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Abstract

Puppyhood is a very active social and vocal period in a harbor seal’s life Phoca vitulina. An import-

ant feature of vocalizations is their temporal and rhythmic structure, and understanding vocal

timing and rhythms in harbor seals is critical to a cross-species hypothesis in evolutionary neuro-

science that links vocal learning, rhythm perception, and synchronization. This study utilized ana-

lytical techniques that may best capture rhythmic structure in pup vocalizations with the goal of

examining whether (1) harbor seal pups show rhythmic structure in their calls and (2) rhythms

evolve over time. Calls of 3 wild-born seal pups were recorded daily over the course of 1–3 weeks;

3 temporal features were analyzed using 3 complementary techniques. We identified temporal and

rhythmic structure in pup calls across different time windows. The calls of harbor seal pups exhibit

some degree of temporal and rhythmic organization, which evolves over puppyhood and resem-

bles that of other species’ interactive communication. We suggest next steps for investigating call

structure in harbor seal pups and propose comparative hypotheses to test in other pinniped

species.
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Acoustic communication in animals can be investigated along sev-

eral dimensions. Historically, the study of animal bioacoustics has

focused on spectral and combinatorial features of vocalizations (see

Table 1 for these and other definitions; Janik and Slater 1997;

Bradbury and Vehrencamp 1998; Gerhardt and Huber 2002;

Ravignani and Norton 2017). Comparatively, especially in nonavian

vertebrates, little attention has been paid to vocal timing, intended

as the perception and production of single events in time. If there is

a paucity of studies on mammal vocal timing, even less is known

about mammal vocal rhythms, intended as structured patterns of

multiple temporal events (see Table 1).

A cross-species hypothesis in evolutionary neuroscience makes

the study of timing particularly relevant (Patel 2006, 2014). The

“vocal learning-beat perception and synchronization” (VL-BPS)

VC The Author(s) 2018. Published by Oxford University Press on behalf of Editorial Office, Current Zoology. 107
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Current Zoology, 2019, 65(1), 107–120

doi: 10.1093/cz/zoy055

Advance Access Publication Date: 7 July 2018

Article

Deleted Text: focussed
Deleted Text: vocalisations
Deleted Text: -
Deleted Text: `
Deleted Text: &mdash;
Deleted Text:  -
Deleted Text:  
Deleted Text: synchronisation
Deleted Text: '
https://academic.oup.com/


hypothesis suggests that only species capable of vocal production

learning may show a particular form of rhythm and timing, namely

the ability to extract a regular pulse from sound and synchronize

movement to it (Patel 2006). At present, only 4 clades of mammals

are known to be capable of vocal production learning, often entail-

ing vocal imitation (Adret 1992; Janik and Slater 1997): elephants,

bats, pinnipeds, and cetaceans. Likewise, whereas elaborate timing

and rhythmicity exist in many species such as crickets, anurans and

fireflies (see Ravignani et al. 2014 for a review), few animals are

capable of flexible beat perception and synchronization (Wilson and

Cook 2016). In principle, the VL-BPS hypothesis predicts that we

should find vocal learning abilities in all species that can perceive a

beat in a rhythmic sequence and synchronize with it. Unfortunately,

vocal imitation and rhythm synchronization have rarely been inves-

tigated in the same species and especially not in mammals

(Ravignani and Cook 2016; Wilson and Cook 2016; Lattenkamp

and Vernes 2018). However, the study of timing and rhythm in

vocal learning mammals becomes particularly important in light of

the VL-BPS hypothesis. Such studies may shed light on the evolution

of human cognition and the neural circuitry for rhythm and vocal

learning (Patel 2014; Ravignani et al. 2016; Vernes 2017).

Research on pinnipeds has uncovered vocal learning capacities in

some species (Schusterman 1977; Ralls et al. 1985; Sanvito et al.

2007; Reichmuth and Casey 2014; Casey et al. 2015) and vocal

rhythmicity or beat perception and synchronization in others (Page

et al. 2002; Cook et al. 2013; Mathevon et al. 2017; Rogers 2017).

Pinnipeds are therefore closely related species particularly

appropriate to test the VL-BPS hypothesis (Ravignani et al. 2016;

Ravignani 2018a). To this aim, it is necessary to study timing and

rhythm in a species displaying vocal learning capabilities such as the

harbor seal Phoca vitulina (Ralls et al. 1985). This study focuses on

harbor seals1 and in particular on the vocal behavior of pups related

to mother–pup interactions.2

Table 1. Definition of terms and concepts in order of appearance in the article

Term Definition

Temporal Referring to the timing of a vocalization.

Spectral Referring to the frequency features of a vocalization, for example, fundamental frequency, harmonics, formants,

and harmonicity.

Socioecology Study of interactions among members of a species, and of how an organism’s environment affects its social

structure.

Duet Result of 2 individuals vocalizing, possibly interactively.

Chorus Result of 2 or more individuals vocalizing, possibly interactively.

Combinatorial A type of structure resulting from joining constituent elements, where the result may be more than the simple sum

of its elements.

Beat perception Extraction of a main periodicity—the beat or tactus—from a complex acoustical signal (e.g., music embedding

different metrical levels).

Synchronization Process by which events of a temporal sequence occur at the same time as events in another temporal sequence.

Vocal (production) learning Ability to produce vocalizations not belonging to one’s default repertoire, often via imitation or social learning.

Rhythm Sequence of durations marked by acoustic events. Some rhythms may include repeating regular patterns, one or

more periodicities, a pattern of accents/prominences, and hierarchical grouping (see isochrony and grouping

below).

Polygynous Social organization by which few dominant males mate with all receptive females.

Lek Spatial aggregation of male conspecifics who engage in competitive displays to attract females.

Oestrus Period of sexual fertility in most female mammals.

Lanugo Natal hair coat that is typically shed in utero in harbor seals

Weaning Developmental phase during which pups transition from breastfeeding to independent foraging and life without

their mothers.

Hearing threshold Sound level above which an organism can hear a specific sound.

Intensity Power carried by sound waves.

Pitch Perceptual quality of sounds, and psychological counterpart of the frequency of a signal.

Distributional Relating to the statistical distribution of a quantity.

Structural Relating to the sequential ordering of elements composing a signal and their frequency of co-occurrence.

Hypothesis-free metric Measurement which makes little or no assumptions on the underlying structure of the measured quantity.

Periodicity Feature of a sequence in which events (e.g., sounds of a metronome) occur at equal time intervals.

Sequence A set of events following each other in a particular order.

Transition probability Probability that an element type in a sequence is adjacent and preceded by another (or the same) element type.

Isochrony Property of a pattern in which all temporal intervals have equal duration.

Grouping Organization of temporal events based on their relative proximity or on their relative acoustic properties.

1 Harbor seals are pinnipeds: semi aquatic marine mammals belonging

to the order Carnivora. Pinnipeds comprise three families: Otariidae,

a.k.a. eared seals, Odobenidae, whose only representative is the wal-

rus, and Phocidae, a.k.a. true seals [Berta et al. 2005]. Harbor seals

are small Phocidae, characterized by V-shaped nostril openings.

Adult pelage coloration spans light/dark brown to different shades of

gray. Harbor seals are the most widely distributed pinniped, with a

total population size estimated at 600,000 according to IUCN Red List

[Bjorge et al. 2010; Lowry 2016]. They inhabit temperate and subarctic

coastal areas on both sides of the north Atlantic and north Pacific

Oceans, and are commonly found in bays, rivers, estuaries, and inter-

tidal areas. They are easily disturbed on land, hence human

approaches in the wild will result in the animals fleeing into the

water. Harbor seal societies are slightly polygynous with dominant

males mating receptive females. Adult male harbor seals can be 1.6–

1.9 m long and weigh 70–150 kg. Adult females are smaller on aver-

age, measuring 1.5–1.7 m and weighting 60–110 kg. Males reach sex-

ual maturity at 5–6 years of age, whereas females at 3–5 years. The

establishment of male-display territories along female-traffic corri-

dors, haul out sites, and feeding grounds suggests a lek-type mating
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Mother–pup recognition, like most social behaviors in pinnipeds

such as the competition for space and access to females, is main-

tained through vocal signaling (Schusterman 2008).3 Harbor seal

mothers frequently go for foraging trips at sea to nurse pups during

lactation (Insley et al. 2003). As harbor seals nurse their pups in col-

onies, efficient vocal communication is particularly important in

mother–pup reunions, as mothers need to identify their pup within

the colony when returning from foraging. Unlike most pinniped spe-

cies that use pup attraction calls produced by the mother to maintain

contact, harbor seal pups emit mother attraction calls (MACs) dur-

ing the lactation period (Renouf 1984). Harbor seal pups are, there-

fore, very vocal during this time and the pups’ individually

distinctive calls play an important role in mother–pup recognition

(Renouf 1984; Perry and Renouf 1988). Accurate recognition of off-

spring by the mother increases reproductive success (Insley et al.

2003). The offspring’s survival therefore depends on (1) the moth-

er’s capacity to perceive and recognize individual calls, building on

sound perception, and (2) the caller’s ability to emit distinguishable

individualized signals, building on sound production (Tibbetts and

Dale 2007). Mother–pup recognition is therefore an area where

both vocal learning and rhythmic abilities may be important for dis-

tinguishing pup calls from each other.

Sound perception in harbor seals has been measured both in air

and underwater (sound propagates further underwater than in air;

Renouf 1991). In air, adults’ hearing thresholds span 1 kHz and

22.5 kHz, with best sensitivity at 16 kHz (Lucke et al. 2016). In con-

trast, adults’ hearing thresholds span 0.125 kHz and 100 kHz under-

water, with best sensitivities below 4 kHz (Kastelein et al. 2009).

Harbor seals also show higher thresholds for shorter repeating sig-

nals (�50 ms) than longer repeating signals (�100 ms) (Terhune

1988). When tested with more natural sounds, harbor seals are cap-

able of discriminating between calls from different pups (Renouf

1985) and mothers are capable of acoustically recognizing their own

pup 3 days after birth (Sauvé et al. 2015a). However, it is currently

unclear which acoustic parameters of pups’ calls a mother is most

sensitive to, and which parameters she employs to recognize her

own pup.

Sound production in harbor seals can be described by the source-

filter framework of phonation. According to this theory, vocal pro-

duction occurs when a source signal, generated by the vibration of

the vocal folds, is filtered by the cavities of the supralaryngeal tract

(Fant 1960). These anatomical structures impose constraints on the

acoustic structure of the sounds and result in individualized

vocalizations that vary due to growth and development in puppy-

hood (Charrier et al. 2009). This means that the mother must adapt

to her pup’s calls as it continues to grow. Indeed, the resonant prop-

erties of the vocal tract change as the pup grows (Ravignani et al.

2017). In addition, in this sexually dimorphic species, sex steroids

produced during growth might act on laryngeal structures causing

different vocal characteristics between males and females

(Aufdemorte et al. 1983; de Reus 2017).

The ontogeny of the harbor seal pup MACs has been investi-

gated in at least 3 subspecies (Khan et al. 2006; Sauvé et al. 2015b;

de Reus 2017). All studies reported an effect of age and sex on

acoustic parameters but only some showed an effect of body size

(Khan et al. 2006; Sauvé et al. 2015b). As pups grow older, their

calls become longer in duration, more frequent, and less harmonic

(de Reus 2017). With age, MACs also show a consistent decrease in

fundamental frequency and frequency modulation (Khan et al.

2006; Sauvé et al. 2015b). In addition, male pups have a lower pitch

than females (Sauvé et al. 2015b; de Reus 2017). However, there

exist similarities and differences in the acoustic call parameters

found in the aforementioned studies. For example, the fundamental

call frequency is higher in captive individuals (Khan et al. 2006),

and call durations are much shorter in wild conspecifics (Sauvé et al.

2015b). A third study (de Reus 2017) focused on wild-born pups

that were opportunistically recorded during their short rehabilita-

tion period coinciding with their weaning period before they were

returned to their natural environment. Compared with the previous

2 studies, this work revealed differences in fundamental frequency

(Khan et al. 2006) and call duration (Sauvé et al. 2015b). The vocal

repertoire of harbor seal pups clearly shows call variation between

captive and wild animals and also between animals inhabiting differ-

ent geographical locations (Khan et al. 2006; Sauvé et al. 2015b; de

Reus 2017).

In brief, (1) breeding colonies are dense enough that individual

identification of pups by their mother is critical, and (2) mothers are

able to recognize their own pup based on acoustic properties of

pups’ MACs. This raises the question: which aspects of the

vocalization make identification possible? This question is common

in animal bioacoustics (e.g., Aubin and Jouventin 1998; Aubin et al.

2000; Jouventin et al. 1999 in penguins) and has been tackled in pin-

nipeds in several studies (Charrier et al. 2002, 2003, 2009, 2010;

Dobson and Jouventin 2003; Aubin et al. 2015). However, prior

studies have not addressed whether mother–pup recognition relies

on rhythm and temporal features of calls. To understand which

system for all populations [Boness et al. 2006]. Male aquatic displays

occur mostly in summer, have a strong acoustic component, and co-

incide with weaning and breeding [Nikolich et al. 2016; Sabinsky

et al. 2017]. Mating starts after the breeding season, with females

coming into oestrus about a month after giving birth. The reproduct-

ive cycle of harbor seals, as it occurs in all pinnipeds, presents three

basic phases: oestrus, delayed implantation, and fetal growth/devel-

opment. After an 11-months gestation, females give birth on land to

single pups. Deliveries can occur head-first, breech and transverse

[Lawson and Renouf 1985]. Moreover, adult females may be able to

delay delivery [Lawson and Renouf 1985].

2 Pups, born in summer, weight 8–10 kg at birth. They are born with

silver-grey pelage dorsally, and white pelage ventrally. The lanugo

coat is left in the uterus before birth, but precocial pups can be born

with it. Unlike other species of Phocidae, which give birth on land,

harbor seal pups enter the water within hours of birth [Lawson and

Renouf 1985; Atkinson 1997; Ellis et al. 2000]. The lactation period

lasts an average of 24 days, during which females take regular trips

to the sea to forage. After lactation, females leave for mating. At this

point, pups are weaned, weigh �26 kg, and are ready to be on their

own.

3 Maternal strategy is believed to have shaped the evolution of

mother-pup recognition in pinnipeds. Maternal strategies in pinni-

peds lie on a continuum spanning two extremes [Oftedal et al. 1987].

Generally, Otariidae adopt a foraging cycle strategy with a long

weaning period, during which mothers must make frequent foraging

trips at sea to be able to nurse pups. Phocidae, on the other hand,

adopt a fasting strategy, remaining close to their pups for the whole

duration of a comparatively shorter weaning period. The harbor seal

challenges this dichotomy as it belongs to Phocidae but forages dur-

ing lactation [Insley et al. 2003]. This species thus faced greater evo-

lutionary pressures to select for an efficient vocal communication

system. Efficient vocal communication is particularly important in

mother-pup reunions, when mothers return from foraging and have

to identify the right pup within the colony.
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features mothers can employ for recognition, previous research has

focused on spectral features of pups’ calls. We hypothesize that in-

formation on the timing between calls and their respective silences

can further be used to study the individuality of MACs in the tem-

poral domain (Ravignani 2018a, b). In particular, individuality of

MACs and individual recognition may rely on temporal and rhyth-

mic features, which have been neglected until now. Predictable tem-

poral structure may help to separate calls from different individuals.

If temporal structure plays an important role, we expect to find

such structure in pups’ calls. To test this hypothesis, we focus on the

temporal dimension of pups’ calls, and look for temporal and rhyth-

mic structure by analyzing the following measures: (1) call dura-

tions, (2) inter-onset intervals (IOIs), and (3) inter-peak intervals

(IPIs) of calls (Ravignani 2018b). The duration is the time between

the onset and offset of one vocalization. The IOI is the time elapsed

between the onsets of 2 successive calls (Ravignani and Norton

2017). The IPI is the time between the maximum-intensity peak of a

call and the maximum-intensity peak of the next call (Ravignani

2018b; see also Jadoul et al. 2016). Although previous preliminary

work did not find statistical differences between IOIs and IPIs

(Ravignani 2018b), IPI has potential biological significance due to

basic psychophysics. In fact, the perceived acoustic structure of

pups’ MACs obviously varies depending on the distance between

emitter and receiver (see spectrograms in Sauvé et al. 2015a).

Hence, although the onset of a call may be clear to a receiver at close

distance, it may not be perceived (or be perceived as occurring later)

with increasing distance from the caller. Maximum intensity peaks,

however, do not suffer from this limitation. Given a few acoustic

assumptions, and for reasonably short distances, the intensity peak

of a call will always occur at approximately the same point in time

independently of the distance from the observer. IPIs are, therefore,

worth scrutiny, both to probe their potential temporal structure and

to test potential similarities with IOIs.

In this study, we address 2 empirical questions: Do harbor seal

pups display rhythmic structure in their calls and does this structure

change over time? We also examine 2 methodological questions:

What are the best analytical techniques to capture different types of

temporal structure in pups’ vocalizations and which temporal met-

rics extracted from pups’ calls are appropriate to study rhythm?

Materials and Methods

Subjects
We recorded 3 wild-born harbor seal pups. A female pup (tagged

292) was brought in for rehabilitation at the Sealcentre Pieterburen,

The Netherlands (Ravignani et al. 2017), at the estimated age of

7 days (Ravignani 2018b). Another female pup (tagged 192) was

admitted at the estimated age of 2 days, whereas a male pup (tagged

201) was admitted at the estimated age of 10 days. Pups 192 and

201 still had lanugo upon arrival, suggesting that they were born

prematurely. The animals were individually housed in a cabin or

room with access to a pool. Seals in rehabilitation are usually

housed socially (de Reus 2017). These recordings and analyses took

advantage of the rare occurrences of individual housing.

Sound recordings
Individual recordings were performed daily between age 7 and

28 days, depending on the individual (de Reus 2017; Ravignani

2018b). Here we report on recordings between day 9 and 27 for in-

dividual 292, between day 6 and 18 for individual 192, and between

day 12 and 27 for individual 201. Recordings were performed at a

random time out of 4 possibilities: 7 AM, 11 AM, 3 PM, and 7 PM.

Recordings were collected right before feeding (and 4–12 h after the

previous feeding).

Ten minutes of vocalizations were recorded in air each day at

0.5–2 m distance from the seal. Recordings were collected using a

unidirectional microphone Sennheiser ME-66 (frequency response:

40–20, 000 Hz 6 2, 5 dB; Sennheiser electronic GmbH & Co. KG,

Wedemark, Germany), equipped with a MZW-66 foam windshield.

A Zoom H6 (Zoom Corporation, Tokyo, Japan) digital recorder

recorded and saved the sounds as uncompressed “.wav” files with a

sampling frequency of 48 kHz and a 24-bit quantization.

Call annotations
The recorded audio files were manually annotated (de Reus 2017;

Ravignani 2018b) in Praat version 6.0.1 (Boersma and Weenink

2017). In particular, all onsets and offsets of pup vocalizations were

annotated and further analyzed.

Extraction of temporal variables
The .wav sounds and Praat’s annotations were imported in Python

2.7 using a custom script. The script used the package

TextGridTools 1.4.3 to parse “.Textgrid” annotation files

(Buschmeier and Wlodarczak 2013) and the package Parselmouth

to process “.wav” sound files by calling Praat (Jadoul et al. 2018).

The custom script extracted and combined annotations and sound

features, and it computed 3 measures: (1) durations, (2) IOIs, and

(3) IPIs of calls (Ravignani 2018b). In computing durations and

IOIs, the accuracy of the onset was further refined using Praat’s

pitch tracking function. The maximum-intensity peaks used to com-

pute IPIs were extracted using Praat’s intensity function, called via

Parselmouth (Jadoul et al. 2018).

Statistics
A number of metrics, statistical tests, and visual methods were used

to explore and test temporal and rhythmic features. Except for Allan

Factor (AF) and burstiness, all analyses focused on differences with-

in individuals rather than between individuals.

For each individual, Anderson–Darling tests were employed to

examine whether the distributions of durations, IOIs, or IPIs were

drawn (across days) from the same underlying distribution.

Friedman tests were used to examine whether the sample distribu-

tions of durations, IOIs or IPIs differed across days. Two-sample

Kolmogorov–Smirnov tests were used to examine pairwise differen-

ces in distributions across days, and differences between IOI and IPI

distributions for each pup. In the Kolmogorov–Smirnov tests across

days, an alpha value of 0.05 was Bonferroni corrected for multiple

comparisons: alpha was divided by the binomial coefficient C(d,

2)¼d(d�1)/2, where d was the number of days compared pairwise.

For each pup, Kendall’s Tau non-parametric correlation was used to

compare IOIs and IPIs. The Augmented Dickey–Fuller (ADF) unit

root test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test

for stationarity were used on the daily time series of median dur-

ation, IOI, or IPI to test whether these medians were random walks

(Kwiatkowski et al. 1992; Hamilton 1994; MacKinnon 1994,

2010). If the ADF test cannot reject its null hypothesis, whereas the

KPSS does reject its null, then the data provide evidence that the ser-

ies of IOIs (or IPIs or durations) has a unit root, that is, is a random

walk over days.
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Phase space plots were used to visualize structural regularities in

IOIs beyond simple distributional regularities (Wagner 2007;

Ravignani 2017). In fact, while the above methods do not differenti-

ate between sequences having elements with similar distributions

but arranged in different orders, phase space plots are sensitive to

durational sequencing and ordering (Ravignani and Norton 2017).

Transition matrices, representing Markov chains, were further

employed to assess structural regularities in call durations beyond

distributional ones (Ravignani and Madison 2017; Ravignani

2018a). For each pup and recording day, we ran a K-means cluster-

ing algorithm to find potential categorical distributions in durations

(Ravignani et al. 2016). A custom Python script ran alternative ver-

sions of the K-means clustering algorithm for each K (the

hypothesized number of clusters), ranging from 2 to 10. Each clus-

tering version received a Silhouette score, quantifying the goodness

of clustering (Rousseeuw 1987). For each pup and day, (1) the final

K was chosen to be the number of clusters minimizing the Silhouette

score; (2) each durational value in a sequence of durations was

assigned to its category (i.e., cluster), and (3) the transitions between

durational categories were plotted. For each plot, a darker blue in a

transition matrix corresponds to a higher transition probability, that

is, a higher probability that the durational category on the vertical

axis d(t) is followed by the durational category on the horizontal

axis d(tþ1).

Burstiness and AF over days were adopted as hypothesis-free

metrics to assess the degree of clustering of temporal events (Abney

et al. 2017; Falk and Kello 2017; Kello et al. 2017). Burstiness is a

measure borrowed from dynamical systems and statistical physics

(Goh and Barabási 2008). It quantifies to what extent events are

isochronous vs. clustered in time. A burstiness value close to �1

indicates perfect periodicity (i.e., isochrony). A burstiness value

close to 1 indicates high burstiness, which is where periods of clus-

tered activity are followed by periods of inactivity. Burstiness was

calculated by dividing the difference between standard deviation

and mean IOI by their sum. AF for each pup was computed in

Matlab (Kello et al. 2017) using “.wav” files where all sounds ex-

cept the pup calls were silenced using a custom Python script. AF is

a hypothesis-free metric quantifying the degree of grouping, that is,

how events are hierarchically organized at different time scales

(Kello et al. 2017). As such, AF is a curve over windowed periods of

time, rather than a scalar value.

Results

We first tested whether, for each pup, the IOI distributions differed

from the IPI distributions, which was not the case (Two-sample

Kolmogorov–Smirnov tests. Pup 192: N¼1, 240, D¼0.02,

P¼0.92; pup 201: N¼3335, D¼0.01, P¼0.86; pup 292:

N¼2059, D¼0.02, P¼0.62). Similarly, for each pup, IOIs strong-

ly correlate with IPIs (Kendall’s Tau. Pup 192: N¼1240, Tau ¼
0.91, P<0.001; pup 201: N¼3335, Tau ¼ 0.90, P<0.001; pup

292: N¼2059, Tau ¼ 0.90, P<0.001). As the IPI distributions

closely resemble IOI distributions, IPI analyses are mostly omitted in

the rest of the paper. Figure 1 shows daily distributions of durations

(top) and IOIs (bottom) for each pup.

We tested the hypothesis that the sampled distributions of dura-

tions were drawn across days from the same underlying distribution.

The same hypothesis was tested for the distributions of IOI and IPI.

Three k-samples Anderson–Darling tests for each pup suggested that

durations are drawn from different probability distributions across

days; the same holds for IOIs and IPIs (for all individuals, all A>9

and all P<0.001 see Table 2).

We also tested the hypothesis that the sampled distributions of

durations differed across days. The same hypothesis was tested for

the distributions of IOI and IPI. For each of 2 pups (see Table 3),

3 Friedman tests suggested that durations differed across days, and

the same held for IOIs and IPIs (all Q>36, all P<0.01). For a third

Figure 1. Violin plots depicting the distribution of durations (top) and IOIs (bottom) in milliseconds over days.
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individual, however, only IOIs and IPIs differed across days, where-

as durations did not.

Finally, we tested the hypothesis of equal variances in IOI, IPI

and duration distributions within pups and across days. The null hy-

pothesis could be rejected in 8 out of 9 cases (Levene’s tests, all

W>1.9, all P<0.05), suggesting that IOIs, IPIs, and durations have

different variances across days. In contrast, only 1 case of

homoskedasticity was found, namely the distribution of durations

for pup 192 (Levene’s test, W¼1.2, all P¼0.23).

Kolmogorov–Smirnov tests on pairs of days showed heterogen-

eity of distributions across days. This finding held both for durations

(Figure 2, top) and IOIs (bottom). ADF and KPSS tests on the time

series of median durations and IOIs (and IPIs, not shown) across

days were not significant for any pup (all P>0.05). Lack of signifi-

cance in the KPSS tests suggests that the daily median of durations

and IOIs are not random walks over days.

Two main results emerge from these tests. First, in the time window

analyzed, there is very slow change in durations and IOIs. Second, very

Table 2. Anderson–Darling tests

Timing

measure

Test statistic,

p-value, sample size

r17–192 r17–201 r17–292

Duration A 17.07 23.79 33.84

P <0.001 <0.001 <0.001

n 1253 3352 2078

IPI A 9.41 39.69 11.55

P <0.001 <0.001 <0.001

n 1240 3335 2059

IOI A 9.59 40.16 12.40

P <0.001 <0.001 <0.001

n 1240 3335 2059

All tests were significant at P< 0.001.

Table 3. Friedman tests

Timing

measure

Test statistic,

p-value, sample size

r17–192 r17–201 r17–292

Duration Q 18.90 82.80 87.41

P 0.09 <0.001 <0.001

n 156 512 1102

IPI Q 26.39 77.33 36.19

P <0.01 <0.001 <0.01

n 143 496 1083

IOI Q 23.66 74.54 40.18

P <0.05 <0.001 <0.01

n 143 496 1083

All tests but 1 (highlighted in bold) were significant at P< 0.05.

Figure 2. Comparison of distributions of durations (top) and IOIs (bottom) between any pair of recording days (x and y axes). A black square denotes a significant

2-sample Kolmogorov–Smirnov test, with alpha¼0.05/[days�(days�1)/2], adjusted for all multiple comparisons. The 45� lines denote adjacent days (i.e., d and

dþ1). For instance, in the top-left panel, the square at the bottom-left of the graph denotes a significant difference between distributions of durations of Days 6

and 7. The whole graph suggests some heterogeneity but little divergence over time. Crucially, adjacent days are rarely statistically different, suggesting a punc-

tuated slow change.
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few of the comparisons between adjacent days, corresponding to the

squares lying on the 45� gray lines, are significant. Distributions of ad-

jacent days resemble each other more often than not.

Phase space plots of all variables, days, and pups (not shown) do

not show clear geometrical patterns (as seen, instead, in Ravignani

2017). However, some runs of adjacent days (Figure 3) do show

pairwise similarities. Phase space plots are intended as exploratory

rather than inferential tools. Hence no scalar metric can be readily

assigned to a plot, although this would be a desirable feature. To try

and provide a number to quantify the degree of structure within and

between plots, we performed some preliminary extraction of metrics

post-hoc. Using Python’s “PIL” and “skimage” packages, we calcu-

lated Shannon’s entropy of each phase space plot of individual 201.

The plots of days 13, 14, and 15 showed similar levels of entropy.

The plots of days 23, 24, and 25 also showed similar levels of en-

tropy. In addition, the entropy of days 13, 14, and 15 differed from

that of the previous and following days. We take this as very prelim-

inary quantitative support for the visual intuitions derived by

Figure 3: low visual entropy corresponds to a higher overlap of

edges, hence more repeating patterns within 1 recording day.

Clustering and transition matrices of call durations of the 3 pups

(Figures 4–6) show several clear properties. First, within each pup

and across days, the algorithm does not converge towards a stable

number of categories. Second, a partition of durations in 2 duration-

al categories appears to be the most common, both within and be-

tween pups. Third, the transition probabilities are not evenly spread

in the matrices, but concentrated in a few cells. In other words, a

small number of transitions is very probable, whereas many others

have low probability. Fourth, the high probability transitions do not

lie on the diagonal, especially not in the bottom-right side of the

matrices. This means that transitions between categories (i.e., adja-

cent calls of different durations) are very common while transitions

within categories (i.e., 2 adjacent calls of the same duration) are un-

common. This is particularly true for long durations; transitions be-

tween pairs of short durations still occur.

Daily burstiness of IOIs was computed for each pup. Figure 7

shows daily values, and their within-pup average across days. The 2

female pups, 192 and 292, exhibit higher values of burstiness and

statistically greater than 0 (Wilcoxon signed-rank test: W¼1.0,

P<0.01). The male pup 201 instead has a mean value statistically

equal to 0 (W¼59.0, P>0.05), with daily values oscillating above

and below 0. So, while little can be said about 201, the other 2 pups’

rhythms are quite bursty. Nonparametric correlations (Spearman r

and Kendall’s tau) between day and burstiness are mostly negative

but non-significant.

AF was computed for each pup using the raw audio files. A few

properties of the AF curves can be observed. First, the AF curves

depicted in Figure 8 (left) are quite similar across pups. In other words,

all 3 pups have a similar hierarchical organization of call onsets.

Second, seal pup calls are quite clustered, especially when compared

with other environmental sounds recorded outside vocalization bouts

(not shown). Third, the AF curves for all 3 pups are relatively steep.

Discussion

This study investigated the presence and development of vocal

rhythms and timing in captive harbor seal pups. We recorded 3

Figure 3. Phase space plots of individual 201’s IOI at Days 13, 14, and 15 (top), and Days 23, 24, and 25 (bottom). Although no clear geometrical pattern emerges,

consecutive days appear as a “smeared” version of the previous ones (see Ravignani 2017). The fact that most edges connect at the bottom-left of the figure sug-

gests that short IOIs often occur in pairs, rather than an individual short IOI being followed by an individual long IOI, or pairs of long IOI.
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wild-born pups daily over a 1–3 week period, annotated their calls,

and extracted temporal measures. These temporal parameters were

analyzed using a range of techniques. We found that rhythmic distri-

butional and structural regularities appear within and across indi-

viduals, and partly develop over puppyhood.

We began by investigating statistical distributions of durations,

IOIs, and IPIs within individuals. We found that these variables vary

daily over puppyhood, and intensity peaks within a call do not occur

at predictable positions in time. Classical frequentist statistics sug-

gested variability across days for all temporal measures. In one in-

stance, the call durations of female seal 192 did not change across

days. This was, however, the animal with the lowest sample size and

a type II error may therefore have prevented the detection of a small

effect. IOIs and IPIs were distributionally similar to each other and

highly correlated (see Tables 2 and 3, and Ravignani 2018b). This

similarity suggests that IOIs and IPIs either provide interchangeable

measures of between-calls timing, or contain some fine-grained dif-

ferences, which we were unable to detect. IOIs and IPIs may indir-

ectly provide information on the internal temporal structure of calls,

suggesting that the peak of each call is always reached at a constant

delay from the onset. Contrasting the IOI-IPI similarity with the dis-

tributions of durations, similar across days, it may also be that the

peak of each call is reached at a relative fixed proportion of the call

duration computed from the call onset. Either way, the data show

that intensity peaks do not occur at random positions with respect

to onsets (see also de Reus 2017). We found several pairwise

Figure 4. Transition matrices between centroids of duration clusters for individual 192. Each matrix represents 1 day (First row: Days 6, 7, 8, 9, etc.). Darker blue

corresponds to a higher transition probability, that is, a higher probability that the durational category on the vertical axis d(t) is followed by the durational cat-

egory on the horizontal axis d(tþ1). Categories were calculated via K-means clustering algorithms, computing a Silhouette score for each possible K�10, and

choosing the K minimizing the Silhouette score.

114 Current Zoology, 2019, Vol. 65, No. 1

Deleted Text: analysed


differences in distributions of durations—and distributions of

IOIs—between days. Crucially, most detected differences were be-

tween non-adjacent, rather than adjacent days. This suggests the

presence of a punctuated instead of a daily change. We hypothesize

that changes in durations and IOIs accumulate over days, until they

become statistically detectable. Note that seal 192’s IOIs stood out

as outliers, as only 1 significant difference was detected in the 78

performed statistical comparisons between pairs of days.

We then investigated how neighboring durations or IOIs are mu-

tually affected, by focusing on structural regularities beyond distri-

butional statistics (Jadoul et al. 2016). Visual representations of

IOIs’ structural regularities using phase space plots revealed that the

seals’ IOIs have some, though limited, adjacent rhythmic structure

that is definitely less stereotyped than other rhythmic behaviors in

other species (e.g., human music, Ravignani 2017; humpback

whales, Schneider and Mercado 2018). However, when considering

visual similarities among adjacent days, it is apparent that there are

streaks of days where call onsets were similarly timed. In other

words, while the rhythmic pattern of IOIs is not clearly quantifiable

for individual plots, adjacent days do show some rhythmic similar-

ities (Ravignani and Norton 2017). Thus, while we could not un-

cover the exact structure of consecutive IOIs, there were regularities

in vocalization onsets, which were repeated and slowly evolved

across adjacent days (i.e., visually showing noise reduction and a

tendency towards shorter IOIs). Notably, noise reduction over days

as visualized in Figure 3 can be mapped to a rhythmic interpretation.

In phase space plots, noise reduction often corresponds to geomet-

rical shapes recurring within the same plot (Ravignani 2017). A re-

current geometrical shape with k edges corresponds to a recurring

rhythmic pattern of kþ1 IOIs, or equivalently, kþ2 vocalizations.

Figure 5. Transition matrices between centroids of duration clusters for individual 201. Each matrix represents 1 day (First row: Days 12, 13, 14, 15, etc.). See

Figure 4 for details.
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Hence, while Figure 3 tells us little about the rhythmic organization

of call onsets in absolute terms, the noise reduction over days sug-

gests that the succession of call onsets becomes more structured. The

older the pup, the more predictable the onset of a call becomes given

the onsets of previous calls. In brief, while phase space plots do not

provide a clear picture of the structure per se, they do show an in-

crease in structure. Higher density towards shorter IOI is usually

generated by a vertex in the short IOI range. Such vertex in the short

IOI range corresponds to 3 vocalizations separated by 2 short IOIs

(Ravignani 2017). This means that series of 3 (or more) calls

Figure 6. Transition matrices between centroids of duration clusters for individual 292. Each matrix represents 1 day (First row: Days 9, 10, 11, 12, etc.). See

Figure 4 for details.
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happening within a short time are separated by a longer pause, fol-

lowed again by 3 (or more) calls happening within a short time, etc.

Conversely, 2 long pauses in a row are quite uncommon. In the

wild, when pups are looking for their mother and vocalizing, it

might be advantageous to vocalize more than once in different direc-

tions. Durational categories were inferred by applying clustering

algorithms to sequences of durations. Transition matrices, summa-

rizing the probability of transitioning from 1 durational category to

another, also showed some structural organization. Especially in

later days of recordings, call durations alternated between 2 or few

categories; these predictable runs were only rarely interspersed by

less frequent call durations. Finally, the matrices’ diagonals in gen-

eral did not show high probabilities. This corresponds to alternation

of durations rather than repetition of durations. In comparison, we

speculate that a similar analysis on the metronomic barks of a

California sea lion would result in fundamentally different results,

namely matrices with high probabilities on the diagonal, hence

many repetitions (Schusterman 1977; Ravignani 2018a).

Functionally, we hypothesize that call duration might convey emo-

tional information, as call duration is a vocal correlate of arousal

(Filippi et al. 2017).

We show how analyses beyond distributional statistics, in par-

ticular transition matrices (Ravignani 2018a), capture the develop-

ment of seals’ rhythmic regularities.4 We see a few features emerging

across individuals and ages: durations become more categorical,

with fewer categories and possible combinations (i.e., transitions)

decreasing in number. This temporal development is remindful of

song learning in zebra finches and speech ontogeny in humans

(Feher et al. 2009; Lipkind et al. 2013): Little-structured

vocalizations (i.e., before babbling) turn into precisely-timed speech

or song. The sort of structural analyses performed here could be

extended to other pinniped species. On the one hand, comparative

work could test the hypotheses we formulated, such as the isochron-

ous structure of California sea lions’ barks. On the other hand,

hypothesis-free analyses could be performed across all 33 pinniped

species, tracing the evolution of rhythmic traits within the pinniped

phylogenetic tree (e.g., Gingras and Fitch 2013; Gingras et al.

2013).

Two additional metrics rarely used in bioacoustics and animal

behavior, namely burstiness and AF analysis, provided additional

evidence that the pups’ calls are organized according to a temporal

structure. Burstiness measured the clustering of call onsets over

time. The calls of the 2 younger, female pups were relatively bursty.

This means periods of activity separated by periods of rest. The

burstiness of the older, male pup 201 did not exhibit a strong trend,

hovering around 0. Although our data are too limited to provide

solid inference, these differences in burstiness might suggest poten-

tial sex or age differences. In addition, while the link between laryn-

geal anatomy and temporal features remains unexplored, sex

steroids may act on laryngeal structures causing different vocal char-

acteristics between males and females, and among different develop-

mental stages. Alternatively, differences in burstiness may derive

from sex differences in vocalization rates (de Reus 2017). Sex and

age differences in pups’ vocal burstiness may, in turn, provide moth-

ers with a cue to individuality to recognize their pup. Nonetheless,

given to the variable number of events from one day to another, the

current results of burstiness should be interpreted with caution and

await further research. Comparing the harbor seal pups’ burstiness

with a hypothetical similar analysis of California sea lions’ metro-

nomic barks, we would predict an opposite result for sea lions: a

negative burstiness approaching �1, mirroring the near periodicity

(“empirical isochrony” in Ravignani and Madison 2017) of sea

lions’ barks (Schusterman 1977; Ravignani 2018a). Here as well, we

suggest that future work should measure individuality and species-

specificity of burstiness in California sea lions to explicitly test this

hypothesis, in more pinniped species, and in other organisms.

Finally, AF analysis showed relatively steep and monotonic slopes

for all pups. This is particularly noticeable when comparing the seal

pups’ curves to other species’ and when looking at longer timescales

(right side of the left panel in Figure 8). Killer whales vocalizations

(Kello et al. 2017) are the closest to seal pups’ calls (Figure 8). All 3

pups had similar AF slopes, close to those previously found in killer

whales and instrumental music (Kello et al. 2017). Steep and mono-

tonic slopes were interpreted in killer whales as proxies of a commu-

nication system shaped by social interactions (Kello et al. 2017).

This could also be the case for harbor seal pups, as pup calls are

used during very active and socially intense weeks in a seal’s life.

Cumulative AF variances (not shown) did not exhibit a clear

pattern.

In brief, all 3 classes of analytical approaches we adopted

(i.e., distributional, structural, and dynamical systems approaches)

proved fruitful and complementary. Distributional approaches sug-

gested similarities between IOIs and IPIs, and moderate heterogen-

eity of durations, IOIs, and IPIs across days. Structural approaches

showed rhythms: structural timing regularities where the occurrence

of 1 call can be predicted from the time of occurrence of previous

calls. Dynamical systems approaches showed that the occurrence of

pups’ calls is bursty, as opposed to periodic. Their hierarchical tem-

poral structure is reminiscent of the interactive signaling found in

other species. At present, it is difficult to say which analyses may be

most suitable for future research, as most techniques are only now

being employed in non-human animal research. We recommend

adopting our tripartite analytical approach to the study of vocal

rhythm and temporal structure in other species and domains.

The picture we paint of pups’ vocal rhythms is only a first at-

tempt, and more work is needed. Beyond what we can infer from

the positive results just discussed, our analytical methods could have

Figure 7. Daily and mean IOIs burstiness of the 3 pups. A value close to 0

denotes randomness. A value close to 1 denotes bursts of activity followed

by periods of inactivity. A value close to �1 denotes isochrony.

4 These analyses are common in several avian species [Roeske et al.

2018], but seem to lack for other animal clades. Here we show that

they can be a useful tool also in non-avian bioacoustics. The number

and strength of transitions in seal pups are not as clear-cut as in

birds [e.g. Okanoya 2004; Katahira et al. 2007; ten Cate and Okanoya

2012].
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provided more clear-cut insights than they actually did. Ideally,

phase space plots could have provided a clearer picture, showing not

only the existence, but also the structure, of rhythmic patterns.

Likewise, the transition matrices could have shown a comparable

number of categories across days, unlike the highly variable number

of categories we observe in the actual matrices. Four non-mutually

exclusive reasons may account for these apparent shortcomings. It

may be that our analytical methods are still too rough to capture

fine-grained rhythmic regularities in harbor seal pups’ calls, or that

our daily recording times were too short. Alternatively, it may be

that the moderate rhythmicity we found here represents the true

amount of rhythmicity in pup calls. Harbor seals might express

some communicative information in the spectral domain, by modu-

lating the fundamental frequency or formants of calls (Ralls et al.

1985). As a third reason, the temporal clustering of pups’ vocaliza-

tions may be primarily triggered by interactive communication

(Kello et al. 2017; Pika et al. 2018; Ravignani 2018b). Although

directed towards their mostly silent mothers, pup calls are often pro-

duced at hearing distance of other seals of the same age. Hence,

there might be pressures spurring a pup to precisely time her calls

interactively (Pika et al. 2018; Kotz et al. (Forthcoming)) with other

pups and playback experiments testing the effect of temporal param-

eters are needed, both for pups’ vocal interaction and mothers’ rec-

ognition as well (Ravignani 2018b). Fourth and finally, the semi-

captive conditions of data collection, including the absence of moth-

ers, may trigger temporal properties in pups’ vocalization that are

different from wild calls.5

The 4 hypotheses listed above could be tested while improving

upon other limitations of this study. Most notably, future research

should increase the sample size to enable quantitative inference at a

population level, rather than individual level. In addition, a larger

sample would enable testing of age and sex effects on burstiness and

periodicity of calls. Future data collection should also attempt to re-

cord several animals in interaction, rather than isolation. The pups

sampled here were already vocalizing before admittance to rehabili-

tation and such vocal behaviors did not develop in a vacuum, but in

a social medium. So, while collection of our individual recordings

took advantage of a “vocal momentum” from the wild, attrition due

to captivity might have altered the amount of calling or its temporal

properties. Recording animals in interaction will enable us to infer

whether the rhythmic properties we observed had been molded by

social interaction, or if they were partly modified by isolation.

Ideally, and for the same purposes, our study could be replicated in

the wild to directly disentangle the effects of isolated captivity vs.

group captivity vs. natural conditions on vocal rhythms. In particu-

lar, recording of pups belonging to rookeries of different sizes could

be compared: smaller rookeries might be less interactive and hence

show a flatter AF curve.

In conclusion, this work is a first step towards understanding the

presence of vocal rhythms in harbor seal pups, their development,

and the appropriate quantitative tools to study them. We hope our

work can be expanded and complemented with other findings on

pinniped vocal learning and rhythm to provide an integrative, cross-

species framework (Ralls et al. 1985; Cook et al. 2013; Patel 2014;

Ravignani et al. 2016; Wilson and Cook 2016; Mathevon et al.

2017; Lattenkamp and Vernes 2018; Ravignani 2018a).

Figure 8. (Left) AF curves of the 3 seal pups (analysed here) and other species (from Kello et al. 2017). Each curve (i.e., function) consists of 11 orthonormal (inde-

pendent) variances. Below 1 s, the curves show within-species similarities and between-species variability. Above 1 s, all species show different patterns, with

harbor seals and killer whales exhibiting the steepest curves. (Right) AF curves plotted in terms of the linear and quadratic coefficients of a third-order polynomial

fit to each individual AF function, in logarithmic coordinates. AF functions from animal vocalizations analyzed in Kello et al. (2017) are shown for comparison.

Seal vocalizations have larger linear coefficients because their AF functions are steepened by the scarcity of seal calls compared with other animal vocalization

recordings. Note also that calls were segmented and isolated for seal recordings, but not for other recordings. Despite their steepness, AF functions for seal

vocalizations clustered with other animal vocalizations, and particularly with killer whales, relative to human speech and music recordings not plotted here but

analyzed in Kello et al. (2017).

5 Clearly the pups were actively calling during the recording times.

However, the pups may have been silent for long periods before the

experimenters entered the room or the pups may have already been

calling for a considerable time. In the wild, phocid pups will often be

silent for a number of hours. They will start calling when an adult

appears, when other pups begin calling, or due to a general

disturbance. After calling for some time, the pups can become

fatigued and the calling rate and call duration can be affected.

Finally, the 10 min sampling may simply be too short to determine the

variability of inter-onset interval times.
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