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Abstract: The risk of adverse drug reactions increases in a polypharmacology setting. High-
throughput drug screening with transcriptomics applied to human cells has shown that drugs
have effects on several molecular pathways, and these affected pathways may be predictive proxy for
adverse drug reactions. Depending on the way that different drugs may contribute to adverse drug
reactions, different options may exist in the clinical setting. Here, we formulate a network framework
to integrate the relationships between drugs, biological functions, and adverse drug reactions based
on the high-throughput drug perturbation data from the Library of Integrated Network-Based
Cellular Signatures (LINCS) project. We present network-based parameters that indicate whether a
given reaction may be related to the effect of a single drug or to the combination of several drugs,
as well as the relative risk of adverse drug reaction manifestation given a certain drug combination.

Keywords: network pharmacology; adverse drug reaction; polypharmacology; polypharmacy;
risk prediction; Library of Integrated Network-Based Cellular Signatures; LINCS; L1000 assay

1. Introduction

For a drug to be successful, it needs to strike a balance between its therapeutic and toxic effects [1].
Adverse drug reactions (ADRs), broadly defined as harmful or unpleasant reactions resulting from
therapeutic interventions, may have negative health and economic consequences [2]. The risk of ADRs
increases in the context of polypharmacy, the simultaneous use of multiple different drugs by the same
patient in order to treat one or more medical conditions. Polypharmacy is especially common in the
elderly population, putting them at higher risk of developing ADRs [3]. Given a therapeutic scheme
consisting of several drugs, it is commonly difficult to know how to (1) remove or substitute a drug,
and (2) identify the drug that caused the ADR in the first place.

Drug-induced gene expression high-throughput screening (GE-HTS) has generated large
datasets containing profiles of the effects of drugs on gene expression in different cellular systems.
These datasets can be used to identify the effects of drugs on biological processes involving sets of
functionally related genes, such as those annotated in databases of controlled vocabularies such as
Gene Ontology (GO) [4] and/or cell signaling, metabolic, and gene regulatory pathway databases.
One of the largest publicly available GE-HTS efforts is that of the original Connectivity Map (CMap) [5]
and its continuation as part of the Library of Integrated Network-Based Cellular Signals (LINCS) [6,7].
Importantly, through such methods, it is possible to identify multiple targets on which a drug acts
(which is known as polypharmacology [8], as opposed to the previously defined polypharmacy).
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Recently, LINCS drug perturbation profiles were used to identify predictive relationships between
GO term perturbation and ADRs [9]. These predictive relationships may be represented as a network
of associations between functional perturbations (observed as the statistically significant change in
overall expression of genes involved in the biological function) and the emergence of ADRs, referred to
as the GO–ADR network.

Network analyses from a topological perspective (that is, considering the structures that arise
from the way that the elements in the network are connected) are useful in analyzing complex
systems. Particularly, in the context of drugs, we have found that multiple-layer network formalisms,
where different types of elements belong to different layers and may interact across layers [10],
are particularly suited to studying and analyzing pharmacological systems, as these are usually
composed of elements of different nature such as drugs and side effects [1].

In any given set of drugs, each drug may affect different biological functions, either by design
or through off-target effects. These perturbations of biological functions may in turn be associated
with the manifestation of ADRs, as illustrated in Figure 1. In this clinical case example, two drugs,
X and Y, are prescribed. ADRs may be manifested from this combination, where ADRs may only
be associated with one of the two drugs. However, there may be some ADRs due to the effects of
either or both drugs, making the management of these ADRs more complicated for the physician.
The complexity of ADR manifestation increases when more drugs are used simultaneously, which may
be better understood through the use of complex network strategies.
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Figure 1. A diagram of three-layer (tripartite) network of drugs, biological functions, and adverse
drug reactions (ADRs). This diagram includes two drugs (X and Y), where each drug may perturb
biological functions. Drug X perturbs biological functions A and B, while drug Y perturbs biological
functions D and E. Both drugs can also perturb function C. Each biological function perturbation may
be associated with certain ADRs. Some ADRs are associated only with one drug (ADRs 1, 2, and 3 are
only associated with drug X through biological function A, while ADR 6 is associated only with drug Y
through biological function E). Some ADRs may be associated with both drugs. ADR 4 is associated
with a function that may be perturbed by both drugs, an example of our “mode 1” model in this study.
ADR 5 is associated with both drugs through different biological functions B and D, each of which is
perturbed by drugs X and Y, respectively. ADR 5 is an example of our “mode 2” model in this study.

In this work, we have expanded the aforementioned GO–ADR network to include GO
perturbation by drugs, modeled as a tripartite network that identifies all paths connecting drugs
to ADRs through functional perturbations. We explored the topological features of this network,
which may contribute to the understanding of the functional perturbations behind ADRs in a
polypharmacy setting. This network provides a useful means to assess whether a given ADR is the
result of a single drug or may involve the added or combined effects of multiple drugs. This information
may inform clinical decisions regarding treatment management in a polypharmacy setting.
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2. Results

2.1. Topological Properties of the Tripartite Network

We obtained the published LINCS-based GO–ADR network generated by Wang et al. [9] and
expanded it by adding drug nodes and connecting these nodes to the GO terms that they perturb
(see Methods for details). The resulting network is a tripartite directed network with three types
of nodes: DRUG nodes, GO nodes, and ADR nodes. It is also a directed acyclic graph (DAG) that
consists of paths of length 2 (DRUG→GO→ADR); each path represents the possible perturbation
of a GO term by a drug, and the possible emergence of the ADR given the GO term perturbation.
Figure 2A illustrates the complete network, whose topological properties are summarized in Table 1,
and a partial network of 10 arbitrarily selected drugs is visualized in Figure 2B. The complete network
file is available as Supplementary File 1 in GML format.

Table 1. Topological parameters of the Drug–GO–ADR tripartite network.

Nodes and Edges Counts

Drug Nodes 3454

GO Nodes 323

ADR Nodes 111

Drug to GO Edges 258,793

GO to ADR Edges 419
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Figure 2. Tripartite Drug–GO–ADR network. Drugs are represented by purple diamonds, which are
connected to Gene Ontology (GO) terms, represented by blue circles, which may be perturbed by
the drug. In turn, GO terms are connected to those adverse drug reactions (ADRs), represented by
red squares, that may manifest if said GO term is perturbed. In panel (A), the full network is shown.
Panel (B) shows a subgraph of 10 (arbitrarily selected) drugs with their associated GO terms and ADRs.

2.2. Topological Properties of Drug Combination Subgraphs

Given a drug combination consisting of two or more drugs, a subgraph may be obtained of
the tripartite network presenting the landscape of perturbable GO terms and ADRs associated with
that drug combination. In this study, we defined four concepts that may be useful to explore these
drug combination subgraphs: composite ADRs (cADR; ADRs that may be associated with more than
one drug in the combination), configuration mode 1 (ADRs associated with pathways that may be
perturbed by more than one drug in the combination), configuration mode 2 (ADRs associated with
pathways perturbed by different drugs in the combination), and composite risk modules (CRMs; sets of
pathways and ADRs that may be functionally related to each other). The use of a network formalism
allows the identification of connectivity patterns that may be systematically evaluated to inform about
different risks associated with a different combination.

The number of composite ADRs (cADRs) for a given drug combination indicates how many
ADRs may be the result of the action of any (or all) of the drugs in the combination. Figure 3 shows
a heatmap of cADRs for two-drug combinations (for 315 drugs that were included in the GO–ADR
network and annotated in the PharmGKB dataset used in a previous study [11]) and suggests that the
existence of cADRs between drugs is common, with only a few drug pairs exhibiting a low number of
cADRs and a large cluster of two-drug combinations with high (over 50) numbers of cADRs.

We defined two different configuration modes that describe the different ways in which drugs
may contribute to ADR manifestation: either by targeting the same GO terms (mode 1) or by targeting
different pathways (mode 2). Figures 4 and 5 show differences in the distributions of modes 1 and 2
configurations leading to cADRs, where the mode 1 configuration shows a more clustered organization
for drug pairs.
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The concept of CRMs may be regarded as a measure of diversity of potentially related ADR sets.
Since the ADRs in a given CRM are associated with a shared set of GO terms, it is possible that the
manifestation of two or more ADRs from the same CRM may have an origin in the perturbation of
a similar GO term (or terms). Figure 6 shows the landscape of such CRMs available for different
two-drug combinations.
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Figure 3. Composite ADR heatmap. Heatmap of two-drug combination composite ADRs (cADRs).
Composite ADRs are reactions that may be caused by any of the drugs in the combination. The heatmap
is organized using a hierarchical clustering (a connectivity-based grouping method, in which a set
of dissimilarities is generated from the original matrix data, and each drug is iteratively assigned to
a cluster). (A) The complete heatmap, containing all 315 drugs; a band of drugs with more cADRs
(highlighted in a solid line rectangle), as well as a narrow band of drugs with few cADRs (highlighted in
a dotted rectangle) are shown. (B) A subset of the heatmap, containing 35 drugs: five drugs highlighted
in blue, which are used in examples in the Discussion section, and the six drugs most similar to each of
them (in terms of the number of cADRs) from Panel A.
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Figure 4. Heatmap of two-drug combination cADRs via mode 1 configuration. The mode 1
configuration indicates that the two drugs in the combination may perturb the same GO term, which
in turn may lead to cADR manifestation. The heatmap is organized using a hierarchical clustering.
The heatmap indicates that most drug pairs have a large number of mode 1 configurations. (A) The
complete heatmap, containing all 315 drugs; two narrow bands of drugs with few mode 1 configurations
(dotted rectangles) and a wide band of drugs with many mode 1 configurations (solid line rectangle)
are shown. (B) A subset of the heatmap, containing 35 drugs: five drugs highlighted in blue, which are
used in examples in the Discussion section, and the six drugs most similar to each of them (in terms of
the number of instances of mode 1 configurations) from Panel A.
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Figure 5. Heatmap of two-drug combination cADRs via mode 2 configuration. The mode 2
configuration indicates that each drug in the combination may perturb a different GO term that
is associated with cADR manifestation. The heatmap is organized using a hierarchical clustering.
It can be seen that most of most drug pairs exhibit a large number of mode 2 configurations. (A) The
complete heatmap, containing all 315 drugs; a band of drugs with the most mode 2 configurations is
shown (inside the solid line rectangle). (B) A subset of the heatmap, containing 35 drugs: five drugs
highlighted in blue, which are used in examples in the Discussion section, and the six drugs most
similar to each of them (in terms of number of instances of mode 2 configurations) from Panel A.
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Figure 6. Heatmap of two-drug combination composite risk modules (CRMs). A CRM is a set of
GO terms and cADRs that are independently associated in such a way that the manifestation of a
cADR in the CRM may only be associated with the perturbation of GO terms in the same CRM.
The manifestation of more than one cADR from the same CRM may then be thought to be associated
with the perturbation of the same set of GO terms. The heatmap is organized using a hierarchical
clustering. (A) The complete heatmap, containing all 315 drugs. A narrow band of drugs that exhibit
the highest number of CRMs is highlighted (inside a solid line rectangle), as well as a wide band of
drugs with a low number of CRMs (inside the dotted line rectangle). (B) A subset of the heatmap,
containing 35 drugs: five drugs highlighted in blue, which are used in examples in the Discussion
section, and the six drugs most similar to each of them (in terms of number of CRMs) from Panel A.

It must be noted that the heatmaps presented here were generated for two-drug combinations
only for simplicity in terms of the illustration of the model. It is possible to use this framework to
describe any number of n-drug combinations, which will be exemplified in the Discussion section.
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The full tripartite network in a graph (GML) format is available as Supplementary File 1, while
the analysis codes used in the current study are available in our GitHub repository: https://www.
github.com/hurlab/cADR. High-resolution heatmap image files for Figures 3–6 are provided as
Supplementary File 2.

3. Discussion

Our model enables the analysis of drug combinations in terms of the ADRs that may emerge
during the course of a drug regime. By considering a wide range of functional perturbations that
may be associated with a drug as well as the association of these functional perturbations with the
emergence of ADRs, it is possible to systematically categorize the landscape of functional perturbations
and ADRs that may be associated with a given drug combination. This was accomplished by modeling
them using a tripartite network formalism.

The study of polypharmacy from a systems perspective opens up novel opportunities for clinical
applications. A recent work [12] showed that different layers of pharmacological data may be modeled
through networks to predict drug interaction side effects. In the present work, we have provided a
network formalism that could give quantitative measures of possible interactions of a combination of
drugs based exclusively on the data derived from high-throughput drug perturbation experiments.
Our work currently does not systematically integrate other sources of drug information, such as
chemical structures or known drug targets. Nevertheless, we consider that the formalism here
presented provides (1) a possible decision tool for the clinical setting, which may inform physicians
of probable mechanisms behind observed adverse drug reactions, and (2) network parameter-based
quantitative measures that may form the basis of or complement future comprehensive predictive
models. To illustrate these potential applications, we provide the following two examples of drug
combinations, analyzed from this network perspective.

3.1. Fluoxetine and Phenelzine: Network Analysis of Serotonin Syndrome

Excessive serotonergic agonism may lead to the appearance of serotonin syndrome, which is a
life-threatening condition characterized by the manifestation of several clinical symptoms [13]. In a
clinical setting, serotonin syndrome may occur because of the concurrent administration of different
serotonergic agonists. We decided to explore the space of ADRs for two such agents—fluoxetine
and phenelzine—in order to exemplify our proposed model. Figure 7 shows a subgraph of the
Drug–GO–ADR tripartite network focused on the two selected drugs, and Figure 8 shows a subset of
the graph including only 43 cADRs and 79 GO terms that are associated with the two drugs. Figure 9
shows the 24 CRMs for this drug combination. Table 2 provides some general parameters for this
drug combination.
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of the subgraph containing the cADRs and associated GO terms for the phenelzine and fluoxetine
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brown and a dark green diamond, respectively. GO terms associated exclusively with phenelzine
are represented as light brown circles, and those exclusively associated with fluoxetine as dark green
circles, whereas GO terms associated with both drugs are colored blue.
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for the phenelzine–fluoxetine combination. In this visualization, those GO terms associated only with
phenelzine are light brown, those associated only with fluoxetine are dark green, and those associated
with both are blue. The red squares represent cADRs. The largest CRM contains 20 different cADRs.
The remaining 23 cADRs are independent of each other, each belonging to its own small CRM.
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Table 2. Topological parameters of the fluoxetine–phenelzine drug combination network.

Parameter Values

GO terms 107

ADRs 72

cADRs 43

GO nodes in mode 1 configurations 32

GO nodes in mode 2 configurations 47

CRMs 24

Size of largest CRM (ADR/GO) 53 (20/33)

Figure 10 illustrates an example of a single ADR, blurred vision, which allows the visualization
of contributions to the reaction through modes 1 and 2. In this figure, five GO terms are associated
with blurred vision, and how each of these contributes through a different configuration is visualized
with arrows.
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Figure 10. A subgraph of fluoxetine and phenelzine with five pathways. This is an illustration of
the manifestation of blurred vision as an ADR to the administration of phenelzine and fluoxetine.
Phenelzine and fluoxetine may both perturb the positive regulation of the response to an external
stimulus GO term in a mode 1 configuration. Additionally, mode 2 contributions may be observed,
with fluoxetine being independently able to perturb the regulation of the vitamin D biosynthetic process
and phenelzine being able to perturb the positive regulation of MAPK cascade, hormone catabolic
processes, and tissue remodeling. The perturbation of any such GO terms may lead to the manifestation
of blurred vision.

Three GO terms are potentially perturbed by phenelzine alone, one is potentially perturbed by
fluoxetine alone, and only one GO term may be perturbed by both drugs. As we describe in the
Methods, it can be demonstrated that, knowing the contribution of each drug to pathway perturbation,
as well as the contribution of each individual pathway to the ADR, the activity of this ADR given this
two-drug combination can be calculated:

Blurred Vision = Activity(BV | GO : 0043410) × [Perturbation(GO : 0043410 | phenelzine)]
+ Activity(BV | GO : 0042447) × [Perturbation(GO : 0042447| phenelzine)]
+ Activity(BV | GO : 0048771) × [Perturbation(GO : 0048771| phenelzine)]
+ Activity(BV | GO : 0032103) × [Perturbation(GO : 0032103| phenelzine)
+Perturbation(GO : 0032103 | f luoxetine)]
+Activity(BV| GO : 0048771)× [Perturbation(GO : 0060556| f luoxetine)]

(1)
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3.2. Captopril + Metformin + Omeprazole: A Potential Geriatric Combination

For this final example, we selected three drugs that are widely prescribed in the elderly population.
This combination is likely to be frequently used, for instance, by elderly diabetic patients. In Figure 11,
we show the space of 56 cADRs and 134 associated GO terms for this drug combination. Figure 12
shows the 21 CRMs associated with this drug combination.
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Figure 12. Captopril, metformin, and omeprazole drug combination network CRMs. In this
visualization, red squares represent cADRs, and blue circles represent GO terms.

In Figure 13, we present a subgraph showing the contribution of the three-drug combination
to the manifestation of the “dry mouth” ADR [14]. Three GO terms that contribute to dry
mouth were associated with omeprazole exclusively: “positive regulation of T-cell-mediated
immunity” (GO:0002711), “histone monoubiquitination” (GO:0010390), and “guanylate kinase activity”
(GO:0004385). Four GO terms were associated exclusively with metformin, including “regulation of
osteoblast differentiation” (GO:0045667), “homophilic cell adhesion via plasma membrane adhesion
molecules” (GO:0007156), “myeloid cell development” (GO:0061515), and “B cell mediated immunity”
(GO:0019724). Interestingly, two GO terms, “cellular response to acid chemical” (GO:0071229) and
“cysteine-type peptidase activity” (GO:0008234), were potentially perturbed by any of the three drugs,
while there was no dry-mouth-associated GO term that was exclusively perturbed by captopril in
this combination.
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Figure 13. A subgraph of omeprazole, captopril, and metformin and their GO term targets involved in
the manifestation of the dry mouth ADR. It may be seen that there are nine different GO terms that,
when perturbed by these drugs, may lead to the manifestation of the dry mouth ADR. Three of these
GO terms are exclusively perturbed by omeprazole, four exclusively by metformin, and the rest may be
perturbed by any of the drugs. Notice there is no GO term that is exclusively associated with captopril.

In this study, we provided a framework to explore the relationships between drugs, functional
categories such as GO terms or pathways, and ADRs using a network formalism. We described some
topological features that may be evaluated for any drug combination, which may be informative of the
way in which these drugs generate adverse drug reactions. This may have both research and clinical
applications. For this work, a GO–ADR network was used that was derived from previously published
work [9], which identified relationships between drugs, GO terms, and ADRs from HTS perturbation
reported in the LINCS dataset; however, our model may be used to explore any set of drugs, functional
features, and ADRs available that were derived from other technologies.

A major strength of our approach is that it may be scaled to analyze any number of drugs;
therefore, it is suitable for the analysis of complex therapeutic regimes. Although the visual inspection
of such a large network may not be possible at such scale, the computation of the parameters presented
in this work is feasible. The approach may be of use for a clinical setting application, in which a
quantitative measure may help the physician’s decision-making process in a polypharmacy setting to
manage ADRs.

Another strength is that the model may be readily adopted into a research and development
(R&D) setting to analyze the effects of drug combinations. There are opportunities in such a setting for
the quantification of functional processes, using either high-throughput means (such as the LINCS
project that was used for this work) or using in vivo or in vitro models in experiments designed ad
hoc for specific drugs and applications. Similarly, the quantification of ADRs could be measured in
biological models or through the use of pharmacovigilance data.

In this regard, it is important to have two limitations in mind. First, the tripartite network model
reliability is heavily dependent on the reliability of the used data. This is especially important when
using a large-scale, high-throughput data set, and adequate quality assurance and validation are
needed. Secondly, if the input data for the model is of a different nature (for instance, ADR incidences
from pharmacovigilance data and physiological measurements of an ADR in an in vivo model), it is
not trivially possible to compare the insights obtained from the model.

In conclusion, we consider that the model is capable of highlighting associations between the
functional effects of a drug and the manifestation of ADRs. These highlighted drug–ADR associations
may serve as leads to identifying mechanisms through which the drug may generate the adverse
effects. Nevertheless, appropriate experiments must be performed to confirm the proposed associations.
We propose that our method may be of use for pharmacological researchers for hypothesis generation
and guiding experimental designs.
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4. Materials and Methods

4.1. Network Construction

Drug–GO Network:

We used the drug perturbation data analyzed in a previous study [9], downloaded from
http://maayanlab.net/SEP-L1000/#download. Briefly, in that work, the researchers used principal
angle enrichment analysis (PAEA) [15] to generate the perturbation signature of Gene Ontology
terms for each drug analyzed. To identify the most significant GO terms for each drug, we used an
implementation of ABC analysis [16] to select the subset of GO terms that were more significantly
perturbed by each drug. We then constructed a bipartite network by representing drugs and GO terms
as nodes and linking them if the GO term belonged to the significantly perturbed set of a given drug.
This bipartite network was processed using the Igraph package [17] for R, as well as NetworkX [18] for
Python for basic network properties.

4.2. Network Integration

The two bipartite networks were merged. GO terms that were not associated with at least one
drug and one ADR were removed from the network, as they provided no information on possible
mechanisms for the induction of ADRs by a given drug. The links in the network were given directions:
drugs to GO terms and GO terms to ADRs.

4.3. Analysis of Drug Combinations from a Network Perspective

The main purpose of this work was to provide tools to analyze ADRs that may emerge in a drug
combination setting. For this, we used the tripartite Drug–GO–ADR network and defined a series of
features that may be extracted from this network for any combination of drugs reported in the network.

4.3.1. Drug Combination Subgraph

Given a set of drugs, it is possible to extract from the tripartite graph a subgraph that contains
the directed second-order neighborhoods of each drug in the combination. This subgraph represents
the landscape of all possible functional perturbations and ADRs for that drug combination that are
represented in the tripartite network model.

4.3.2. Composite ADRs

Given a drug combination subgraph, it is possible to identify ADRs that may be generated by
more than one drug. We refer to these as composite ADRs (cADRs). Composite ADRs may present a
problem in a polypharmacy setting, as they may be generated by any of the drugs in the treatment
regime; therefore, deciding which drugs (if any) should be suspended (or changed) to deal with the
ADR is not possible, unlike with a noncomposite ADR, which may only be associated with a single
drug (which may be substituted). There are two configuration modes that lead to the emergence
of cADRs:

Mode 1

In mode 1, the same biological function (or functions) may be perturbed by more than one drug
in the combination. The increased likelihood of functional perturbation leads to increased risk of the
ADRs associated with said perturbation.

http://maayanlab.net/SEP-L1000/#download
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If the contribution to pathway perturbation of each drug is quantitatively known, and the
contribution of each pathway to the ADR is also known, then it is possible to quantify the ADR
“activity” for the drug combination as:

Activity(ADR) = Activity(ADR| Pathway)× [Perturbation(Pathway| Drug_1 )

+Perturbation(Pathway|Drug_2 ) + · · ·
+Perturbation(Pathway| Drug_n )]

(2)

Mode 2

In mode 2, each drug affects a different biological function (or functions), each of which is
associated with the same ADR. Each perturbed biological function may independently increase the
risk for the appearance of the ADR. Again, if the quantitative contributions to pathway perturbation
by drugs and to ADR manifestation by pathway perturbation are known, it is possible to quantify a
given ADR “activity” as:

Activity(ADR) = Activity(ADR1|Pathway1) × Perturbation(Pathway1|Drug1)

+Activity(ADR|Pathway2)× Perturbation(Pathway2|Drug2) + · · ·
+Activity(ADR|Pathwayi) × Perturbation(Pathwayi|Drugn)

(3)

It should be noted that a given ADR may be associated with both mode 1 and mode 2
configurations, which may be described as a general model:

Activity(ADR) = ∑
pathway

Activity(ADR|Pathwayi) ∑
drug

Perturbation(Pathwayi|Drugn) (4)

4.3.3. Composite Risk Module

For a given set of composite ADRs, there will be a corresponding set of associated biological
functions. Some composite ADRs will be linked through associated biological functions. We define a
composite risk module (CRM) as the set of ADRs and biological functions that are connected if the
drug nodes are removed. The emergence of any ADR in a given CRM module may be explained only
by the perturbation of functions in the same CRM. Emergence of an ADR in a CRM module may also
involve the emergence of other ADRs in the same module by the perturbation of the same associated
functions. A drug combination with more CRMs may have a larger number of independent sets of
related ADRs.

4.4. Example Selection

In order to illustrate the results that may be obtained from the model, we selected two examples
of drug combinations to analyze. The first one is a combination of two serotonergic agents,
fluoxetine and phenelzine, which may cause serotonin syndrome, a well-known drug interaction
with a pharmacodynamic origin. For the second example, in which we wanted to showcase a
three-drug combination, we decided to select three commonly prescribed drugs, particularly in
geriatric populations: omeprazole, captopril, and metformin. For both examples, we selected an ADR
(blurred vision and dry mouth, respectively) that presented both mode 1 and mode 2 of composite
ADR configuration.

Supplementary Materials: Supplementary materials, a network file (GML format) containing the tripartite
network model for drugs, GO terms, and ADRs as well as a zip file containing high-resolution heatmap image
files for Figures 3–6, can be found at http://www.mdpi.com/1422-0067/20/2/386/s1.
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