves, see Supplementary Figure S1.
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of publicly available algorithms for detecting associ-

ations between GE and CN alterations. Our work

complements the recent review by Huang et al. [8],

who pointed out the lack of quantitative compari-

sons of the available methods. The ‘intcomp’ bench-

marking package applied in this review is freely

available at R-forge (http://intcomp.r-forge

.r-project.org) to facilitate transparent comparisons

and the addition of new algorithms, benchmarking

procedures and validation data sets.

The comparison of 12 algorithms with respect to

their cancer gene prioritization performance revealed

systematic differences across independent data

sets, preprocessing scenarios and sample sizes.

Interestingly, while no systematic differences be-

tween the four main categories of GE/CN integra-

tion approaches were seen, systematic differences

between individual methods were evident. In par-

ticular, edira, Ortiz-Estevez and pint/simcca consist-

ently outperformed the other methods. Considering

both relative performance and running time, edira

and Ortiz-Estevez seem to offer an optimal trade-off,

although all methods have acceptable running times

for practical applications. While none of the methods

outperformed the others in all data sets, identification

of the few best-performing implementations pro-

vides quantitative guidance for the selection of ana-

lysis tools and has therefore direct practical relevance

for cancer studies.

Benchmarking the algorithms on real data is cru-

cial since simulation studies are unlikely to capture all

complexities present in real data. However, the avail-

ability of suitable benchmarking data sets is limited.

We selected publicly available data sets in which

both GE and CN data from the same samples are

available and independent lists of known cancer

genes obtained from the literature. The model per-

formance is in general better in the simulation stu-

dies, compared to the real cancer data sets, suggesting

that manually curated cancer gene lists may be only

coarse approximations of the ground truth in the real

case studies and that simulations may have lower

noise levels. On the other hand, simulation proced-

ures are only rough approximations of the biological

reality and the simulation schema can remarkably

affect model performance. For instance, variants of

DR-Correlate and CNAmet performed well with

‘Schäfer’ simulated data, but their performance

dropped close to random expectation in the

‘Ferrari’ data set. The ‘Ferrari’ simulations assume

that the CN effect is visible in all tumor samples,

which can be particularly disadvantageous for

DR-Correlate and other methods that rely on vari-

ations between the aberration profiles across the sam-

ples. The ‘Ferrari’ and ‘Schäfer’ simulated data sets

were originally designed to evaluate the perform-

ances of PREDA/SODEGIR and edira methods,

and this aspect potentially causes positive bias

on these methods in the respective data sets.

Moreover, certain methods, such as CNAmet [36],

Ortiz-Estevez [16] or PREDA/SODEGIR [19],

have originally been designed to prioritize altered

chromosomal regions rather than individual genes.

Our benchmarking procedure is based on the priori-

tization of individual genes since this is the most

prevalent objective shared by the available GE/CN

integration algorithms.

Since chromosomal CN alterations represent a key

feature of cancer, well-performing GE/CN analysis

methods are expected to have a good prioritization

performance of known cancer genes. However, cer-

tain cancer genes may be overlooked by integrative

approaches that focus only on simultaneous changes

in both GE and CN levels since gene activity is also

affected by cellular mechanisms other than GE/CN

alterations. For such reason, it was not un-expected

that 33–73% of the known cancer genes were not

included among the first 200 prioritized genes by any

comparison method in the five benchmarking data

sets. The relatively low number (0–8) of the known

cancer genes among the first 200 findings in the real

case studies highlights the need for efficient

approaches to identify key mutations and genes

that drive cancer development and progression

[23]. Moreover, although any algorithm detected

certain cancer genes, none of the known cancer

genes was detected by all methods in any bench-

marking data set among the first 200 findings.

Since different methods emphasize different aspects

of the GE/CN data, efficient joint analysis of the

results from multiple independent methodologies

might outperform individual methods. One could,

for instance, consider mean or median ranks across

the prioritized lists, or weight the different lists

according to certain criteria. Related approaches

have been suggested elsewhere [49], but have not

been investigated in the context of GE/CN analysis

yet. In our experiments, straightforward ranking of

the genes based on their mean or median rank across

the different methods did not outperform the

best-performing methods in any benchmarking

data set.
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The choice of preprocessing and model param-

eters can have a remarkable effect on the results.

The key decisions in the context of GE/CN data

are associated with selecting the CN preprocessing

approach [53], size of the investigated chromosomal

regions and the matching approach for the inte-

grated data sets. These and related issues are exten-

sively discussed in the recent review by Huang

et al. [8]. It is also possible to utilize class informa-

tion of the samples, for instance, by including both

tumor and reference samples [21]. However, in

many cases, the references are included as a

pooled control for two-color microarray experi-

ments but not as a separate group, as with the

Hyman and Pollack data sets. Moreover, genomic

aberrations often affect only a subset of the cancer

patients, and multiple cancer subtypes may be pre-

sent, as in the Mullighan data set. The matching

approach for GE/CN data may also affect the re-

sults. In the current pipeline, each GE probe is

matched to the closest CN probe or segment.

Requiring one-to-one matching of the GE/CN

data may lead to exclusion of many GE probes

in particular on high-density arrays such as in the

Mullighan data set. The publicly available bench-

marking pipeline will allow further experimenta-

tion with alternative preprocessing scenarios. All

data presented in this study come from microarray

studies, where several matched GE/CN data sets

are available from public sources, but the approach

should be in principle applicable also to

high-throughput sequencing data. Since the under-

lying biological phenomena remain unaltered, and

methodological approaches proposed for GE/CN

integration are based on relatively general modeling

assumptions, it can be expected that the proposed

methods are applicable also in the context of

next-generation sequencing after appropriate data

preprocessing.

Further integrative tasks in GE/CN analysis would

include modeling of trans-regulatory effects of CN

aberrations on genes outside the affected region

[54, 55], disease subtype discovery [4], prediction

of patient survival or of clinical covariates [56] and

integrative analysis of other data sources, such as

methylation [57], microRNA [58–59] or protein

expression [60]. However, fewer implementations

for such tasks are currently available. Availability of

reference implementations would facilitate bench-

marking and optimizing new algorithms. The

benchmarking pipeline introduced in this review

can be adjusted to incorporate additional algorithms

and data sets as they become available.

CONCLUSION
A variety of methods is available for the integrative

analysis of GE and CN data. The algorithms can be

classified as two-step, regression, correlation-based

and latent variable approaches. Implementation qual-

ity, running time and accuracy of the algorithm, as

well as preprocessing, sample size and availability of

control samples need to be considered when select-

ing the appropriate method. The benchmarking

pipeline reveals systematic differences in cancer

gene prioritization performance of available imple-

mentations across five case studies.

SUPPLEMENTARYDATA
Supplementary Data are available online at

http://bib.oxfordjournals.org/.

Key Points

� Integrative analysis algorithms for GE and CN data include
two-step, regression, correlation-based and latent variable
approaches.

� The benchmarking pipeline reveals systematic differences in
cancer gene prioritization performance of currently available
implementations.

� Implementation quality, running time and accuracy of the algo-
rithm, as well as data preprocessing, sample size and availability
of control samples need to be considered when selecting the
analysis approach.
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