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Abstract: Microorganisms are omnipresent and inseparable from our life. Many of them are
beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to
microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore,
monitoring and detecting harmful microorganisms are critical to ensuring human health and safety.
For several decades, many methods have been developed to detect and monitor microorganisms and
their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect
pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on
their chemical and structural properties. However, conventional techniques have several disadvan-
tages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new
approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of
conventional analysis from different research fields, including electrochemistry, nanotechnology, and
molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based
biosensors to detect microorganisms and discuss their perspectives and applications. Additionally,
the other biosensors for detecting microorganisms reported in recent studies were also introduced in
this review.

Keywords: biosensors; pathogens; biodetection; TF-based biosensors; cell-based biosensors;
cell-free biosensors

1. Introduction

Microorganisms are an integral part of our daily lives and play unique roles inside
and outside living organisms and environmental systems. The beneficial effects of microor-
ganisms on human health, the bioremediation of contaminated environments, and the
agricultural industry are well-known [1,2]. In addition, soil microbes are an essential part
of the forest ecosystem, playing vital roles in sustainable aquaculture [3,4]. Microorganisms
also positively impact human health through nutrient cycles and microbiomes [5,6]. On
the other hand, some microbes are considered life-threatening because of their ability
to cause diseases and produce harmful toxins. Microorganism-contaminated diets and
beverages have severe consequences on human health. Escherichia coli, Salmonella enterica,
Campylobacter jejuni, Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus are con-
sidered major foodborne pathogens. Additionally, the toxins produced by microorganisms
are also regarded as threats to human health and safety. In this regard, it is pivotal to equip
society with methods to detect pathogens and microbial toxins to ensure human health
and safety.

Microorganisms originating from diverse sources can be detected by various methods
targeting microbial cells, metabolites, toxins, DNA, and biomarkers. The morphological
properties of microbial cells can be discerned under light microscopy. Though it is a method
to detect microorganisms directly, it takes a relatively long time for incubation. Biomarkers
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such as surface proteins could be targets for microorganism detection. Together with
an antibody specific to the biomarker, microorganisms can be detected by an enzyme-
linked immunosorbent assay (ELISA) [7]. The method to detect Vibrio parahaemolyticus
in seafood was developed using a monoclonal antibody-based ELISA [8]. With advances
in nanotechnology, various nanomaterials such as AuNP have replaced antibodies as
microbial cell-sensing elements in ELISA-based assays [9,10]. Nucleic acids can also serve
as targets for microbial detection. Using polymerase chain reaction (PCR) to identify
target genes present was one of the conventional methods to detect microorganisms. In
contrast, toxins secreted by microorganisms vary in their physicochemical properties,
including sizes, structures, and hydrophobicity. Thus, the elements such as antibodies,
aptamers, nanoparticles, and enzymes, which can recognize toxins, were used for their
detection [11–13]. Most of all, instrument-based assays such as mass spectrometry (MS) and
high-performance liquid chromatography (HPLC) are typically used because of their high
sensitivity and selectivity [14,15]. However, these assays require expensive instruments,
time-consuming processes, and well-trained workers. Therefore, various biosensors based
on different technologies are being actively developed to detect microorganisms and their
toxins with rapidity and simplicity.

With increasing demand, biosensors based on diverse technologies such as electro-
chemical, biological, chemical, and nanomaterial techniques have been reported [16–19].
Although there are various biosensors, the types are determined by their transduction of
the output responses. A basic biosensor consists of target sensing and signal reporting
elements. The binding or affinity of sensing elements to target analytes induces changes in
reporter elements, converting them into measurable physiological outputs via diverse sig-
nal transduction methods. For example, it has been reported that biosensors employ metal
nanoparticles and other nanomaterials as sensing elements for detecting pathogens and
toxins [18,20]. Although the biosensors in both studies were based on nanomaterials, one
used fluorescence signals, and the other used an ELISA-based assay for signal transduction.
Recently, a nanosensor based on a cell-membrane-modified field-effect transistor (FET)
has been used to detect toxins and pathogens [21]. Briefly, the biomembrane was used
as a sensing element for toxins; the interaction between the toxins and the biomembrane
transduced changes in local charge distribution at the FET surface, enabling the quantifica-
tion of pathogens and toxins. Moreover, plasmonic techniques, including surface plasmon
resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), have been used to
detect pathogens and toxins [22,23]. These instruments also employ sensing elements
such as antibodies and nanomaterials on the surface; they detect pathogens and toxins
by measuring changes in physicochemical properties upon target binding. Although the
biosensors described above provide highly sensitive and accurate measurements, they fail
to be cost-effective due to the need for expensive equipment and materials. In this regard,
bacterial cell-based biosensors have been touted to overcome these disadvantages.

Bacterial cell-based biosensors (or whole-cell bioreporters) have been intensely investi-
gated for their favorable aspects, such as simplicity, low cost, and convenience compared to
instrument-based analysis methods [24–26]. The low sensitivity and selectivity of bacterial
cell-based biosensors could be enhanced by the genetic engineering of sensing elements
and host strains [27–29]. Most bacterial cell-based biosensors employ genetic systems
responding to external stimuli, including chemicals, heavy metals, and other toxicants, to
detect targets [30,31]. Transcription factors (TFs) are regulatory proteins in genetic systems,
controlling the transcription levels of a series of genes in the presence of target stimuli.
If the promoter regions controlled by TFs are fused to reporter genes, the expression of
reporter genes can act as a readout of targets. Consequently, one can quantify targets
by measuring the expression level of reporter genes. In this case, the TFs (or regulatory
proteins) interacting with the targets act as sensing elements, and the reporter genes are
signal transducers.

As described above, appropriate genetic systems are critical for generating bacterial
cell-based biosensors. Bacterial cell-based biosensors for sensing and monitoring environ-
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mental toxicants have been extensively reviewed [27,31–33]. Primarily, heavy-metal-specific
biosensors have been a subject of active investigation due to the identification of genetic
systems induced by heavy metals. Moreover, easy transportation of heavy metals into the
cells has accelerated these investigations. In addition to heavy metals, small chemical and
antibiotic-sensing biosensors have been developed along with the identification of genetic
systems [34,35]. To this end, cell-based biosensors for microbial toxins and pathogens can
be obtained if appropriate genetic systems are available. However, the fact that direct
detection of pathogens is impossible for bacterial cell-based biosensors due to restricted
transportation into the cells should also be considered. Thus, the detection of pathogens
can be achieved by sensing the strain-specific metabolites and not by sensing pathogens
themselves. Apart from the direct detection of pathogens, the metabolites and toxins
unable to enter the cells could not be detected by bacterial cell-based biosensors. In fact, the
mechanism of target recognition by sensing elements has been a disadvantageous aspect of
bacterial cell-based biosensors. However, this limitation has been partially addressed by
advances in cell-free gene expression systems [36,37]. Unlike bacterial cell-based biosen-
sor systems, sensing the targets and signal transduction occur outside of cells in cell-free
systems. The cell-free systems were expensive and sophisticated to process but could
circumvent issues related to target entry in the cells.

In this review, we focus on transcription factor (TF)-based biosensors, including the
bacterial cell-based biosensor and the cell-free biosensor systems owing to significant
inroads made in their investigation and development. To facilitate an understanding of
the designs and principles of transcription-factor-based biosensors systems, we explain
the sensing and reporting elements as well as genetic engineering methods to modulate
the performances of biosensors. Then, we review recent studies on detecting pathogens
by TF-based biosensor systems. We also introduce technologies other than TF-based
biosensors recently reported to detect pathogens and microbial toxins. Lastly, we highlight
the applications and prospects of TF-based biosensors for detecting pathogens and toxins.

2. Transcription Factor-Based Biosensors

The TF-based biosensors employ TFs as sensing elements. The genes encoding en-
zymes and fluorescent proteins regulated by TFs are used as reporting domains to transduce
output signals. The target analytes of biosensors are determined by the selectivity of TFs
playing roles as sensing elements [30,38]. With the advances in biotechnology, the infor-
mation about the pairs of TFs and their targets is steadily accumulating. Researchers have
employed these to develop diverse biosensors for environmental detection, food safety
inspection, disease diagnosis, and other fields [39–41]. The targets of TF-based biosensors
are diverse because cells possess the corresponding mechanisms that can detect external
stimuli, including environmental toxicants such as heavy metals and chemicals, microbial
toxins, pathogens, and others. Nonetheless, the specific analytes without proper genetic
systems could not be targets of TF-based biosensors, and it could be a most disadvanta-
geous aspect of TF-based biosensors over instrument-based analysis. For example, the
contamination of Mn(II) could be monitored by ICP-MS but not by TF-based biosensors.
Table 1 summarizes the TF-based biosensors reported with the sensing elements and their
targets. The TF-based biosensors can be divided into cell-based biosensors and cell-free
biosensors. In recent decades, the design of TF-based biosensors is mainly based on living
cells such as mammalian, plant, and microbial cells. Since cells possess all components for
cellular metabolism, cell-based biosensors are simple, rapid, and convenient. However, one
major weakness is the need for the analytes to cross over the cell membrane for detection.
On the other hand, this weakness is solved by using cell-free system-based biosensors. Both
biosensors have pros and cons but share a common working mechanism to detect targets.
In the following sections, we address the working mechanisms of TF-based biosensors and
introduce the recent achievements of TF-based biosensors for detecting pathogens.
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Table 1. Transcription factor-based biosensors.

Types Analytes Genetic Systems Output Elements Refs
Bacterial Strains TFs

Whole-cell
biosensors Cu(II)Ag(I) E. coli CueR luxCDABE [42]

Pb(II)Hg(II)Zn(II)Cd(II) E. coli ZntR luxCDABE/eGFP [42,43]

As(III)As(V) E. coli ArsR Luciferase/
β-galactosidase/ GFP [44,45]

Benzoate P. putida BenR GFP [46]
Malonyl-CoA B. subtilis FapR eGFP [47]
BTEX (benzene, toluene,
ethylbenzene, xylene) R. Pickettii TbuT GFP [48]

Sodium Dodecyl Sulfate(SDS) P. aeruginosa SdsB1 GFP [49]
Lactate E. coli LldR GFP [50]
Homogenitisic Acid P. aeruginosa HmgR GFP [51]
2,4-diacetylphloroglucinol
(DAPG) P. fluorescens PglF LacZ/ luxCDABE [52]

Salicylate P. putida NahR luciferase [53]
Trans-cinnamic Acid E. coli HcaR eYFP [54]
Caprolactam A. faecalis NitR sfGFP [55]
Salicylic acid E. coli MarR eGFP [56]

Cell-free
biosensors

Hg(II) S. flexneri MerR sfGFP [57]
γ-hydroxybutyrate A. tumefaciens BlcR sfGFP [57]
Tetracycline E. coli TetR

ROSALIND:
Transcript-
fluorophore
complex

[58]
Oxytetracycline S. rimosus OtrR
Erythromycin E. coli MphR
3-hydroxy benzoic acid C. testosteroni MobR
Zn(II) S. elongatus SmtB
Cu(I), Cu(II) B. subtilis CsoR
Cd(II) S. aureus CadC
Pb(II) S. aureus CadC

As(III) E. coli ArsR
ArsR-GFP released
from immobilized
DNA upon As(III)

[59]

Benzoic acidHg(II)As(III) E. coli BenRMerRArsR eGFP [60]

2.1. Principles of TF-Based Biosensors

The most critical parts of TF-based biosensors are the genetic systems induced by
external stimuli and the recognition mechanisms of sensing elements and signal reporting
elements. One such system helps to design and construct the plasmids carrying the
recombinant genes consisting of the promoter and reporter genes, and TFs control the
expression of reporter genes. The presence of analytes activating or suppressing the TFs
is indicated by reporter gene expression. The signals from reporter genes are transduced
to various types of outputs depending on the properties of reporter genes. We describe
the common working mechanisms and the differences between cell-based and cell-free
biosensor systems below.

2.2. Bacterial Cell-Based Biosensors

Bacterial cell-based biosensors, also called whole-cell bioreporters, have been devel-
oped intensively during the last few decades and are regarded as an alternative tool for
monitoring hazardous materials in our life [25,61,62]. With recent advances in biological
technology, the applications of engineered whole-cell biosensors have expanded to envi-
ronmental and medical fields for monitoring and detecting toxicants [63,64]. Whole-cell
biosensors are microbial cells possessing target sensing domains and reporter domains cor-
responding to receptors and transducers, respectively (Figure 1). Typically, the regulatory
parts of genetic systems responsive to external stimuli are employed as sensing domains,
and the genes encoding enzymes and fluorescent proteins are reporter domains. Since the
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expression levels of reporter domains are regulated by the interaction between targets and
sensing domains, the levels of reporter genes correspond to the concentration of the targets.
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Figure 1. Illustration for the working mechanisms of TF-based biosensors. The cell-based biosensors
use the cellular machinery to sense and to report signals as translational outputs (left). The biosensors
based on cell-free systems use prepared cellular components to sense in vitro and employ both
translational and transcriptional outputs as reporting signals (right).

Most of the whole-cell biosensors reported employ genetic systems responsive to
external stimuli, including heavy metals, chemicals, and other environmental changes. The
genetic systems respond to external stimuli by initiating the transcription of a series of genes.
The biological mechanism is regulated by certain regulatory proteins recognizing external
stimuli (see Table 1). For example, ArsR is a regulatory protein in an arsenic-responsive
operon in E. coli, and it controls the transcription of ars-operon genes in the presence of
arsenic [65]. The promoter region of the ars-operon is fused with the reporter gene, and the
reporter gene expression is controlled by ArsR. Thus, the biosensors employing ars-operon
have been reported as arsenic-specific biosensors, with the target selectivity dependent
on the affinity of ArsR [45,66]. As described here, it is clear that the target sensing relies
on regulatory proteins. In this aspect, it was inferred that the target sensing ability of the
biosensor could be modulated by changing the regulatory protein. It had been reported
that the modulation of target sensitivity and selectivity of bacterial cell-based biosensors
was achieved by genetic engineering on regulatory proteins and host cells [28,67]. The
antimony sensing biosensor was obtained by genetic engineering of ArsR, and the copper
sensitivity was enhanced by deleting copA encoding a Cu(II) exporting protein in E. coli
cells. The performance of bacterial cell-based biosensors was also improved by gene circuit
engineering. Jia et al. have reported that the rearrangement of the genetic circuit of the lead
resistance operon pbr improved the lead sensitivity by about ten times [68]. Moreover, it
has also been reported that the detection range and sensitivity to analytes are modulated
by the feedback regulation of genetic circuits [69].

Although whole-cell biosensors are being actively developed, the applications for de-
tecting pathogens and toxins are relatively few. The direct interaction between targets and
sensing domains triggers the transcriptional initiation of reporter genes. Due to the nature
of whole-cell biosensors, the responses of reporter genes only occurred when the target
was present inside cells. Therefore, the target of whole-cell biosensors was limited to small
molecules that could cross the bacterial cell membrane. Hence, the biological/chemical
properties of targets were crucial criteria taken into consideration for constructing and
designing the biosensors. These limitations could explain the lack of an active application
of whole-cell biosensors to detect microorganisms and toxins compared to other environ-
mental toxicants. Nonetheless, the favorable aspects of whole-cell biosensors, such as low
cost, portability, simplicity, and environmental capability, serve to make them attractive as
alternative analytic tools over chemical or physical analytical techniques.
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2.3. Biosensors Based on Cell-Free Systems

The principle of cell-free biosensors is the same as whole-cell biosensors, except for
the sensing processes carried out in test tubes. Both types of biosensors share similar
genetic systems consisting of sensing and reporter domains, as listed in Table 1. The target
recognizing sensing domains are TFs as regulatory proteins, and these proteins regulate
the expression of reporter genes in the presence of targets. The most beneficial aspects
of a cell-free system over whole-cell biosensors are the absence of limitations for target
permeability in cells and diversifying the sensing and signal output elements, including
riboswitch, aptamer, and RNA transcript, in addition to the translated proteins [40,58,70].
On the other hand, the high cost of cell-free systems was disadvantageous. Nonetheless, it
was widely applied to develop target-sensing biosensors with advances in engineering on
diverse molecular structures for sensing elements.

The cell-free system used cell lysates containing the factors necessary to initiate tran-
scription and translation [37,71]. By mixing cell extracts, sensing domains, and reporter
domains, target detection was determined by the translation or transcription of reporter
genes (Figure 1). The TFs used for cell-based biosensors are employed as sensing ele-
ments for TF-based cell-free biosensors to detect specific targets. Similar to cell-based
biosensors, the specificity and selectivity rely on the TFs. Therefore, the strategies sug-
gested for enhancing the performance of cell-based biosensors could be applied to cell-free
biosensors. When analytes are present, the responses of TFs are induced; they initiate the
transcription of reporter genes upon ligand interaction. The output of the signal could be
fluorescence, enzymatic activity, or metabolites produced by reporter genes. Moreover, it
has also been reported that the transcripts acted as signal reporting outputs by cooperating
with fluorescence chemicals.

Since TFs corresponding to heavy metals have been identified, the cell-free biosensors
for detecting heavy metals have been reported by many research groups [72–74]. Recently,
Beabout et al. reported heavy metal biosensors based on cell-free expression systems. They
employed metal-responsive TFs such as ArsR, CadC, and MerR as sensing elements for
cell-free biosensors to detect As, Cd, and Hg, respectively. The sensing performances of
biosensors, such as selectivity and specificity, were enhanced by tuning relative concentra-
tions of sensing and reporter elements [72]. To the same extent, the ability of the cell-free
biosensors to detect environmental contaminants such as antibiotics and small chemicals
was also actively investigated. Recently, the RNA output sensor activated by the ligand
induction (ROSALIND) platform has been reported [58]. The researchers demonstrated
the effectiveness of a cell-free biosensor for tetracycline detection in contaminated water
by employing TetR, a transcription factor regulating tet-responsive operon, as a sensing
element. However, the output signal was generated by a fluorescence-activating aptamer
rather than by the translation of reporter genes. Additionally, they showed the application
of ROSALIND systems to create various cell-free biosensors to detect macrolides, small
molecules, and metals by replacing genetic systems and TFs. These studies emphasized
that biosensors based on cell-free systems possess a powerful potential to generate new
target sensors. In addition to these, various cell-free biosensors have been actively investi-
gated. Although the basic principles of both cell-based and cell-free biosensors are similar,
the pros and cons are also distinguishable. Nonetheless, the versatile nature of available
sensing and reporting elements for cell-free biosensors would offer great advantages over
cell-based biosensors.

3. TF-Based Biosensors for Detecting Pathogens

As discussed above, TF-based biosensors have been actively investigated, developed,
and implemented in real-world applications. Initially, the major targets of biosensors had
been environmental toxicants that harm human health. Recently, the focus has shifted to
a wide variety of analytes and advancing sensing element and reporting element design.
Although the conventional methods based on analytical instruments are still major tools for
detection and monitoring, the need for biosensors has increased because of advantages such
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as simplicity, cost-effectiveness, and rapidity. However, real-world, practical applications
were considered the most imminent obstacles to TF-based biosensors. Though many
research groups have put their efforts into developing and applying biosensors, they were
restricted at the laboratory scale. In this regard, we discuss the application of TF-based
biosensors, especially on pathogens, below.

3.1. Bacterial Cell-Based Biosensors

The adverse effects of pathogenic microorganisms have been considered a threat to
human health. In this regard, it is crucial to detect and monitor pathogens. Diverse DNA
analysis and antibody- and nanomaterial-based techniques have been developed. However,
the direct detection of pathogenic cells was hampered in TF-based biosensors due to the
nature of their sensing. So far, the sensing mechanisms of TF-based biosensors are based
on direct interactions of targets with the sensing domain. Next, the interactions trigger
the transcription of reporting elements. Thus, it was hard for whole-celled pathogens
to turn on the TF-based biosensors, and there was no recent report despite their many
advantages. Since the direct detection was unfeasible, the TF-based biosensors succeeded in
detecting the pathogens by indirectly sensing metabolites. Briefly, if the pathogen-specific
metabolites, including the quorum sensing molecules and the genetic system responding
to them, were available, the TF-biosensors for pathogen detection could be constructed. In
Table 2, the quorum-sensing molecules, bacterial species, the responding genetic systems,
and the corresponding TF-based biosensors are summarized.

Table 2. TF-based biosensors detecting quorum sensing molecules.

QS Molecules
Bacterial
Species

Genetic Systems OutputElements Expression
System Refs

Promoters TFs

Homoserine lactones
and N-acyl
homoserine
lactones(HSLs
and AHLs)

P. aeruginosa rsaL LasR luxCDABE P. aeruginosa [75]
P. aeruginosa, PA1897 QscR luxCDABE E. coli [76]
V. fischeri luxI/R LuxR luxCDABE E. coli [77]
P. aeruginosa rhlI RhlR luxCDABE E. coli
P. aeruginosa lasI LasR luxCDABE E. coli [78]
A. tumefaciens traCDG TraR lacZ A. tumefaciens [79]
P. fluorescens phzA PhzR lacZ P. fluorescens [80]
P. syringae ahlI/ahlR AhlR eGFP/mCherry E. coli [81]
S. coelicolor scbR/scbA ScbR GFP Cell-free [82]
P.aeruginosa lasRV LasR GFP Cell-free [83]

Autoinducer
peptides S. aureus agrA AgrA/AgrC GFP/Lacticin E. coli [84]

Autoinducer-2 V. harveyi BB170 lux LuxR luxCDABE V. harveyi BB170 [85]
Gelatinase
biosynthesis
activating
pheromone

E. faecalis gelEfsrB CylR1CylR2 luxCDABE E. faecalis [86]

Extracellular
death factor E. coli mazEF MazEF - E. coli [83]

Recently, many TF-biosensors have been developed for detecting pathogenic microor-
ganisms by targeting quorum sensing (QS) molecules [76,87,88]. Quorum sensing is the
ability to detect and respond to cell population density by gene regulation [89,90]. Bacte-
rial cells communicate using secreted chemical molecules to coordinate the behavior of
the population. For example, the LuxI/LuxR bioluminescence system in Vibrio fischeri or
the LasI/LasR virulence system in Pseudomonas aeruginosa are well-characterized quorum
sensing circuits. The former uses N-(3-oxohexanoyl)-homoserine lactone (HSL), while the
latter uses N-(3-oxododecanoyl)-homoserine lactone as quorum-sensing molecules, respec-
tively [90,91]. Based on quorum sensing systems from different microorganisms, several
biosensors detecting N-Acyl homoserine lactones (AHLs) have been developed [78,92,93].
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However, these biosensors focused on detecting molecules of pathogenic origin to di-
agnose and manage various bacteria-related disorders. The quorum-sensing molecules
were regarded as potential biomarkers of diseases. To the same extent, the detection of
microbial cells, including pathogens, would be achieved by identifying species-specific
quorum-sensing molecules. Recently, Wu et al. reported pathogen-sensing whole-cell
biosensors [76]. The whole-cell biosensor employing the QscR quorum-sensing system
could detect Pseudomonas aeruginosa and Burkholderia pesedomallei in contaminated water. In-
stead of using LasR, the QscR, a homolog of LasR, was employed as a sensing domain [94].
The QscR was used as a sensing domain to interact with AHLs; egfp transcription was
induced in the presence of AHLs. Thus, the expression level of eGFP indicated the levels
of AHLs, thereby detecting target bacterial pathogens. Additionally, they demonstrated
pathogen detection using QscR as a sensing domain, and the lycopene biosynthesis pathway
was employed as a reporter domain.

Although the biosensors for detecting pathogenic microorganisms have not been ex-
tensively investigated, they were shown to have huge potential to detect various pathogens
and microbial cells when the strain-specific quorum-sensing molecules and corresponding
genetic systems are identified. So far, whole-cell biosensors have focused on environmental
toxicants. Still, they would be promising tools for pathogen detection due to their many
advantages over other analytical tools.

3.2. Cell-Free Biosensors

Similar to whole-cell biosensors, cell-free biosensors were also applied to detect
pathogenic microorganisms by sensing metabolic molecules, including quorum sensing
molecules, rather than by directly sensing pathogenic cells. In this regard, the cell-free
biosensors for pathogens were constructed by implanting the working systems, including
sensing and reporting elements employed in the cell-based biosensors in cell-free sys-
tems. As listed in Table 2, the quorum-sensing molecules such as N-Acyl homoserine
lactones (HSLs) are recognized by sensing elements including LuxR, ScrbR, PhzR, and
LasR. Thus, the cell-free systems with a pair of genes acting as sensing and reporting
elements were developed as cell-free biosensors for detecting QS molecules [60,82,87,95].
For example, Wen et al. constructed a cell-free biosensor for detecting QS molecules in
Pseudomonas aeruginosa from human sputum samples [96]. Since P. aeruginosa produces
N-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) recognized by LasR, the expression
of gfp under PlasRV represented the presence of QS molecules, indicating P. aeruginosa infec-
tion in human samples. Based on similar principles, many reports on cell-free biosensors
for detecting QS molecules originating from microorganisms exist. However, whether the
QS molecule sensing would indicate pathogen detection should be considered. In fact,
the bacterial species share a common structural moiety of QS molecules, but the major
signaling molecules differ from species to species [97,98]. Therefore, if a species-specific
QS molecule were identified, the detection of QS molecules would serve as a proxy for
pathogen detection.

As discussed here, cell-free biosensors have been investigated and actively applied to
detect and monitor pathogens. The working mechanism rendered the detection indirect;
cell-free biosensors could be used for pathogen detection by sensing the metabolites, includ-
ing QS molecules and nucleic acids. Although the application of cell-free biosensors was
restricted to the microorganisms whose biomarkers were well known, it shows immense
potential for unlimited targets if strain-specific biomarkers are identified. In this regard,
the future of cell-free biosensors could be significantly developed and expanded not only
to medical diagnosis and clinical tests but also to various industrial fields.

4. Other Types of Biosensors for Detecting Pathogens

In addition to TF-based biosensors, many different types of biosensors have been
reported to detect pathogens and toxins from varied research areas. The biosensors rapidly
detect microbial cells, toxins, and DNA by converting the affinity binding of a target into a
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measurable physical output via various signal transduction methods [99,100]. The biosen-
sors classified as electrochemical biosensors employ various electrochemical processes
such as potentiometry, amperometry, voltammetry, and conductometry, for detecting ana-
lytes [101,102]. Although the biosensors based on different techniques were categorized
into different types, they all share common components, such as the sensing elements and
signal reporting transducers. The sensing elements could be immobilized DNA, antibody,
aptamers, and nanostructures according to target analytes. The electrochemical signal
transducers adopted were determined by the interaction properties of sensing elements
and analytes. Here, we introduce several new and recently reported techniques other than
TF-based biosensors for detecting pathogens.

Concerning sensing elements, the nanomaterial-based biosensors were actively investi-
gated to elucidate their pathogen-detecting ability. Nanomaterial-based pathogen detection
by biosensors follows similar principles to those of other biosensors. The detection of specific
bacterial strains relies on the molecular interactions between biological molecules on bacterial
cell walls and sensing elements such as an antibody, aptamer, or biological chemicals. Sensing
elements conjugated with nanomaterials recognize target analytes, and the interactions induce
electrochemical, fluorometric, and colorimetric changes as output signals. Thus, it is noticed
that the specificity of biosensors is determined by the target recognition of sensing molecules
and the sensitivity by signal transduction processes. There are several intensive reviews on
nanomaterial-based biosensors for detecting microbial toxins and pathogens [103–105], and
they can be subdivided based on signal-transducing techniques.

Nucleic acids have been used as biomarkers to identify microorganisms by analyzing
DNA sequences. Unlike conventional analysis, nucleic acids were employed as sensing
elements of biosensors to detect microorganisms. The functional nucleic acid (FNA)-
based biosensors were recently reported to detect pathogens [106,107]. The FNAs such
as DNAzymes and aptamers were employed as sensing elements for pathogen detection.
Liu et al. reported using RNA-cleaving fluorescent DNAzymes (RFDs) for pathogen de-
tection [108]. If a DNAzyme responding to a specific pathogen or its metabolites was
engineered, the fluorescence of RFDs could be induced by cleaving the quencher near
the fluorophore. Consequently, the detection of pathogens was indicated by measuring
the fluorescence signals. Although the aptamers were included as sensing elements in
nanomaterial-based biosensors, the aptamers could also act as biosensors for pathogen de-
tection by integrating other systems [109,110]. Pathogen-sensing aptamer-based biosensors
were constructed with rolling circle amplification (RCA). Briefly, a fluorescence-labeled
aptamer initiates RCA in the presence of a target pathogen, generating a DNAzyme capable
of producing a colorimetric readout. So far, many aptamers specific to pathogens have
been reported as pathogen sensing elements. With advances in biotechnology, nucleic acids
recognizing specific pathogens can be implemented in new biosensors as sensing elements,
integrating techniques in other research fields.

In addition to TF-based cell-free sensors, other types of cell-free biosensors have been
reported that have new techniques for sensing and reporting elements. They are classified as
nucleic-acid-based cell-free biosensors. The toehold switch-based sensors were developed
as cell-free biosensors to detect environmental toxicants and pathogens, including diverse
viruses [111,112]. Here, nucleic acids were targets for cell-free biosensors, and RNA-based
switches acted as sensing elements for target nucleic acids. The transcripts were inactivated
by forming RBS sequestered hairpin structures, and then the reporter genes were translated
upon target RNA assembly [40]. Moreover, the toehold switch systems have provided a su-
perior detection limit [113]. The toehold switch-based cell-free biosensors have been applied
to the medical field to provide point-of-care monitoring [114–116]. It has been reported that
Ebola, Zika, and SARS-CoV-2 viruses were detected in patients’ samples by the toehold
switch-based biosensors. They could be applied to detect diverse microorganisms if the
strain-specific nucleic acid sequences were determined. By integrating target sequences in
sensing elements, the biosensors could detect the presence of microorganisms in samples by
measuring the expression of reporter genes. In addition, novel CRISPR-associated enzymes
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with different target specificities and activities have contributed to the development of methods
such as the DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR) and the Specific
High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) [117–119]. The detection of
diverse pathogens such as African swine fever, influenza A and B, Zika, and Dengue virus
has been reported based on the DETECTR and SHERLOCK systems [118,120–122]. Moreover,
they have been intensively investigated because of their rapid and accurate detection with
superior sensitivity. Although the details about these new methods for the detection of
pathogens are not discussed in this review, they also showed the similarity in target sensing
mechanisms to other biosensors. We illustrated the common mechanisms of pathogen-
sensing biosensors and listed the sensing and reporting elements for each type of biosensors
mentioned in this review in Figure 2.
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The common mechanisms of biosensors for detecting pathogens were illustrated, and the components
and working mechanisms of different types of biosensors were listed.

5. Conclusions

Here, we introduce biosensor systems focused on TF-based biosensors for detecting
pathogens. TFs are the regulatory proteins for certain genetic systems, and they turn
the genetic systems on or off in the presence of targets. Thus, the TFs were employed
as sensing elements recognizing target materials, and the transcription of reporter genes
controlled by TFs indicated the presence of target materials. The TF-based sensing systems
worked as biosensors in cells, and cell-free expression systems were categorized as cell-
based and cell-free biosensors, respectively. Both sensing systems possess pros and cons,
but they share the same genetic systems for designing biosensors. At this moment, it
is hard to designate a better biosensor system, but one could be selected based on the
physicochemical properties of targets. Most of all, target-recognizing sensing elements
are critical for TF-based biosensors. If the appropriate TFs corresponding to targets were
available, it would be possible to construct new target-specific biosensors. In this regard, the
TF-based biosensor systems may not be the best method for detecting pathogens because
of the necessity of TF-target interactions. However, we foresee the expansion of TF-based
biosensors for pathogens along with the accumulation of data for strain-specific biomarkers
with the advances in biotechnology. In addition, we also allude to recent techniques for
sensing pathogens such as nanomaterial-based, nucleic acid-based, and cell-free biosensor
systems, including toehold switch-based biosensors, such as the DETECTR and SHERLOCK
systems. These biosensors employ nanomaterials, nucleic acid (DNA/RNA), and aptamers
as sensing elements for detecting targets.

Although many different types of biosensors have been developed for pathogens,
their applications to real fields are still limited because of the gap between laboratories
and industries. It was proven that the performances of the biosensors for pathogen de-
tection, including TF-based, nanomaterial-based, and nucleic acid-based biosensors, were
comparable to the conventional methods and even better in terms of the specificity and
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sensitivity. However, several challenges such as the expenses, the production of materials,
and the requirement of specialized equipment would be obstacles to commercializing
biosensors. In addition, the verification or validation of new methods by safety/health
authorities is crucial. Nonetheless, we believe the biosensors would be used more widely as
alternative tools for detecting pathogens due to their advantageous aspects. The challenges
will be overcome in the near future by the efforts of researchers, and the on-site application
will be achieved soon with rigorous efforts toward the construction of portable biosensor
devices [123–125].

Conclusively, we are all aware that the adverse effects of pathogens threaten human
health, and it is pivotal to have better methods to detect them. Though conventional
methods were capable of monitoring and detecting pathogens with reliable accuracy, it
was necessary to develop simple, cheap, rapid, and convenient methods that would help
to detect harmful pathogens. In this regard, the biosensor systems possess great potential
to be an alternative method for detecting pathogens as well as environmental toxicants
and pollutants.
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