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Bymeans of a designed epidemic model, we evaluated the influence of seasonal vaccination coverage as well as a potential universal
vaccine with differing efficacy on the aftermath of seasonal and pandemic influenza. The results of the modeling enabled us to
conclude that, to control a seasonal influenza epidemicwith a reproduction coefficient𝑅

0
≤ 1.5, a 35% vaccination coveragewith the

current seasonal influenza vaccine formulation is sufficient, provided that other epidemiologymeasures are regularly implemented.
Increasing 𝑅

0
level of pandemic strains will obviously require stronger intervention. In addition, seasonal influenza vaccines fail to

confer protection against antigenically distinct pandemic influenza strains.Therefore, the necessity of a universal influenza vaccine
is clear. The model predicts that a potential universal vaccine will be able to provide sufficient reliable (90%) protection against
pandemic influenza only if its efficacy is comparable with the effectiveness of modern vaccines against seasonal influenza strains
(70%–80%); given that at least 40% of the population has been vaccinated in advance, ill individuals have been isolated (observed),
and a quarantine has been introduced. If other antiepidemic measures are absent, a vaccination coverage of at least 80% is required.

1. Introduction

Mathematic approaches can be useful to assess the dynamics
of infectious disease epidemics, especially the influence of
intervention strategies including large-scale vaccination.

Vaccination is broadly used when controlling epidemics
including seasonal influenza, since it provides both direct
protection of vaccinees and indirect protection of all individ-
uals due to a decrease in infectious intensity.

Currently used influenza vaccines are efficient if antigenic
matching with epidemic strains is desired. Therefore, sea-
sonal vaccines have to be reformulated almost annually. Fur-
thermore, vaccines against seasonal influenza fail to provide
protection against pandemic influenza viruses with signifi-
cantly different antigenic structure.Thus, due to both the per-
manent threat of the next pandemic and the continual emer-
gence of seasonal influenza A virus variants, there is a need
for a universal vaccine providing protective immunity against
all or at least the majority of influenza virus variants [1, 2].

In recent years, a number of studies devoted to the
design of such vaccines have been published [3–6]. However,

researchers usually pay attention only to the immunologic
efficacy of their candidate vaccines. Data concerning real
prophylactic (epidemiologic) efficacy in the population are
actually unavailable before carrying out phase II clinical trials
of a potential vaccine. In a smaller number of reports onmod-
eling the influence of such vaccines on influenza epidemic
dynamics, this prophylactic efficacy index was either speci-
fied on the level of seasonal vaccines or varied slightly [7].

Herein, we designed an epidemic model that enables us
to evaluate the influence of vaccination coverage established
on the course of seasonal and pandemic influenza epidemic,
using existing seasonal and hypothetical universal influenza
vaccines with differing efficacies.

2. Materials and Methods

At Vector State Research Center of Virology and Biotechnol-
ogy, we developed a universal deterministic epidemic model
according to the population subclasses during the epidemic:
S: susceptible persons, E (exposed): infected in incubation
period, I: infectious persons, R: recovered, F (fatal): dead
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persons; hence, the model type was called SEIR(F). In fact,
those who died do not form a separate state but are simply
removed from the modeling process at a disease-specific
death rate. It is assumed that this model is able to simulate
the development of any local epidemic of an acute infectious
disease, with the infection coming from a certain external
source or person-to-person contact independently of sex,
age, and other sociodemographic characteristics as the major
transmission pathways.

A detailed model description, including equations used,
variable parameters, and processes modeled, as well as some
data concerning the model’s verification was previously pub-
lished [8]. Initially, the model was adapted to special danger
infectious agents, such as smallpox, anthrax, plague (pneu-
monic and bubonic), tularemia, and hemorrhagic fevers (i.e.,
Ebola, Marburg, Lassa, and Crimean-Congo). Further, we
added socially significant influenza and cholera to the list of
modeled infections.

The model is installed on the server at Vector State
Research Center of Virology and Biotechnology and is
available at http://www.epimod.vector.nsc.ru/ (also avail-
able at http://vector-epimod.ru/) and provided with a Web-
interface.

The user can edit the model’s parameters and divide them
into two groups. The first includes parameters characterizing
infection per se: infectivity of ill persons and sensitivity
to infection, mortality during different stages of a disease,
and sensitivity to treatment. The second group includes
parameters setting terms and intensity of implementation of
interventions: three levels of antiepidemic measures, mainly
differing in speed of detection and isolation (supervision) of
infected persons, contacts and those suspected of having the
disease, and speed of vaccination and quarantine. Moreover,
a number of parameters use regional characteristics for which
the epidemic is modeled, including its resource provision. It
should be noted that evaluation of the most parameter values
made according to results of literature data is often arbitrary.
In fact, available literature lacks precise qualitative values of
one or another index. At best, it is possible to obtain limits,
though sometimes only verbal descriptions are available. A
number of modeling parameters used in this research are
described in Results and Discussion.

Intervention optimization is one of the possibilities of
the model used in this study. For this purpose, by specifying
initial values and admissible limits of factors by means of
multiple automatic simulations, it is possible to obtain values
by minimizing a certain criterion:

𝐹 = ∑

𝑖

𝑉
𝑖
× 𝑓
𝑖
+∑

𝑗

𝐿
𝑗
× 𝑔
𝑗
. (1)

Maintaining a certain level of epidemic preparedness
and using interventions requires specific investments, both
material and human. Therefore, the “cost” 𝑓

𝑖
of an item of

each optimization factor 𝑉
𝑖
is specified. The sum of expenses

to maintain or apply specified factor values is included in
the optimization criterion as the first component.The second
criterion item is the loss caused by the epidemic that depends
on the number of its indices (𝐿

𝑗
, i.e., number of infected

persons and number of fatalities, etc.) and user-specified
weights of those indices (𝑔

𝑗
).

A genetic algorithm is used for optimization [9]. Its
application in our model has been previously described
[10]. We describe optimization parameters in Results and
Discussion, since they require an additional explanation.

We considered a megapolis with a population of one
million people in ourmodeling scenario. Initially, 50 infected
people at the beginning of the latent stage of disease emerged
in the population (i.e., start point). Antiepidemic measures
started 20 days after the start point. The time of calculation
corresponds to 100 epidemic days.

Model adaptation to different agents included adjustment
of modeling parameters corresponding to a certain agent.
Adaptation is carried out based on an analysis of data in the
literature. In the case of seasonal influenza, we recommend
that one should use parameter values listed in Table 1, where
necessary explanations are also provided as follows.

(1) For instance, for the latent stage it means that its
minimum duration is 4 − 3 = 1.

(2) In the model, population is homogeneous by default;
however, for each infected person we defined a group
of contacts with a significantly higher probability of
infection compared to another population. Thus, the
average number of contacts infected by one ill person
(𝑅
0𝑐
) can be considerably higher than the average

number of persons infected during “accidental” con-
tacts (𝑅

0𝑠
). The average number of contacts for one

infected person is dependent on the disease.
(3) Since the level of protection provided by administra-

tion of prophylactic drugs is similar to the level pro-
vided by vaccination [11, 12], it is chemoprophylaxis
that substitutes for reactive vaccination when mod-
eling. Furthermore, protective action arrives almost
directly after its application. Consequently, duration
of establishing postvaccination immunity is set at one
day. Accordingly, the values of the model parameters
that determine the speed and extent of vaccination,
are specified so as to lack resource limits. Unfortu-
nately, the model lacks the possibility to differentiate
between chemoprophylaxis and reactive vaccination.
Therefore, in the case of influenza, we evaluate only
vaccination (preepidemic) efficacy and its influence
on the course of the epidemic.

(4) The parameter “rate of infection activity in final
stage” specifies the distribution of infection activity
between prodromal and final stages of disease. Its
meaning is the ratio of the average number of persons
becoming infected by one patient in the final stage
to an average number of persons becoming infected
by one patient throughout the disease (𝑅

0
). Here, we

assume that disease nosology will have already been
determined, doctors will have given recommenda-
tions, and familial isolation of infected persons will
have been implemented in the final stage.

(5) In practice, infectivity of persons suffering from a
mild form of a disease can be considerably lower.
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Table 1: Parameters used for calculations of seasonal influenza outbreak dynamics.

Parameter Value Note
Maximum duration of each stage during disease development (latent, prodromal, and final), days 4; 3; 4 [30–32]
Day when disease passes from one stage to the other (see (1)) 3; 2; 2 [32, 33]
Mean number of contacts per one infected person 5 See (2)
Duration of establishing postvaccination immunity, days 1 See (3)
Rate of infectious activity in final stage, % 20 See (4)
Rate of infectious activity of immune to nonimmune patients, % 50 [11]
Rate of infectious activity of cases with mild to severe forms, % 10 See (5)
Rate of severe forms among nonimmune patients, % 40 [34]
Rate of severe forms among immune patients, % 20 [35]
Rate of sensitivity to infection of immune patients relative to nonimmune ones, % 20 [25, 26]
Rate of infected contacts per day, % 4 See (6)
Mortality rate of nonimmune patients in prodromal stage, % 0.1 See (7)
Mortality rate of immune patients in prodromal stage, % 0.03 See (7)
Mortality rate of nonimmune patients with severe form in final stage, % 0.2 See (7)
Mortality rate of immune patients with severe form in final stage, % 0.05 See (7)
Mortality rate of patients with mild form in final stage, % 0.01 See (7)
Decrease in mortality rate of treated cases, % 30 [12]
Duration of contacts observation, days 4 [30–32]

However, usually these individuals lead a more active
lifestyle and have more contact with a large number
of people.

(6) As is known, influenza transmission is limited by
close-contact groups (e.g., family, school, and place
of work) [13–15]; therefore, infection of contacts is
specified separately.

(7) In the case of seasonal influenza, deaths make an
inessential contribution to epidemic dynamics.When
modeling, they are distributed according to groups of
infected persons and disease stages so as to globally
provide mortality at the rate of 0.1% in the case of
seasonal influenza [16].

When modeling, the influence of immunity on epidemic
dynamics is primarily implemented by means of a change
in the effective reproduction coefficient 𝑅

𝑒
, determined in

the model as an “average number of individuals infected by
one ill person.” Related literature often used the reproduction
coefficient 𝑅

0
, denoting the number of individuals infected

by one nonimmune ill person in a population of entirely
sensitive people under conditions of lacking intervention
[17, 18]. Decreases in 𝑅

𝑒
values compared to 𝑅

0
are reached,

for example, by influence of the level of vaccination coverage.
Primarily, immune people can be less sensitive to infection.
Secondly, their infectivity can be reduced. Thirdly, the pro-
portion of a severe form of the disease (if any) can be lower
than in nonimmune persons.

Usually, vaccine efficacy represents a reduction of mor-
bidity in vaccinees compared to unvaccinated persons [19–
22]. Some models describe the impact of vaccination on the
probability of developing severe forms of the disease [23].The
difference in the infectious activity of mild and severe forms

is also taken into account in several models [19, 24]. However,
models using all indicators simultaneously are unknown.

Our model specificity includes a broader range of param-
eters differentiating immune people from those who are not
immune. Therefore, in the frame of the model vaccine, pro-
phylactic efficacy can be evaluated according to its influence
on values of 𝑆, 𝑄, and 𝐻 parameters (see explanations after
(2)). Consequently, if 𝑃 is the rate of immune people in the
population, then the dependence of 𝑅

𝑒
on that value can be

formulated as follows:

𝑅
𝑒
= [𝑃 × 𝑆 + (1 − 𝑃)] × [𝑅0𝑠 × (𝑃

× (𝑄 × 𝐻 + (1 − 𝑄) × 𝐸) + (1 − 𝑃)

× (𝑞 + (1 − 𝑞) 𝐸)) + 𝑅
0𝑐
] ,

(2)

where 𝑃 is rate of immune people in the population, 𝑆 ≤ 1
is coefficient specifying proportion of sensitivity to infection
in immune people in relation to sensitivity of nonimmune
persons, 𝑞 is rate of a severe forms among nonimmune
people, 𝑄 is rate of a severe forms among immune people
(𝑄 ≤ 𝑞), 𝐸 ≤ 1 is the rate between transmissibility of ill
person with the mild form of a disease and transmissibility
of people with severe disease form, 𝐻 ≤ 1 is the rate of
transmissibility of immune people with the severe disease
form to transmissibility of nonimmune people with severe
disease form (transmissibility in nonimmune people with
severe disease = 1), 𝑅

0𝑠
is average number of people infected

by one ill person in entirely sensitive population under
random contacts, and 𝑅

0𝑐
is average number of people

infected by one ill person in entirely sensitive population
among close contacts.

Expression in the first square brackets specifies average
reduction of sensitivity to infection in the population by
means of the presence of immune people. Expression in the
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second square brackets specifies reduction of intensity of
infection background (formed by ill people) that can also
depend on the level of immunity, partially due to different
occurrence probability of severe and mild forms of disease
among immune and nonimmune people.

In the case of seasonal influenza, the model defaults to
using the values for those parameters, 𝑅

0
= 1.5, 𝑆 = 0.2;

𝑄 = 0.2; 𝑞 = 0.5; 𝐸 = 0.5; and 𝐻 = 0.5, selected based
on analysis of data in the literature including those regarding
effectiveness of currently used vaccines [11, 25–28].

When modeling influenza epidemic dynamics, results of
other research groups correspond to actual data where the
correlation between𝑅

0𝑠
and𝑅

0𝑐
is approximately equal to 1 : 2

[14, 15, 29]. This correlation was also used in our model. For
example, as shown in Table 1, the mean number of contacts
per infected person is 5, rate of infected contacts per day is
4%, and the average duration of infectiousness is 5 days. As a
result, the average number of people infected by one ill person
among close contacts (𝑅

0𝑐
) is equal to 1.Then, the value of𝑅

0𝑠

is 0.5.

3. Results and Discussion

3.1. Model Validation. The above arguments are not con-
ventional, but they are consistent with the known methods.
According to the simple well-known formulas for the critical
vaccination coverage for herd immunity, the proportion of
immune people should exceed

𝑃 ≥ 1 −
1

𝑅
0

, (3)

assuming 100% vaccine efficacy, or

𝑃 ≥
1 − 1/𝑅

0

Vaccine efficacy
, (4)

in the case when vaccination efficacy is not 100% [22, 36].
For 𝑅

0
= 1.5, incidence of infection would decline if the

proportion of immune persons exceeded 33%–41% (100%
and 80% vaccine efficacy, resp.). According to formula (2), 𝑅

𝑒

reduces with increasing𝑃, and at a certain level of vaccination
coverage 𝑅

𝑒
can be <1. Therefore, the epidemic lessens, even

in the absence of other interventions. This is observed for
seasonal influenza with 𝑅

0
= 1.5 in the absence of other

interventions but in the presence of a ≥35% vaccinated
population (𝑅

𝑒
< 1).

Results of the modeling in the presence of a 35%
immunized population show that an epidemic actually ends
naturally without other antiepidemic measures (including
both isolation of ill persons and observation of the contacts)
and quarantine. However, its duration is significantly long
(about a year). By the 100th day of calculation, more than
19,000 people are infected and 30 fatal cases are registered
(maximummortality rate, equal to 0.2% (severe form) among
infected people). Provided that the full range of antiepidemic
measures is undertaken, only 637 people are infected, with
two cases leading tomortality. In the case of a 41% immunized
population, the indices are equal to 4,527 and 11 without other

0

10000

20000

30000

40000

50000

60000

2 3 4 5 6 7 8 9

In
ci

de
nc

e

Weeks of 2016

Observed data
Simulation results

Figure 1: Observed data and simulation results for the 2016
influenza epidemic in St. Petersburg.

antiepidemic measures and 476 with one fatal case when ill
individuals have been isolated (observed) and quarantine has
been introduced.

Thus, the simulation results show that the provision of
vaccination coverage at the level determined by formulas (3)
and (4), as well as formula (2), is a necessary but not sufficient
condition for successful flu epidemic control.

This conclusion is confirmed by the real epidemic. For
example, according to the Research Institute of Influenza
(Ministry of Health of the Russian Federation) [37], a large
outbreak of influenza H1N1 was observed in St. Petersburg
at the beginning of 2016. It was fixed within 3–8 weeks
of the year with a peak in the fifth week, when it was
observed to exceed the Influenza-Like Illness (ILI) morbidity
epidemic thresholds for the overall population by 129%. This
week, about 97,000 people fell ill. Moreover, as stated in the
Resolution of the ChiefMedical Officer of St. Petersburg [38],
the relative share of influenza among other acute respiratory
infections was 60%. Despite the fact that about 50% of the
population of St. Petersburg has been previously vaccinated,
the epidemic was rapidly developing until a full range of
antiepidemic measures was launched at the end of the fourth
week of 2016.

The simulation results showed dynamics very similar to
the epidemic at 𝑅

0
= 1.6, with a rate of immune persons

at 50% and the implementation of other control activities
starting from 4 weeks (Figure 1). Note that, theoretically,
vaccination coverage in St. Petersburg was sufficient to
control the epidemic. For 𝑅

0
= 1.6, critical vaccination

coverage is 41%when calculated according to formula (2) and
38%–47% by formulas (3) and (4).

3.2. Vaccination Coverage during Seasonal Influenza Epidemic
Required for Controlling Disease Transmission. To specify the
role of vaccination among other measures, we conducted an
optimization of interventions. Table 2 demonstrates the limits
of factors for optimization and the “cost” of unity for each
factor.



BioMed Research International 5

Table 2: Limits and nominal “costs” of optimization indices when modeling seasonal influenza epidemic.

Parameter Parameter limits The unit “cost”
Parameter value in optimized
conditions at the upper limit of
rate of immune people (60%)1

Rate of immune persons, % 0–50 (60; 70) 1000 60
Parameters of antiepidemic measures

Rate of daily isolated asymptomatic contacts/suspects, % 0–10 10 0–2
Rate of daily isolated patients in prodromal stage (nonimmune), % 0–10 10 0–8
Rate of daily isolated patients in prodromal stage (immune), % 0–8 10 0-1
Rate of daily isolated patients in final stage (severe case), % 0–15 10 0–3
Minimal rate of daily isolated symptomatic patients, % 0–2 10 0–2
Maximal rate of people having started daily to obtain prophylactic
treatment in risk groups, % 0–50 5 0–12

Parameters of resources
Number of medics/paramedics involved in epidemic eradication 100–2000 100 100
Number of teams searching for and isolating or observing infected
cases and contacts 0–100 200 1

Number of patients/contacts detected by one team per day 0–20 50 5
Number of units issuing chemoprophylactic items 0–500 100 0
Number of people daily serviced in one unit 0–500 50 0
Stock of prophylactic items 0–1000000 2 0
Reserve of drugs (for one treatment course) 0–1000000 3 0
Bed capacity for strict isolation 0–30000 100 0–2
Bed capacity in provisional hospitals 0–2500 50 0
Bed capacity in quarantine departments for contacts 0–10000 70 0
1Minimal and maximal value for optimization parameters obtained after five iterations of the procedure.

The goal of our research was to evaluate specific influ-
ence of vaccination on epidemic aftermath; therefore, the
value of the upper limit of the parameter “rate of immune
persons” is specified at a high level (at least 50%) and for
other parameters is specified within the limits of model city
resources. Since the genetic algorithm used for optimization
is stochastic, we carried out a fivefold optimization for each
set of parameters.

Calculations suggest that despite the intentionally over-
estimated “cost” of the unity of “vaccination coverage” (5–
10-fold higher compared to the most “expensive” other
parameters, such as expenses for bed capacity and medical
staff) in optimized conditions, this parameter always takes
the maximum permitted values (equal to an upper limit of
50% or 60%).Whenwe specified a 70% upper limit of the rate
of immune people, the maximum value of that parameter in
optimized conditions reached 65%-66%. Besides, the higher
the limit of the number of immune people, the lower the
influence of all other parameters. At the upper level of the
number of immune people (50%–60%), values of parameters
describing the intensity of antiepidemic measures (i.e., a
rate of daily isolated nonimmune ill persons) in optimized
conditions were similar or reached the upper limit. All other
parameters had values as low as the minimum permissible.
A sample of parameter values in optimized conditions at the
upper limit of the rate of immune people is 60%, observed in
the last column of Table 2.

At a vaccination coverage level of 65% or higher, all other
parameters had minimum permissible (zero) values. In other
words, any antiepidemic measures were unnecessary. At the
same time, “cost” of the epidemic was significantly reduced
(Table 3).

Table 3 shows that, under otherwise equal conditions,
the increase in rate of immune people among the population
from 20% (before optimization) to 50% results in a fivefold
reduction of the number of infected people. Further increase
of the level of vaccination coverage does not lead to the
same significant effect, and lowering the cost of an epidemic
is primarily accounted for by reduction or full absence
of expenses necessary for maintenance of high levels of
antiepidemic protection.

3.3. Immunization against Pandemic Strains. Here, we esti-
mate the influence of effectiveness of a potential universal
vaccine on pandemic influenza as long as it is used before
the epidemic in the same model city. We did not study the
case of vaccination just in the course of the epidemic, as
well as the vaccination/revaccination regimens themselves.
It was believed that by the time of calculations, immunity of
vaccinees had to be entirely established.

When modeling, pandemic variants differed from
seasonal ones by an enhanced reproduction coefficient
(𝑅
0
1.5 → 2.5), increased mortality rate (five-fold), and low

level of natural herd immunity [16, 39, 40]. When modeling,



6 BioMed Research International

Table 3: Comparison of aftermath of seasonal influenza epidemic under optimized conditions at different vaccination coverage.

Parameters Nominal “cost” of
parameter

Before
optimization

In optimized conditions at the upper limit of rate of immune people
50% 60% 70%

Total number of infected persons 100 1879 361–439 199–214 150–159
Total number of lethal cases 1000000 6 1 1 0
Person days of isolated patients 1 1410 23–161 0–22 0–6
Person days of observed contacts 0.1 5041 0–521 0 0
Epidemic “cost”: expenses +
losses in nominal units 6014424 202259–237887 190582–191680 91074–91276

we specified that total herd immunity is formed before the
beginning of calculations due to vaccination.

Since characteristics of a potential universal vaccine
are previously unknown, the change of “vaccine efficiency”
stands for scaling all modeling parameters that are different
in immune and nonimmune people. For example, if vac-
cine efficacy is equal to 90%, then coefficients specifying
the rate of sensitivity to infection in immune people as
related to sensitivity in nonimmune people (𝑆) and relation
of transmissibility of immune people to transmissibility in
nonimmune people (𝐻) were specified at the level of 0.1,
and the rate of severe courses among immune people (𝑄)
was 0.04 compared to the rate of severe courses among
nonimmune people (𝑞 = 0.4). Moreover, the mortality rate of
immune people decreases 10-fold compared to nonimmune
individuals at any stage of disease. Of note, according to
calculations, proportion/disproportion has no impact on
epidemic dynamics.

In theory, the influence of vaccine efficacy and the level
of its usage can be evaluated by detection of the effective rate
of transmission 𝑅

𝑒
, as it is carried out for seasonal influenza

(formula (2)). Table 4 shows values of parameter 𝑅
𝑒
for

different combinations of vaccine efficacy and vaccination
coverage. In such conditions, a potential universal vaccine of
the same level of efficacy as modern seasonal vaccines (i.e.,
approximately 80%) can provide protection against pandemic
influenza when vaccination coverage reaches at least 80% of
the population. This result is consistent with work of others
[22]; however, as previously demonstrated, it is insufficient to
control the actual epidemic.

For a good understanding of the level of the influence of
one parameter or another on epidemic aftermath, it makes
sense to introduce a concept of population protectability.The
following value is considered the protectability index:

𝑃
𝑖
=
𝑁
0
− 𝑁
𝑖

𝑁
0

, (5)

where𝑁
0
is a value of a certain index (in this context, number

of infected people) by the finish of calculation in the absence
of analyzed intervention and𝑁

𝑖
is the value of the same index

in the case of implementation of intervention “𝑖.”
Figure 2 compares protectability indices for different

levels of vaccination coverage established by the use of
vaccines with 50% and 80% efficacy.

Table 4: Value 𝑅
𝑒
for parameters combination: level of vaccination

coverage versus vaccine efficacy against pandemic influenza at 𝑅
0
=

2.5. Bold numerals highlight combinations of parameters preventing
epidemic from significant spreading (𝑅

𝑒
< 1) in the absence of other

interventions.

Rate of immune
persons, %

Vaccine efficacy, %
100 90 80 70 60 50

0 2.5 2.5 2.5 2.5 2.5 2.5
10 2.2 2.2 2.1 2.3 2.3 2.3
20 2.0 2.0 1.9 2.1 2.1 2.2
30 1.7 1.8 1.6 1.9 2.0 2.1
40 1.4 1.5 1.4 1.7 1.8 1.9
50 1.2 1.3 1.2 1.5 1.7 1.8
60 0.9 1.1 1.1 1.4 1.5 1.7
70 0.7 0.9 0.9 1.2 1.4 1.5
80 0.5 0.6 0.7 1.0 1.2 1.4
90 0.2 0.4 0.5 0.8 1.1 1.3
100 0.0 0.2 0.4 0.6 0.9 1.2

Influenza epidemic dynamics were being calculated for
100 days since registering the first infected people at different
levels of vaccination coverage.

Modeling results enable us to conclude that a potential
universal vaccine of the same level of efficacy as modern
seasonal vaccines (i.e., approximately 80%) can provide suffi-
ciently reliable (90%) protection against pandemic influenza
under conditions of previous vaccination of at least 40%
of the population. We emphasize vaccination since natural
immunity in the population is believed to be extremely low.
Furthermore, when computing this parameter, the full range
of antiepidemic measures is carried out during a seasonal
influenza epidemic (partial isolation of ill people, quarantine,
and prophylactic treatment). At 50% efficacy of a universal
vaccine, at least 50% of the population should be immunized
to reach the same level (90%) of protection.

4. Conclusions

The tool, developed in the SRC VB Vector, is based on
the model simulating epidemics of acute infectious diseases,
where the main modes of transmission are from an external
source or by casual contact between people. Unlike most
models available on the Internet, this tool is designed for
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Figure 2: Comparison of protection according to the number of
infected persons for different levels of vaccination coverage estab-
lished before the beginning of pandemic influenza using potential
vaccines of differing efficacy.

use by epidemiologists and policy makers who not always
own the means of information technologies. The user has
access to all parameters of the model. Guided by extensive
instructions on how to work with the model, as well as
detailed descriptions of infections, the user can specify par-
ticular infections and the population,where the epidemics are
simulated and play various scenarios simulating epidemics
taking into account the presence or absence of various
resource constraints.

This simulation and optimization of intervention can not
only help to understand the impact of various factors on
the development of the epidemic but also help to develop
the best strategy to counter reduce losses from epidemics, as
well as determine the resources required and sufficient for a
successful fight against epidemics.

Modeling results enable us to conclude that, to control
seasonal influenza epidemic at𝑅

0
equal to 1.5, it is sufficient to

maintain a vaccination coverage level of 35%, but only under
the condition that other antiepidemic measures are routinely
carried out.

Increasing𝑅
0
level in the case of emergence of a pandemic

influenza virus strain will obviously require implementation
of stronger interventions.Themodel predicts that, in the case
of efficacy of a potential universal vaccine that is comparable
to the efficacy of modern vaccines against seasonal influenza
strains (i.e., approximately 80%), it can provide sufficiently
reliable (90%) protection against pandemic influenza; given
that at least 40% of the population has been previously
immunized, ill persons had been isolated (observed), and
quarantine had been introduced. In the absence of other
antiepidemic measures, vaccination coverage of at least 80%
is required.
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