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Abstract

Background

Intramyocellular triacylglycerol (IMTG) is utilized as metabolic fuel during exercise and is

linked to insulin resistance, but the long-term effect of weight loss strategies on IMTG

among participants with abdominal fat, remain unclear.

Methods

In an 18-month trial, sedentary participants with abdominal fat/dyslipidemia were random-

ized to either a low-fat (LF) or Mediterranean/low-carbohydrate (MED/LC) diet (including

28g�day-1 of walnuts). After 6-months, the participants were re-randomized to moderate

intense physical activity (PA+) or non-physical activity (PA-). Magnetic resonance imaging

(MRI) was used to quantify changes of IMTG, abdominal sub-depots, hepatic and intermus-

cular fats.

Results

Across the 277 participants [86% men, age = 48 years, body-mass-index (BMI) = 31kg/m2,

visceral fat = 33%] 86% completed the 18-m trial. At baseline, women had higher IMTG than

men (3.4% vs. 2.3%, p<0.001) and increased IMTG was associated with aging and higher

BMI, visceral and intermuscular fats, HbA1c%, HDL-c and leptin(p<0.05), but not with intra-

hepatic fat. After 18 month of intervention and a -3 kg mean weight loss, participants signifi-

cantly increased IMTG by 25%, with a distinct effect in the MED/LCPA+ group as compared

to the other intervention groups (57% vs. 9.5–18.5%, p<0.05). Changes in IMTG were asso-

ciated with visceral and intermuscular fat, metabolic syndrome, insulin and leptin (p<0.05 for

all), however, these associations did not remain after adjustment for visceral fat changes.
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Conclusions

Lifestyle strategies differentially affect IMTG accumulation; combination of exercise with

decreased carbohydrate/increased unsaturated fat proportion intake greatly increase

IMTG. Our findings suggest that increased IMTG during diet-induced moderate weight loss

may not be directly related to cardiometabolic risk.

Trial registration

ClinicalTrials.gov NCT01530724

Introduction

Intramyocellular triacylglycerol (IMTG) represents *1% to 2% of the total fat stores within

the body[1] and is used as a substrate source during exercise at low to moderate intensities[1–

3]. The accumulation of IMTG is significantly greater in women compared to BMI matched

men[4,5]. Furthermore, IMTG has been demonstrated to be correlated with BMI, insulin resis-

tance[6] and with central abdominal fat[7] in sedentary obese subjects who are not physically

active. Interestingly, highly trained athletes exhibit similar, if not greater concentrations of

IMTG, than obese or type 2 diabetics (“the athlete’s paradox”)[8,9]. Improvements in insulin

sensitivity with exercise or calorie restriction and weight loss in sedentary overweight humans

is associated with reduction in intra-abdominal fat but not in IMTG[10,11].

IMTG plays an important role as an oxidative substrate during and following physical activ-

ity (PA)[2,3]. Some studies have demonstrated that acute post exercise training, IMTG is

reduced by 20–30% during the recovery period while muscle glycogen was replenishing[12].

In addition, some studies have reported that high-fat diets (50% to 60%) can increase IMTG

content[13–15], while others have reported that a high-fat diet may decease IMTG following

low calorie-induced weight loss[16]. Furthermore, combining endurance exercise training

with the consumption of a high-fat diet has been shown to increase in IMTG content[17–19].

In addition, other investigations have suggested that saturated fatty acid composition may

have a greater effect on IMTG and in the development of skeletal muscle insulin resistance

than total fat intake[20,21].

Although weight loss and exercise intervention can both decrease pathogenic fat[22,23] and

improve insulin sensitivity[24,25], these interventions may have different effects on IMTG.

The physiological importance of IMTG beyond its relationship with abdominal adiposity

remains unclear. Furthermore, to our knowledge limited research has examined the chronic

effects of weight-loss from different diet and exercise strategies on IMTG. Thus, the purpose of

this study was to examine the IMTG response to diets with or without moderate PA, and

to assess the association between changes of IMTG with changes in cardiometabolic risk

parameters.

Materials and methods

Study population

This is a sub-study of the CENTRAL randomized controlled trial (ClinicalTrials.gov identifier:

NCT01530724, S1 Table) aimed to assess whether different diet and exercise interventions

could preferentially induce the loss of visceral fat in patients with central adiposity (primary

endpoint), with changes in other fat depots, including IMTG. The trial involved 277 partici-

pants and was conducted between October 2012 and April 2014 at the Nuclear Research
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Center Negev (Dimona, Israel), a workplace with a dedicated cafeteria and an on-site medical

clinic. Inclusion criteria were: abdominal obesity [waist circumference >102cm (40 inches) for

men and>88cm (35 inches) for women], or serum triglycerides (TG)>150 mg�dL-1 and high-

density-lipoprotein cholesterol (HDL-c) <40 mg�dL-1 for men and <50 mg�dL-1 for women.

Exclusion criteria were: serum creatinine� 2mg�dl-1; impaired liver function (� threefold the

upper level of ALT and AST), active cancer, pregnancy or lactation, highly physically active

(>3 h�week-1) or unable to take part in PA, or participation in another trial. The study protocol

was approved by the Medical Ethics Board and the Helsinki Committee of Soroka University

Medical Center (S1 Appendix). All participants provided written informed consent and

received no financial compensation or gifts.

Randomization and interventions

After completion of baseline measures, participants were randomly assigned, without stratifi-

cation, to one of two equally hypocaloric diets: low-fat diet (LF, n = 138) and Mediterranean/

low-carbohydrate/ diet (MED/LC, n = 139). After 6 months of dietary intervention, each diet

intervention group was further randomized into PA groups (LFPA+, MED/LCPA+) or non-PA

groups (LFPA–, MED/LCPA–), (Fig 1).

Fig 1. Flow chart of the 18-months study intervention. Intention to treat analysis was performed for all participants. PA+, Physical activity. PA-, Non-

Physical activity.

https://doi.org/10.1371/journal.pone.0188431.g001
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Diet intervention

Both diets were aimed at achieving an energy intake of 1500/kcal/day for women and 1800/

kcal/day for men, restricting intake of trans-fats, refined carbohydrates, and emphasizing the

consumption of vegetables. Lunch was provided exclusively by the workplace cafeteria during

the work week. A dietitian worked closely with the kitchen staff to adjust the meals to the spe-

cific diet groups[26]. The 18-month diet intervention included a 90-minute nutritional session

in the workplace with clinical dietitians every week during the first month of intervention, and

every month thereafter. To maintain equal intensity of treatment, the workshop format and

the quality of the materials were similar across the diet groups, except for instructions and

materials specific to each dietary strategy. The LF diet, limited total fat intake to 30% of daily

caloric intake, with up to 10% being saturated fat, and no more than 300 mg of cholesterol per

day. An additional goal was to increase dietary fiber consumption. Participants were counseled

to consume whole grains, vegetables, fruits, and legumes and to limit their consumption of

additional fats, sweets, and high-fat snacks. The MED/LC diet combined the Mediterranean

and low-carbohydrate diets described in our previous weight loss trial.[26] The diet restricted

carbohydrate intake to less than 40 g/day in the first two months (induction phase), and there-

after a gradual increase up to 70 g/day, and increased protein and fat intake, according to the

MED diet. The MED/LC diet was rich in vegetables and legumes and low in red meat, with

poultry and fish replacing beef and lamb. This group was also provided 28 g of walnuts/day

[160 Kcal/84% fat, mostly PUFA (omega-3 α-linolenic acid)] starting from the third month.

Physical activity intervention

Participants randomized to the PA intervention groups at the 6-month time point received a

free supervised gym membership for the following 12 months. The gym was located away

from the workplace and the intervention included monthly 60-minute educational workshops,

and training group sessions at the gym, directed by a certified fitness instructor, who was

blinded to the assigned diets of the participants. The exercise program included three sessions/

week of mostly aerobic training. In the first month participants started with 20 minutes of aer-

obic training at 65% maximum heart rate and 10 minutes of resistance training. Exercise was

gradually increased to 45 minutes of aerobic training at 80% of maximum heart rate and 15

minutes of resistance training. The resistance training increased from one set using 60% of the

participants’ maximum strength (1RM) to two sets at 80% of the 1RM. Exercises included leg

extension, leg curl, elbow flexion, triceps extension, lateral pull-down, lower back extension

and bent knee sit-ups. The latter exercise used the participant’s body mass only.

MRI acquisition and image analysis

All participants underwent whole body MRI imaging. Scans were performed using a 3-Tesla

magnet (Intera, Philips, Medical Systems, Netherlands). The MRI scanner utilized a 3D modi-

fied DIXON (mDIXON) imaging technique without gaps (2 mm thickness and 2 mm of spac-

ing), a fast-low-angle shot (FLASH) sequence with a multi-echo two-excitation pulse sequence

for phase-sensitive encoding of fat and water signals (TR 3.6 ms; TE 1,1.19 ms; TE2 2.3 ms;

FOV 520×440×80mm; 2×1.4×1 mm voxel size). Four images of the phantoms were generated,

including in-phase, out-phase, fat phase and water phase. A breath-hold technique was used to

prevent motion artifacts when the chest and abdomen were scanned. In all simultaneous fat

depots quantification and comparisons, observers were blinded to time point and group treat-

ment. We estimated the measurement error by evaluating a phantom included in the MRI

acquisition. Utilizing the same software used to assess adipose tissue depot area, the mean ±
SEM phantom area was 1.4693±0.0046 cm2, corresponding to the< 3% error reported in the
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literature.[27] All fat depots were assessed by one or two raters. The Inter-observer and intra-

observer correlations were> 0.96 (p< 0.001) for all measured fat storage pools, and 0.95,

p< 0.001 for pericardial fat volume.

Intramyocellular triacylglycerol. The IMTG was assessed by utilizing the region of inter-

est (ROI) technique[28]. This method is based on comparison of tissue density (Fat/Fat+-

Water) in the selected regions. Using semi-automatic PRIDE software from Philips Medical

Systems, we analyzed the middle hip 2D image in the central area of four muscles: rectus femo-

ris, vastus lateralis, adductor magnus and semitendinosus. Mean percentage of IMTG was cal-

culated by using all the values of each ROI.

Abdominal fat sub-depots. The quantification of the three sub-depots in the abdomen

[superficial subcutaneous adipose tissue (superficial-SAT), deep-SAT and visceral (VAT)] was

assessed by using a MATLAB-based program. The MRI scan allows visualizing the fascia

superficialis as a fine black line, and to divide superficial-SAT from deep-SAT we drew a con-

tinuous line over the fascia superficialis. We selected the specified fat mass area, by mean of

three slices L2-L3, L5-L4 and L5-S1, using semiautomatic method software, and quantified the

fat mass regions[29,30].

Hepatic fat. We quantified the percentage of hepatic fat using PRIDE software (Philips

Medical Systems). We calculated mean percentage from four 2D slices (3cm intervals divided

into quarters) by utilizing the region of interest (ROI) approach, which is based on measure-

ments of tissue densities (fat/fat+water) using the Fat Ratio Calculation.[31] We divided each

slice into quarters, and chose ROIs in each of the four quarters in order to represent the entire

liver. We determined the mean percentage of fat for each slice and quarter, and then calculated

the mean percentage of fat in the liver as a whole.

Femoral intermuscular adipose tissue. Femoral intermuscular fat was quantified from a

single 2D fat-phase axial slice from the mid-thigh of the right leg, from the femoral head to the

medial and lateral condyle. Our semi-automatic MATLAB-based program was applied to dis-

tinguish between adipose and lean tissues and to calculate the area (cm2) of femoral intermus-

cular adipose tissue[32].

Anthropometric measurements

Height was measured to the nearest millimeter by using a standard wall-mounted stadiometer.

Waist circumference (WC) was measured to the nearest millimeter with an anthropometric

measuring tape; the measurement was made half-way between the last rib and the iliac crest.

Body weight was measured monthly without shoes to the nearest 0.1kg.

Blood measures

Resting blood samples were obtained prior to each testing session. All blood samples were

obtained following a 15-min equilibration period. Each participant’s blood samples were

obtained at the same time of day during each session following an overnight fast. Fasting

blood samples were stored at -80˚C. Fasting plasma glucose (FPG) was measured by Roche

GLUC 3 (hexokinase method). Plasma insulin was measured with the use of an enzyme immu-

nometric assay [Immulite automated analyzer, Diagnostic Products, coefficient of variation

(CV) = 2.5%]. Serum total cholesterol (CV = 1.3%), high-density-lipoprotein cholesterol

(HDL-c), low-density-lipoprotein (LDL) cholesterol, and triglycerides (CV = 2.1%) were

determined enzymatically with a Cobas 6000 automatic analyzer (Roche). Plasma leptin levels

were assessed by ELISA (Mediagnost), with a CV of 2.4%. All biochemical analyses were per-

formed at the University of Leipzig, Germany.

Intramyocellular triacylglycerol accumulation across weight loss strategies
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Dietary and exercise compliance

Adherence to the diet was assessed via a self-administered validated electronic 127 item food-

frequency questionnaire (FFQ).[33,34] Adherence to exercise was followed by an electronic

self-reported validated PA questionnaire[35] and by electronically monitoring entry to the

gym. Text messages were sent to update participants and to motivate adherence to the diets on

specific occasions (such as before and after holidays). By using electronic questionnaires,[26]

the completeness of the data was ensured by prompting the participants when a question was

not answered or when an answer was not within a logical range. Symptoms, adverse effects,

quality of life, and medication usage were also followed electronically.

Statistical analysis

The primary aim of the main CENTRAL study was change in body fat distribution over 18

months of intervention, and the main primary specific endpoint was VAT. The priori hypoth-

esis was that VAT could be differentially altered by lifestyle intervention strategies. The sample

size was estimated based on findings from a previous 14-week intervention study, in which 33

postmenopausal obese women (57yr, 92kg, 36% body fat) were randomized to one of three

interventions: diet alone, exercise alone, and diet and exercise group and significant relative

change in VAT of 12.8% (P<0.05) was found. Thus, the minimum detectable effect after 18

months for the primary VAT between the intervention groups was estimated as 3.57cm2, and

for an alpha = 5% and power = 80%, 250 participants were required (calculated using Winpepi

software). We increased our sample size from 250 (planned protocol) to 278 participants in

order to reach significant differences in other sub-studies analysis.

The aim of this sub-study was changes in IMTG over 18 months of intervention, and the sec-

ondary was the associations between IMTG to cardiometabolic biomarkers. From one MRI scan at

baseline we were unable to analyze IMTG, therefore, the sample size for this sub-study was 277 par-

ticipants. A post-hoc power calculation analysis for this sub-study was based on 0.47% differences

in IMTG deltas between the LFPA- and the MED/LCPA+ groups with 1.18 and 1.14 standards devia-

tions, yield power of 92.9% between intervention groups (calculated using Winpepi software).

We calculated mean ± standard deviation of IMTG percentages and all adipose tissue. We per-

formed intention-to-treat analysis, including all 277 participants, by imputing the missing obser-

vations for all adipose tissues for 38 individuals by the multiple imputation technique, wherein the

following predictors were used in the imputation model: age, gender, baseline weight, baseline

BMI and waist circumference at the end of the intervention. For missing data of body weight, we

used the last observation carried forward. Pearson correlations were used to assess selected bivari-

ate relationships at baseline. To test the effect between intervention groups differences on IMTG

changes, we performed multivariate linear regression models, using dummy variables of the inter-

vention strategies and adjusting gender, age and visceral adipose tissue changes. Paired sample t-

tests were used to assess changes from baseline to 18-months within each intervention group. To

test the association between IMTG and selected cardiometabolic parameters at baseline and over

the intervention, we used a linear regression model adjusted for the interventions groups and to

VAT changes. Statistical analysis was performed with IBM SPSS version 23. A criterion alpha

level of p� 0.05 was used to determine statistical significance.

Results

Baseline

Baseline characteristics of the participants across intervention groups are shown in Table 1.

The participants (age = 47.9 ± 9.3 y, 86.4% males, BMI = 30.6 ± 3.9) had on average across all

Intramyocellular triacylglycerol accumulation across weight loss strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0188431 November 30, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0188431


four muscles 2.4 ± 1.6% IMTG. Specifically, IMTG in the rectus femoris averaged 0.7 ± 1.2%,

in the vastus lateralis 1.7 ± 2.1%, in the adductor magnus 2.8 ± 2.2% and in the semitendinosus

4.5 ± 3.4%. The mean percentage of each abdominal fat tissue compartment in the entire pop-

ulation was: superficial-SAT = 27%, deep-SAT = 40% and VAT = 33%. Females had a greater

amount (p< 0.001) of IMTG 3.4 ± 1.9% than men 2.3 ± 1.5%. No statistical differences were

found at baseline between the intervention groups for IMTG or any other parameters. At base-

line, IMTG was positively associated with age (r = 0.18, p = 0.001), waist circumference (r =

0.17, p = 0.014), BMI (r = 0.18, p = 0.002), HDL-c (r = 0.15, p = 0.014) and area of abdominal

sub-adipose tissue: superficial-SAT (r = 0.22, p< 0.001), deep-SAT (r = 0.16, p< 0.001), VAT

(r = 0.14, p = 0.007) and IMAT (r = 0.54, p< 0.001). No significant association was observed

between IMTG to hepatic fat (r = -0.08, p = 0.15) and metabolic syndrome criteria (r = -0.02,

p = 0.77). Only 19% of the participants were regularly taking prescription medications, with

similar changes noted during the intervention for all groups.

Adherence

Following the 18-month intervention the retention rate of participants was 86%, with similar

demographic and metabolic profiles between completers and non-completers. At baseline,

there were no significant differences in the metabolic equivalent (MET) between the PA

groups or in consumption of energy or macronutrients between the LF and MED/LC diet

groups. However, during the intervention the PA+ groups significantly increased their MET

as compared with the PA–groups (19.0 MET�week-1 vs. 2.1 MET�week-1; p = 0.009). According

Table 1. Characteristics of the study population across intervention groups.

Low-Fat PA- Low-Fat PA+ MED/Low-Carb PA- MED/Low-Carb PA+ All (n = 277) P between groups

Age, y 49.5±9.2 47.2±9.0 47.0±8.8 47.8±9.8 47.9±9.3 0.33

Waist circumference, cm 105±9.5 106±8.5 106±11 108.0±8.5 106.0±10 0.51

BMI, kg/h2 31.1±3.9 30.3±3.4 30.9±4.4 30.99±3.3 30.6±3.9 0.68

Blood pressure, mmHg

Systolic 125±16 122±13 124±18 126±16 124±16 0.49

Diastolic 79±11 78±10 81±12 82±11 80±11 0.18

Adipose depots

IMTG, % 2.7±1.8 2.3±1.4 2.4±1.5 2.1±1.3 2.4±1.6 0.13

Visceral AT, cm2 177±71 181±65 160.5±61 184.3±65 175±66 0.14

Deep SAT, cm2 208±67 216±70 219±87 220±70 216±74 0.78

Superficial SAT, cm2 144±70 139±51 150±75 133±47 142±63 0.45

Intra Hepatic fat, % 10.8±10 9.2±9.0 10.0±10 10.4±11 10.2±10 0.82

IMAT, cm2 10.4±5.4 10.1±4.8 8.74±4.1 9.23±3.5 9.6±4.5 0.093

Blood biomarkers

HDL cholesterol, mg/dl 43.8±13 42.5±12 42.4±10 43.7±9.3 43.1±12 0.82

LDL cholesterol, mg/dl 123±33 124±29 120±34 121±27 122±43 0.88

Triglyceride, mg/dl 71.7±41 78.7±44 73.5±41 66.4±36 72.6±41 0.41

Glucose, mg/dl 106±17 106±18 107±18 108±23 107±19 0.91

HbA1c, % 5.54±0.5 5.52±0.4 5.54±0.4 5.58±0.5 5.5±0.5 0.91

HOMA-IR 4.42±2.6 4.71±3.4 4.74±3.8 4.48±2.6 4.6±3.2 0.92

Leptin, ng/mL 16.0±16 12.6±6.8 14.7±15 14.4±8.6 14.5±12 0.47

BMI: body mass index; SAT, subcutaneous adipose tissue; IMTG: Intramyocellular triacylglycerol IMAT: intermuscular adipose tissue. Values in the

Table are means ± standard deviation.

https://doi.org/10.1371/journal.pone.0188431.t001
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to the self-reported FFQ, participants adhered to the dietary guidelines for the group that they

were randomized (S1 Fig).

18-months changes

Following the 18-month intervention a significant decrease was found, for all participants

combined, in the change in body weight (-3.0 ± 5.5 kg, p< 0.001) and in insulin-sensitivity

parameters, such as HbA1c (-0.05 ± 0.31%, p = 0.022) and HOMA-IR (-0.9 ± 2.4, p< 0.001).

IMTG was increased by 0.2% [(95%CI 0.04 to 0.35), relative change 25%, p = 0.008] for the

entire study population. Upon further examination, elevations in IMTG was significant only

in the MED/LCPA+ group [0.56% (95%CI 0.21 to 0.91), relative change 56%, p = 0.002], while

no significant changes were found in the other intervention groups [(ranges = 0.03–0.12%, rel-

ative change range 9.7% to 18.5%, p> 0.39), (Fig 2). The change observed in the MED/LCPA+

combination group was significantly greater than each of the other groups (p = 0.001) in multi-

variate model adjusted for age, sex and 18-month visceral fat changes, (Fig 2). Similarly, we

found that the MED/LC diet further increased IMTG by 24% (95% CI = 4.82 to 43.87) than

the LF diet, and the PA+ groups increased IMTG by 25% (95% CI = 4.34 to 44.6) compared to

the PA- groups.

Association with body fat, metabolic syndrome and selected biomarkers

The association between changes of IMTG, body fat, metabolic syndrome and selected bio-

markers changes can be observed in Table 2. In controlling for intervention groups, an

Fig 2. Effect of dietary strategies with or without physical activity on intramyocellular triacylglycerol

over 18 months of intervention. Values in the Figure are means ± standard errors. Multivariate linear model

adjusted for age, sex and visceral fat changes. *p<0.05, Mediterranean/ Low-carbohydrate diet with physical

activity significantly increased intramyocellular triacylglycerol as compared to each of the other intervention

groups. # p<0.05, paired t-test was used to test changes over time. LFPA-: Low fat diet non-physical activity;

LFPA+: Low fat diet with physical activity; MED/LCPA-: Mediterranean/low-carbohydrate/ diet non-physical

activity; MED/LCPA+: Mediterranean/low-carbohydrate/ diet with physical activity.

https://doi.org/10.1371/journal.pone.0188431.g002

Intramyocellular triacylglycerol accumulation across weight loss strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0188431 November 30, 2017 8 / 14

https://doi.org/10.1371/journal.pone.0188431.g002
https://doi.org/10.1371/journal.pone.0188431


increase of IMTG was associated with an increase in IMAT (β = 0.572, p< 0.001), intra-

abdominal obesity (β = 0.167, p = 0.013), %HbA1c (β = 0.151, p = 0.027), total cholesterol (β =

0.179, p = 0.009) and LDL-c (β = 0.194, p = 0.009). However, when the model was further

adjusted for VAT changes, the associations between IMTG and the obesity parameters,

abdominal fat or lipid/glycemic biomarkers were not maintained, but only with IMAT and

LDL-c.

Discussion

In this 18-month randomized control trial we assessed the long-term effect of weight loss strat-

egies combined with moderate exercise on the dynamics of IMTG changes in 277 overweight

or dyslipidemia participants. During moderate weight loss, IMTG increased compared to base-

line and particularly in the MED/LC diet combined with PA. The increase in IMTG was not,

however, independently associated with changes in cardiometabolic markers. Increasing the

IMTG accumulation with a healthy lifestyle intervention, therefore, has more to do with

energy substrate supply during times of metabolic need rather than being related to cardiome-

tabolic risk.

There are several limitations within the current study. The exercise intensity and type of

exercise (aerobic versus resistance) assessment was limited, although electronic gym entry rec-

ords and the PA questioner, the ability to verify exercise adherence was limited. The reliance

of self-reported dietary intake is a limitation based on the assumption that the participants

were accurate and honest. Regardless, the accuracy of the self-reported dietary intake has been

previously validated[36]. Another limitation is that the free fat mass and total fat mass mea-

surements were not measured, and thus was unable to test the independent relationship

between IMTG changes and cardiometabolic markers beyond total body weight, but only in

adjusted for VAT changes. The small sample size of women, reflecting the workplace gender

Table 2. Associations between 18-month changes of intramyocellular triacylglycerol and body fat, metabolic syndrome and selected biomarkers.

Adjusted for intervention group Adjusted for intervention group and 18m

visceral fat changes

Δβ p β p

18-month changes

Δ Visceral fat 0.167 0.013 ——- ——-

Δ IMAT 0.572 <0.001 0.0.542 <0.001

Δ Intra Hepatic fat 0.113 0.099 0.042 0.500

Δ Metabolic syndrome parameters -0.058 0.398 0.025 0.528

Blood biomarkers

Δ Cholesterol 0.179 0.009 0.122 0.072

Δ LDL-c 0.194 0.005 0.155 0.025

Δ HDL-c 0.017 0.809 0.102 0.125

Δ Triglyceride 0.110 0.111 0.003 0.960

Δ Insulin 0.143 0.039 0.108 0.125

Δ HbA1c 0.151 0.027 0.102 0.110

Δ HOMA-IR 0.109 0.117 0.075 0.291

Δ Leptin 0.020 0.774 -0.030 0.673

Linear regression adjusted for the 4 intervention groups and further for visceral fat changes. The amount and direction by which changes in IMTG

(intramyocellular triacylglycerol) was associated with changes in selected parameters represented by β standardized coefficient. IMAT: intermuscular

adipose tissue.

https://doi.org/10.1371/journal.pone.0188431.t002
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profile, limits our ability to apply results for women. The strength of the study is highlighted

by the long-term intervention, the large sample size, the high rate of adherence in an isolated

workplace, the used of MRI measurement, and the parallel study design in which all partici-

pants started the interventions simultaneously.

The most important finding of this study was the differential effect between the interven-

tion strategies on changes in IMTG. Specifically, the MED/LC diet and the PA+ group

appeared to induce the greatest increase in IMTG. These results are consistent with previous

studies[17,37], and may be explained by increases in mitochondrial density and intrinsic mito-

chondrial function in response to prolonged exercise training[38,39]. Nevertheless, the appar-

ent increase in IMTG accumulation in the exercise activity group may represent one of the

many metabolic adaptations related to short term endurance training[3,40,41], similar to the

increases reported in muscle glycogen storage and mitochondrial density[5,42].

In the current trial, the MED/LC diet group experienced a 24% greater increase in IMTG

than the LF diet, despite a similar decrease in body mass. It has been reported that high-fat

diets may increase IMTG accumulation in both healthy[13,43] and athletics[14] individuals,

with high inter-individual variation of IMTG trajectory after fat loading. Thus, IMTG accumu-

lation may be partly involved in the mechanism of lipid content by the either quality or quan-

tity of fat intake in the diet. Therefore, increases in IMTG following consuming a healthy

hypocaloric diet, including increases in unsaturated fat (mostly PUFA) and decreases in satu-

rated fat and carbohydrate, may explain the lack of an association between excessive fat accu-

mulation in skeletal muscle and cardiometabolic risk markers. These findings are consistent

with previous work from our team[26,44] and others[45] that reported on the cardiometabolic

benefits of the MED/LC diet as compared to a LF diet.

Several studies have reported on the relationship between IMTG and insulin resistance

[2,8,46]. In this study we found a significant reduction in insulin-sensitivity. Moreover, the sig-

nificant increase in IMTG was associated with %HbA1c and HOMA-IR, but when VAT

changes was further adjusted, the relationship was no longer maintained. Therefore, our

results may provide additional evidence on the athletes’ paradox’, in which lifestyle modifica-

tion in overweight sedentary individuals, particularly with exercise training[47,48], can

improve insulin resistance, as estimated by % HbA1c and HOMA-IR, despite having higher

IMTG content.

In summary, this investigation appears to be the first a long-term trial demonstrating that

IMTG is differentially affected by lifestyle strategies. Interestingly, the PA or MED/LC diet

promoted resulted in significant increases in IMTG accumulation, however, the combination

of the two induced the greatest effect. The change of IMTG content did not alter the result in

an independent association with cardiometabolic markers, suggesting that increased in IMTG

during healthy lifestyle intervention may be a desirable metabolic adaptation.
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