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Purpose: To construct and analyze tumor-infiltrating immune cell and ceRNA (competitive
endogenous RNA) networks in metastatic adrenal cortical carcinoma (ACC).
Methods: A ceRNA network was established to identify the ceRNAs involved in metastasis
of ACC based on 92 samples from TCGA, including 18 cases of metastasis and 74 cases
of non-metastatic primary tumors. And the algorithm “cell type identification by estimating
relative subsets of RNA transcripts (CIBERSORT)” was used to quantify the proportion of
immune cells in ACC. In addition, predictive nomograms based on the types of important
immune cells or ceRNAs were constructed to predict ACC prognosis. Moreover, we evalu-
ated the relationships between metastatic ACC-specific immune cells and ceRNA networks
to identify the potential immune gene characteristics.
Results: Ten prognostic biomarkers were identified as key members of the ceRNA net-
work and three tumor-infiltrating immune cells were identified by CIBERSORT algorithm.
Some important co-expression patterns between immune cells and ceRNAs network indi-
cate significant correlation between Macrophages M0 and hsa-miR-130b-3p (P < 0.001),
Macrophages M0 and H2AFX (P = 0.003).
Conclusions: The present study inferred that the metastasis-related ceRNAs of H2AFX,
hsa-miR-130b-3p and Macrophages M0 might play important roles in ACC metastasis.

Introduction
Adrenal cortical carcinoma (ACC) is a malignant neoplasm originating from the adrenal cortex with an
annual incidence of (0.7–2.0)/1 million people [1]. The prognosis for ACC is poor with an overall 5-year
survival of <40% [2]. ACC can be classified into functional and nonfunctional adrenal cortical carcinoma
according to corticosteroid secretion [3]. ACC is highly malignant and aggressive with a poor prognosis
[4]. It usually has metastasis at the time of diagnosis. Patients with metastatic ACC has poorer progno-
sis and the total survival time is less than 1 year [5]. Therefore, it is necessary to explore the potential
mechanisms of ACC metastasis.

Molecular and cellular biomarkers in pathological diagnosis play an important role in predicting
metastasis and prognosis of ACC [3,5]. Among them, metastasis-related ceRNAs and tumor-infiltrating
immune cells have aroused our interest. However, few previous studies have paid attention to them.
Non-coding genes can usually regulate the expression of genes to a certain extent. At the transcriptional
level, lncRNA regulated the expression of both mRNA and microRNA by changing chromatin modifi-
cation and mRNA stabilization [6]. MicroRNAs post-transcriptionally regulated gene expression [7]. A
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competing endogenous RNA (ceRNA) network is a transcriptional regulatory network at the molecular level, com-
posed of lncRNAs, miRNAs (miRNAs) and mRNAs, among which microRNA response element (MRE) is the core
element of the network [8]. In ceRNA network, the one-to-many and many-to-one regulatory relationships among
transcription factors, miRNAs and target genes may take part in gene regulation, thus affecting the biological char-
acteristics of tumors [8]. At the cellular level, the assessment of the extent and type of tumor infiltrating immune
cells have been proved to be of great significance in predicting metastasis and mortality [9,10]. However, there is no
joint network to predict the metastasis of ACC. Therefore, it is necessary to do better research on tumor infiltrating
immune cells and ceRNA networks.

In the present study, we screened genes significantly related to survival from ACC-related data in TCGA database,
and established a ceRNA network based on gene expression profiles. In the meantime, “cell type identification by
estimating relative subsets of RNA transcripts (CIBERSORT)” was used to quantify the proportion of immune cells
in ACC [11]. Based on the ceRNA network and CBERSORT analysis, two nomograms were constructed to predict
the prognosis of ACC. Moreover, we evaluated the relationships between metastatic ACC-specific immune cells and
ceRNA networks to identify potential immune gene characteristics.

Materials and methods
Data collection and differential gene expression analysis
In the present study, in order to obtain the differential gene between recurrent and in situ adrenal cortical carcinoma,
we downloaded the RNA profiles of adrenal cortical carcinoma and metastasis samples from the TCGA (https://
portal.gdc.cancer.gov/projects/TCGA-ACC) database. Among them, 92 cases were selected, including 18 cases of
metastasis and 74 cases of non-metastatic tumors.

The edgeR method was used to analyze the differentially expressed genes in metastatic and non-metastatic tumors.
When false discovery rate (FDR) P value < 0.05, log2(Fold Change) > 1.0 and log2(Fold Change) < -1.0 were defined
as up-regulated and down-regulated genes, respectively.

Construction of the ceRNA network
Before primary statistical analysis, the experimental validation-based information on the miRNA–mRNA interaction
was downloaded from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) [12], and the lncRNA–microRNA interac-
tion information was downloaded from lncbase v.2 Experimental Module (http://carolina.imis.athena-innovation.
gr/diana tools/web/index.php?r=lncbasev2%2Findex-experimental) [13]. The databases are based on experimental
validation. Then, based on the above data, using Cytoscape v.3.5.1, we calculated the maximal information coefficient
(MIC) of lncRNA, miRNA and RNA, and selected miRNAs, lncRNAs and mRNAs which showed significant results
in hypergeometric detection and correlation analysis to construct ceRNA network [14].

Survival analysis and nomograms of key members in the ceRNA network
Kaplan–Meier survival analysis showed the relationship between the expression of biomarkers and the prognostic
value shown in ceRNA network and the survival outcomes of ACC patients. Subsequently, by screening the signifi-
cant variables in the initial Cox model, the important biomarkers were included in the Cox proportional hazard model
to illustrate the variables with prognostic values. All the important biomarkers were integrated into Cox model, and
lasso regression was used to judge whether the model was over fitted. Cox regression model is a kind of linear regres-
sion using shrinkage, in which the data value shrinks to a specific point to ensure the applicability of multiple models.
Finally, we established a multivariate model-based nomogram to predict the prognosis of ACC patients. According
to the expression level of biomarkers with prognostic value, we can get the points of each biomarker and add them
together to get the total points, thus showing the total survival probability of 3 and 5 years. At the same time, calibra-
tion curves and receiver operating characteristic curves (ROC) were used to evaluate the resolution and accuracy of
the nomogram.

CIBERSORT estimation
To further investigate the cytological causes of bone metastasis in adrenocortical carcinoma and the molecular mech-
anism of important biomarkers in ceRNA network to some extent, CIBERSORT (http://cibersort.stanford.edu/) al-
gorithm was used to estimate the proportion of 22 immune cell types in ACC (patients with or without metastasis)
[11]. Samples with CIBERSORT output value P < 0.05 are considered eligible for further analysis. The Wilcoxon
rank-sum test was used to search for immune cells. In addition, Cox regression and Kaplan–Meier methods were
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Figure 1. The flow chart of the analysis process

Based on TCGA database, 92 ACC cases were included, and the ceRNA network was constructed by multi database analysis.

Immune cells associated with ACC recurrence and survival were identified by CIBERSORT estimation. The co expression of impor-

tant immune cells and important genes in ceRNA was analyzed to determine the relationship between immune cells and ceRNA

that are most related to ACC recurrence.

also used to evaluate the relationship between the proportion of immune cells and the overall survival of ACC pa-
tients. The proportion of the prognostic markers and metastasis related immune cells was scored to determine the
relationship between the most relevant immune cells and ceRNA for ACC recurrence.

Only bilateral P < 0.05 was considered statistically significant. Institute of Statistics and Mathematics, Vienna,
Austria (Package: GDCRNATools [15], edgeR, ggplot2, RMS, planet, preprocessCore, curvilinear, timeROC).

Multidimensional validation
To reduce the error, several databases including Cell marker [16], LncRNA2Target [17], Metascape [18], Ontogene
[19], String [20], Oncomine [21], Cancer Cell Line Encyclopedia (CCLE), cBioPortal for Cancer Genomics [22],
genotype-tissue Expression (GTEx) [23], Gene Expression Profiling Interactive Analysis (GEPIA) [24], LinkedOmics
[25], SurvExpress [26] and The Human Protein Atlas (Proteomics. Tissue-based map of the human proteome) de-
tected the gene and protein expression levels of key biomarkers at the tissue and cell levels. OncomiR [27] was used
to explore the correlation between clinical features and key miRNAs.

Results
Identification of significantly differentially expressed genes
Figure 1 illustratess the analysis process of the present study. The demographic information of the samples from the
TCGA is summarized in Supplementary Table S1. Most of the samples were white and female, with an average age of
47.16 years.

In the 60483 RNAs in the TCGA database, we identified 92 differentially expressed lncRNAs (37 down-regulated
and 55 up-regulated), 2156 differentially expressed mRNAs (1051 down-regulated and 1105 up-regulated) which red
represent up-regulated, green represent down-regulated (Figure 2).

Construction of the ceRNA network and survival analysis
The ceRNA network was composed of 15 lncRNAs, 59 miRNAs and 65 mRNAs (Figure 3A). Cox regression and
Kaplan–Meier method were used to study the relationship between biomarkers and metastasis in the ceRNA network.
Table 1 shows the results of hypergeometric testing and correlation analysis ceRNAs interaction relationship with ab-
solute value of correlation coefficient more than 0.50. Kaplan–Meier analysis showed that 34 RNAs were significantly
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Figure 2. The results of differential expression gene analysis

The heatmap (A) and type plot (B) of all differentially expressed genes, heatmap (C) and volcano plot (D) of differentially expressed

mRNA and heatmap (E) and volcano plot (F) of differentially expressed lncRNA in metastatic and non-metastatic adrenal cortical

carcinomas. In volcano plot, the red dot represents the up-regulated gene and the green dot represents the down regulated gene.

Genes with the log (fold-change) > 1.0 or < -1.0 and FDR < 0.05 were defined as the differential expression genes.
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Figure 3. Construction of metastasis-specific ceRNA network

The ceRNA network related to metastasis of adrenal cortical carcinoma, in which blue circles represent lncRNAs, red circles rep-

resent miRNAs and green circles represent protein-coding RNAs (A). Kaplan–Meier survival curves analysis of AC012313.5 (Novel

Transcript), HCP5, has-miR-125b-5p, has-miR-30b-5p, IKZF4, MITF of the ceRNA network (B–G).
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Table 1 Hypergeometric testing and correlation analysis results of ceRNAs interaction relationship with absolute
value of correlation coefficient more than 0.50

LncRNA PcRNA MiRNAs Correlation P Hypergeometric P Cor

DPP10-AS1 FSCN1 hsa-miR-24-3p 7.25559E-11 0.016769838 0.644594923

SNHG1 ILF3 hsa-miR-590-5p,hsa-miR-7-5p 1.26705E-09 0.019128962 0.609338025

OIP5-AS1 SMAD2 hsa-let-7g-5p,hsa-miR-125a-5p,
hsa-miR-132-3p,hsa-miR-148a-3p,
hsa-miR-15b-5p,hsa-miR-27a-3p,
hsa-miR-27b-3p,hsa-miR-425-5p,
hsa-miR-484

7.12396E-08 0.02621027 0.551021941

SNHG1 HDAC4 hsa-miR-125a-5p,hsa-miR-1-3p,
hsa-miR-140-5p,hsa-miR-22-3p

2.59259E-07 0.03814998 0.529666277

OIP5-AS1 CRKL hsa-miR-126-3p,hsa-miR-15a-5p,
hsa-miR-320a,hsa-miR-335-5p

4.33955E-07 0.032879261 0.520723002

DPP10-AS1 PTPRF hsa-miR-24-3p 4.49362E-07 0.001872659 0.520107919

Abbreviations: ceRNA, competing endogenous RNA; LncRNA, long non-coding RNA; MiRNA, microRNA; PcRNA; protein-coding RNA.

correlated with the metastasis of ACC. We selected AC01231313.5 (P = 0.017), HCP5 (P = 0.036), hsa-miR-125b-5p
(P = 0.001), hsa-miR-30b-5p (P = 0.017), IKZF4 (P = 0.003), IKZF4 (P = 0.003), MITF (P = 0.003), and displayed
the KM Survival Curve of these RNAs in Figure 3B–G). Ten prognostic biomarkers were identified as key members of
the ceRNA network and integrated into a new multivariate model (Figure 4A). H2AFX was a statistically significant
risk factor (R = 1.86, 95% CI: 1.05–3.3). The regression model was visualized by the nomogram (Figure 4E). Lasso
regression results showed that all ten genes were necessary for modeling (Figure 4B,C). In addition, the ROC curve
showed that the 3-year survival rate (AUC) was 0.909, the 5-year survival rate (AUC) was 0.939 (Figure 4D), and the
COX regression chart showed that the accuracy of the prediction was acceptable (Figure 4F). The enrichment analysis
of DEGs in the ceRNA network were also performed, which revealed significant enrichment of immune system and
genetic material biological processes or pathways (Supplementary Figure S1).

Composition of immune cells in ACC
ACC immune cells estimated by CIBERSORT algorithm are displayed in histogram (Figure 5A). The metastatic and
non-metastatic ACC immune cells estimated by CIBERSORT algorithm are shown in the thermogram (Figure 5B).
In addition, the Wilcoxon rank-sum test showed that B cells memory (P = 0.011), T cells CD4 memory resting (P
= 0.033), neutrophils (P = 0.013) and macrophages M0 (P = 0.002) were significantly different between metastatic
and non-metastatic tumors (Figure 5C).

Integrated analysis of immune cells, genes and prognosis
All immune cells were integrated into an initial Cox regression model. After the Lasso regression screening, B cells
memory (P = 0.011), T cells CD4 memory retaining (P = 0.007), macrophages M0 (P = 0.012) and neutrophils (P
= 0.013) were considered as independent predictors of the metastasis of ACC patients in the final Cox model (Figure
6A–D). Similarly, we constructed the nomogram based on the multivariate model (Figure 6F). Results of cable regres-
sion showed that the model was not over-fitting (Figure 6B,C). In addition, the calibration curve and ROC showed
good predictability (AUC of 3-year survival: 0.893; AUC of 5-year survival: 0.890). Kaplan–Meier survival analy-
sis showed a significant correlation between risk level defined by the multivariable model and survival (P < 0.001)
(Supplementary Figure S2). Figure 7 shows the boxplots of clinical correlation analysis of immune cells in adrenal
cortical carcinoma (A-F) and Kaplan–Meier survival curves of immune cells significantly associated with survival
(G-L). We performed co-expression analysis of immune cells and biomarkers significantly associated with overall
survival. Figure 8 illustrates important co-expression patterns between three immune cells and ten key members of
the ceRNA network as well as a speculative mechanism diagram, indicating a significant correlation between T cells
CD4 memory resting and hsa-miR-200c-3p (R = -0.520, P = 0.003), T cells CD4 memory resting and H2AFX (P =
-0.670, P < 0.001), T cells CD4 memory resting and KPNB1 (R = -0.540, P = 0.002), T cells CD4 memory resting
and SGPL1 (R = -0.640, P < 0.001), Macrophages M0 and hsa-miR-30d-5p (R = -0.550, P < 0.002), Macrophages
M0 and hsa-miR-130b-3p (R = 0.550, P < 0.002), Macrophages M0 and H2AFX (R = 0.520, P = 0.003).

6 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 4. Construction and model diagnosis of prognostic nomogram including key members of ceRNA network

The results of the multivariate Cox regression (A), nomogram (E) and model diagnosis process (B,C,D and F) based on the key

members in the ceRNA network. hsa-miR-30d-5p, hsa-miR-200c-3p, hsa-miR-130b-3p, KPNB1, REV1, FBN2, HMGA2, SGPL1,

H2AFX and GAS5 were incorporated into the Cox proportional hazards model. Nomograms for predicting patients’ prognosis were

constructed based on the Cox model (E). Lasso regression results show that there is no over fitting (B and C). Receiver Operating

Curve (ROC) (D) and calibration curve were used for assessing the accuracy and discrimination of the nomogram (F). Area Under

Curve (AUC) of the 3- and 5-year survival was 0.909 and 0.939, respectively.
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Figure 5. The results of CIBERSORT analysis

The composition of immune cells in adrenal cortical carcinoma estimated by CIBERSORT algorithm (A and B), and the recogni-

tion of immune cells significantly associated with tumor metastasis (C). Bar plot showing cell types and relative percent in adrenal

cortical carcinoma tissues. Different colors represent different cell types, which are listed in the right as y-axis, while x-axis repre-

sents different samples (A). Heatmap of tumor-infiltrating cells in tumor tissues in patients with the metastatic and non-metastatic

adrenal cortical carcinomas. Annotations on top show clustering of samples. While the blue represents the metastatic adrenal cor-

tical carcinomas, the red symbolizes the primary ones (B). Violin plot for comparing cells’ proportion between the metastatic and

non-metastatic adrenal cortical carcinomas. It showed that B cells memory (P = 0.011), T cells CD4 memory resting (P = 0.033),

neutrophils (P = 0.013) and macrophages M0 (P = 0.002) were significantly different between metastatic and non-metastatic tumors

(C).

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20200049
https://doi.org/10.1042/BSR20200049

Figure 6. Construction and model diagnosis of prognostic nomogram including metastasis related immune cells

The results of the multivariate Cox regression (A), Kaplan–Meier survival curve (E), nomogram (F) and model diagnosis process (B–D)

based on metastasis related immune cells. B cells memory (P = 0.011), T cells CD4 memory retaining (P = 0.007), macrophages

M0 (P = 0.012) and neutrophils (P = 0.013) were considered as independent predictors of the prognosis of ACC patients in the final

Cox model (A–D). The nomogram based on the multivariate model was constructed (F). Results of the Lasso regression showed

that the model was not over-fitting (B and C). The calibration curve and Receiver Operating Curve (ROC) showed good predictability

(Area Under Curve (AUC) of 3-year survival: 0.893; AUC of 5-year survival: 0.890).
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Figure 7. The results of clinical correlation analysis of immune cells in ACC

The boxplots of clinical correlation analysis of immune cells in adrenal cortical carcinoma (A–F) and Kaplan–Meier survival curves

of immune cells significantly associated with survival (G–L). Eosinophils fraction (P = 0.02) (A) and T cells CD8 fraction (P = 0.028)

(B) were associated with n-stage. Clinical stage related immune cells: neutrophils fraction (P = 0.006) (C), T cells CD4 memory rest

fraction (P = 0.03) (D), neutrophils fraction (P = 0.02) (E), T cells CD4 memory rest fraction (P = 0.03) (F). Macrophages (P < 0.001)

(G), mast cells resting (P = 0.037) (H), neutrophils (P = 0.008) (I), T cells CD4 memory activated (P = 0.003) (J), T cells CD4 memory

resting (P = 0.024) (K) and T cells follicular helper (P = 0.008) (L) were significantly correlated with survival.

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20200049
https://doi.org/10.1042/BSR20200049

Figure 8. The results of co-expression analysis and the speculative mechanism diagram including metastasis-specific

ceRNAs and immune cells with co-expression patterns

The co-expression patterns among fractions of three immune cells and ten key members in the ceRNA network (B) and the corre-

lation analysis of the proportion of immune cells (A). Linear relationship between immune cells and genes with high col-linearity (P

> 0.5 or P < -0.5) (C–H). The results are as follows: T cells CD4 memory resting and hsa-miR-200c-3p (R = -0.520, P = 0.003), T

cells CD4 memory resting and H2AFX (P = -0.670, P < 0.001), T cells CD4 memory resting and KPNB1 (R = -0.540, P = 0.002),

T cells CD4 memory resting and SGPL1 (R = -0.640, P < 0.001), macrophages M0 and hsa-miR-30d-5p (R = -0.550, P < 0.002),

macrophages M0 and hsa-miR-130b-3p (R = 0.550, P < 0.002), macrophages M0 and H2AFX (R = 0.520, P = 0.003). A speculative

mechanism diagram of the core scientific hypothesis (I).
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Multidimensional validation
We used multiple databases for external validation to explore the gene and protein expression of differentiated genes
KPNB1, H2AFX, SGPL1 and key cellular markers of T cells and macrophages in ACC, normal adrenal tissue and
cell lines. First, cell markers of T cells CD4 memory were identified by Cell Marker database as CCR7, CD27 (Gene
symbol: BTLA), CXCR5, IL7R, and cell markers of macrophages M0 as CD68, CD163, CD14, CD11b (Gene symbol:
ITGAM) and CD206 (Gene symbol: MRC1). Through String database, the protein–protein interaction networks of
differentiated gene KPNB1, H2AFX, SGPL1 and corresponding cell marker were displayed (Supplementary Figure
S3). In Oncomine database, KPNB1 (P < 0.001) was significantly differentially expressed between ACC and normal
adrenal tissue, H2AFX (median rank 3.0, COPA = 11.927) and SGPL1 (median rank 2301.0, COPA = 4.230) were
abnormal up-regulated in ACC in the outlier analysis across multiple studies (Supplementary Figure S4). Besides,
comprehensive analysis of genomics and clinical data in cBioPortal database showed that CCR7, CXCR5, IL7R CD68,
CD163, CD14, ITGAM, MRC1 and H2AFX had genomic alteration in primary ACC (Supplementary Figure S5A). In
addition, H2AFX had significant co-expression patterns with markers of T cells CD4 memory CCR7 (P = 0.046), IL7R
(P < 0.001) and macrophage M0 markers CD163 (P = 0.037), CD14 (P = 0.020), ITGAM (P = 0.043) and MRC1
(P = 0.038) in ACC (Supplementary Figure S5B–G). KPNB1 also had significant co-expression with CCR7 (P =
0.010), ITGAM (P = 0.016) and MRC1 (P = 0.021) (Supplementary Figure S5H–J). The differentially expressed genes
H2AFX and KPNB1 were co-expressed in ACC (P = 0.030). Furthermore, in the normal adrenal tissues in the GTEx
database, KPNB1, H2AFX, SGPL1 had significant co-expression patterns with almost all cell markers (CCR7, IL7R
CD68, CD163, CD14, ITGAM, MRC1) (Supplementary Figure S6). Besides, GEPIA database analysis also showed
the co-expression pattern of H2AFX and CXCR5 in ACC and normal adrenal tissues (Supplementary Figure S7). The
LinkedOmics database showed that KPNB1, H2AFX, SGPL1 had significant co-expression of many immune-related
proteins in ACC (Supplementary Figure S8). Additionally, the analysis results of SurvExpress suggested that these
genes have significant predictive value for prognosis (Censoring event: overall death, Hazard Ratio = 8.36 (95%
CI, 2.88–24.31), P < 0.001) (Supplementary Figure S9). The Human Protein Atlas data mining results showed that
proteins of H2AFX, SGPL1, CCR7, BTLA, IL7R, CD68, CD163, ITGAM could not be detected in normal tissues,
and KPNB1 had low expression in normal adrenal tissues (Supplementary Figure S10). Finally, the analysis results of
OncomiR database suggested that hsa-mir-30d-5p and hsa-mir-200c-3p were significantly associated with metastasis
in a variety of tumors (Supplementary Table S2).

Discussion
In the present study, we first found significant differences in the expression of tumor-infiltrating immune cells
and RNAs between metastatic and non-metastatic ACCs. A ceRNA network consisting of 65 mRNAs, 15 lncRNAs
and 59 microRNAs was constructed, and tumor-infiltrating immune cells were analyzed by CIBERSORT and the
co-expression of key members of the important tumor-infiltrating immune cells and ceRNA network was also an-
alyzed. At the same time, two predictive nomograms were constructed, and their high AUC values suggested that
they might be helpful for clinical oncologists to evaluate metastasis. Through the above analysis, the present study
inferred that the metastasis-related ceRNAs of KPNB1, SGPL1, H2AFX, hsa-miR-30d-5p, hsa-miR-200c-3p and
hsa-miR-130b-3p and metastasis-related immune cells of T cells CD4 memory resting and Macrophages M0 might
play an important role in ACC metastasis.

Previous studies had shown that KPNB1 is associated with the occurrence of tumors [28]. Cell cycle regulation of
KPNB1 suggested that its expression may be associated with proliferation, and KPNB1 showed comparatively high
expression in tissues that proliferate actively [28]. KPNB1 proteins were the major nuclear receptor proteins in the
cell, and proliferating cancer cells might regulate the expression of nuclear cytoplasmic transporter KPNB1 protein
in varying degrees to maintain increased nuclear transporter [29]. Based on our analysis, we speculated that KPNB1
played an important role in the metastasis of adrenal cortical carcinoma. In addition, there might be some regu-
latory mechanism between hsa-mir-30d-5p and KPNB1, which made hsa-mir-30d-5p indirectly participate in the
regulation of ACC metastasis. In fact, there was a regulatory mechanism between hsa-miR-30d and KPNB1 in ma-
lignant peripheral nerve sheath tumor (MPNST). In the present study, EZH2 enhanced the expression of the nuclear
transport receptor KPNB1 by inhibiting hsa-miR-30d transcription via promoter binding activity [30].

Epithelial–mesenchymal transition (EMT) was a transcriptional process that played a key role in cancer metastasis
[31]. Hsa-miR-200 family was a powerful EMT regulator by targeting ZEB1 and ZEB2, which regulated metastasis
by regulating EMT [32]. Hsa-miR-200 regulated EMT and metastasis partially through a negative regulatory loop
with the ZEB1/2 family of transcriptional suppressors [33]. Besides, hsa-miR-130b also regulated cell migration and
invasion through EMT. It has been shown by RT-PCR and Western blotting that mir-130b is significantly up-regulated

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20200049
https://doi.org/10.1042/BSR20200049

in BCA of bladder cancer, and mir-130b may be a potential target for BCA treatment. Hsa-miR-130b decreased
the expression of IRF1, resulting in the repression of p-mTOR activity, and inhibited p-STAT3, p-AKT, p-ERK1/2
and EMT-related genes, eventually leading to the inhibition of cell migration and invasion [34]. However, there is
no experimental evidence for the differential expression of mir-130b in acc. The present study provides a research
direction for the future study of prognostic biomarkers of ACC.

Our study also suggested that H2AFX and SPGPL1 were associated with ACC metastasis. The human H2AX gene
(H2AFX) maps to chromosome 11 at position 11q23, in a region that frequently exhibited mutations or deletions in a
large number of human cancers [35]. H2AFX was a central component of numerous signaling pathways in response to
DNA double-strand breaks (DSBs) [36]. The DSB was a serious lesion that can initiate genomic instability, ultimately
leading to tumorigenesis [36]. Besides, SGPL1, a protein promoting cell apoptosis, was found to be expressed in the
adrenal cortex, and down-regulated in tumor [37]. Thus, we speculated that H2AFX and SGPL1 might also play a
role in the metastasis of ACC.

Next, we observed the differences in the components of immune cells between metastatic and non-metastatic
ACCs, and found that T cells CD4 memory resting and Macrophages M0 may be related to ACC metastasis. The
tumor microenvironment contains innate and adaptive immune cells, which display pro or anti-tumor functions
[38]. Immunocytes, including T cell, NK cell and DCs, played a key role in immune responses of anti-tumors.

Macrophages were major players of tumor immunity [38]. Macrophages M0 can differentiate into Macrophages
M1 and Macrophages M2 [39]. In general, Macrophages M1 were potent tumor-fighting cells, whereas Macrophages
M2 displayed protumoral functions [38]. Mature macrophages were strategically distributed in the human body
and perform important immune surveillance activities [39]. Macrophages M1 played a protective role in tumori-
genesis, which activated tumor-killing mechanisms and antagonized the suppressive activities of TAMs, MDSCs,
M2 macrophages, regulatory macrophages and immature myeloid cells, which had been proved to inhibit adaptive
tumor-specific immune responses and promote tumor growth, invasion and metastasis [29,40]. By contrast, TAM
isolated from solid and metastatic tumors showed inhibition of M2-like phenotype [39]. Furthermore, evidence ac-
cumulated from many cancer models suggested that macrophages contributed to the progression of tumors, and the
increase of TAM, MDSC and immature monocytes was associated with poor prognosis [41,42]. Tumor associated
macrophage TRMS can promote tumor growth by inhibiting antitumor immune response.

T cells can be divided into CD4 and CD8. Tumor growth was mainly controlled by CD4 and CD8 T cells [43]. Pre-
vious studies had found that T cells CD4+ memory were significantly correlated with the abundance of CCL5-related
chemokine receptors [15]. CCL5 might induce the recruitment and activation of specific memory T cells by inter-
acting with certain receptors on memory T cells [15]. CCR5 was the most famous receptor of CCL5 [15]. Previous
studies had also shown that the CCL5–CCR5 axis played an active role in the tumorigenesis: as a growth factor, it
stimulated angiogenesis and participated in the immune escape mechanism [44].

There were several limitations of our study that should be acknowledged. First, the amount of data released in
publicly available datasets was limited, so the clinicopathological parameters analyzed in the present study were
not comprehensive, which might lead to potential errors or deviations. Second, the heterogeneity of the immune
micro-environment related to the location of immune infiltration was not considered. Third, the present study was
only a correlation study on multiple dimensions rather than a biological mechanism study. However, based on the
results of this correlation study, we will use biological experiments such as Luciferase reporter assay, Chromatin Im-
munoprecipitation (ChIP) to prove the direct interaction mechanism of ceRNAs in the future. Furthermore, we would
like to demonstrate a molecular cross-talk between cancer cells and immune cells. For example, an exosome secreted
by cancer cells contains ceRNAs, which work on immune cells to mediate the metastasis of adrenal carcinoma. Last
but not least, the small sample size of adrenal cortical carcinoma may reduce the confidence and transformation of
the predictive models into other cohorts. To reduce the bias causing by the small sample size, multiple databases were
used to detect gene and protein expression levels of key biomarkers at the tissue and cell levels. The results showed
the stability of the primary analysis results (Supplementary Figures S3–S10).

However, despite its limitations, the present study did first analyze the co-expression of ACC-specific
tumor-infiltrating immune cells and ceRNA networks, construct the nomograms to predict the prognosis of ACC pa-
tients, and speculate that T cells CD4 memory resting, macrophages M0, KPNB1, SGPL1, H2AFX, hsa-miR-30d-5p,
hsa-miR-200c-3p and hsa-miR-130b-3p might play an important role in ACC metastasis. The predictive nomograms
proposed in the study might provide comprehensive clinical information for improving the personalized manage-
ment of ACC patients. In the future, more data would be needed to improve the model. At present, there is no study
on the direct molecular biological mechanism of metastatic ACC specific ceRNA and the intercellular communica-
tion between cancer cells and macrophage M0. Therefore, our study suggests that we can use the direct molecules
of ACC specific ceRNA as the key molecules to study its influence on ACC transfer process and its mechanism. In
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combination with macrophage M0, the relationship and pathway between the key molecules and the metastasis of
macrophage M0 in ACC were studied. As our future research direction, we would investigate the direct molecular
biological mechanisms of metastatic ACC-specific ceRNAs and the intercellular communication between cancer cells
and T cells CD4 memory resting and Macrophages M0.

Conclusions
The present study constructed two nomograms based on tumor-infiltrating immune cells and ceRNA networks to
predict metastasis of ACC patients, and demonstrated the utility of their high AUC values. The predictive models
proposed in the study may provide much-needed comprehensive clinical information for improving the personalized
management of ACC patients. Moreover, the present study inferred that KPNB1, SGPL1, H2AFX, hsa-miR-30d-5p,
hsa-miR-200c-3p, hsa-miR-130b-3p, T cells CD4 memory resting and Macrophages M0 might play an important role
in ACC metastasis.
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