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Abstract

Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus,
after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused
by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying
and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies
on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope
glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally
require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and
we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus
inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for
emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.
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Introduction

A continuous threat is posed by newly emerging and reemerging

infectious diseases, many of which are of viral origin (reviewed in

[1,2]). Over the past decade, the global effort to meet this

challenge has resulted in an enhanced ability to identify and

genetically fingerprint the causative agent, often with extraordi-

nary speed, as seen in the severe acute respiratory syndrome

(SARS) episode in 2003–2004 [3] and the H1N1 swine influenza

pandemic of 2009–2010 [4]. However, the speed at which we

acquire genetic information on the causative agents of newly

emerging infectious diseases is not matched by the speed at which

we can develop suitable treatments. The genetic information in the

episodes of SARS could not be translated into an equally rapid

development of new therapies, since drug discovery, both by high-

throughput screening (HTS) and rational design, requires

information that does not easily derive from knowledge of the

viral genome. Additionally, for novel emerging viruses, the

resources required for classical drug discovery are not easily

mobilized for diseases with limited market potential and/or

sporadic outbreaks. However, these are exactly the situations

where immediate availability of a specific, easy to use and HTS

amenable system would be most valuable, since it would allow

rapid testing of potential antiviral and immune activity.

For enveloped viruses, it is possible to identify the envelope

glycoproteins directly from their genetic information, and to rapidly

produce synthetic cDNAs corresponding to key domains of the viral

fusion machinery. In this report, we outline a strategy that rapidly

and predictably transforms these cDNAs into BSL2 amenable

screening tools. We thereby identify a common screening platform

applicable to multiple pathogens where the salient information

(envelope glycoprotein cDNAs) can be identified by bioinformatic

analysis of the viral genome. We can then screen for antiviral

molecules that have high potency and acceptable pharmacological

properties. Using a simple protocol for developing neutralizing

antibodies and/or DNA vaccination, we validate the screening

strategy and show that it can be used to screen for neutralizing

antibodies from infected populations.

Nipah (NiV) and Hendra (HeV) viruses are two closely related,

recently emerged, causative agents of zoonosis, capable of causing

significant mortality in humans and animals [5,6,7]. Since their

emergence (NiV in 1998 and HeV in 1994), both viruses have

re-emerged several times with recent outbreaks showing, in the

case of Nipah, well documented person-to-person transmission
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[8,9,10]. Almost every year since 2001, the virus has flared up in

Bangladesh, killing 111 people in the last decade [1,7,11,12].

There are no vaccines available for either virus, although both

protein [13,14] and DNA [15] vaccination approaches appear to

be potentially effective. The alternative of passive immunotherapy

has been shown to be effective in cat, hamster, and recently, ferret

models of disease [14,16,17,18]. However, both NiV and HeV are

BSL4 agents, limiting the rapid development of antibodies and

making large scale screening of antiviral compounds difficult [19].

The generation of monoclonal antibodies using cDNA immu-

nization is highly valuable for rapid development of immunization

strategies against a broad range of viruses, particularly in the case

of new and emerging viruses. We show here that cDNA obtained

from viral genomic information is sufficient to immunize animals

and that this immunization elicits antibodies that are effective

against live viruses. The cDNA can also be prepared directly from

sequence and bioinformatic information about the viral glycopro-

teins, offering a quick route to passive immunization.

Key to the utility of the screening approach that we describe

here is the use of the genes that encode envelope glycoproteins

derived from a target virus to quickly assess potential antivirals.

We transfect cells with plasmids that encode the target virus’

envelope glycoproteins, and then infected the cells with vesicular

stomatitis virus (VSV) lacking the gene for the entry glycoprotein

G, but pseudotyped with VSV G. In this system we observed

multi-cycle replication (MCR) of the target virus iedn the

transfected cells [20]. We subsequently assessed antiviral agents

for their ability to inhibit viral spread. This method has several

advantages. It can be performed safely under BSL2 conditions,

there is no need to produce pseudotyped viruses for each new

emerging virus, and quantitative results can be obtained within

72 hours. We have successfully established this platform and

demonstrated multi-cycle replication under BSL2 conditions for

the 1918 influenza virus, a BSL3 pathogen, in addition to 3 BSL4

pathogens, Junin virus, NiV and the recently described Lujo virus

[21], as proof of concept. The principle can be applied very easily

to other viruses. We previously described a similar assay, that

mimicked multicycle replication for HeV [20]. The new assay

reported here however does not require a specific pseudotype to be

produced for the primary infection, and hence will reduce the time

required to set up an assay method tailored to each new emerging

virus. The pseudotyped virions bearing the VSV-G required for

the primary infection can be prepared in advance and in high titer.

This will allow rapid screening of possible antiviral agents

including antibodies, carried out in cells that reflect the natural

host tissue. In addition, the screening assay can be adapted for

immunological diagnostic analysis.

We envisage this pseudotyped MCR assay as a platform

technology that will enable the preparation and storage of a

specific sets of assay reagents for a wide range of viral pathogens,

at low cost, in advance of any actual outbreak of the corresponding

viral disease. This could form the basis for an efficacious and

timely outbreak response, immediately following the identification

of dangerous new viruses.

Results

A new multicycle viral replication assay enables
assessment of high-risk viral pathogens under BSL2
conditions

The multicycle replication assay that we described previously

[20] as well as other BSL2 amenable assays [22,23,24], require

production of pseudotyped stocks specific for each new emerging

virus. This significantly adds to the time required to establish an

assay for each new virus. In order to facilitate more universal

application of this technology, we have established a simple system

for multiple viruses that can be used for evaluating antivirals and

antibody efficacy. We modified the original assay by using only a

single pseudotyped virus for infection. The pseudotyped virus used

in this system is prepared with a VSV background, using VSV

delta G pseudotyped with VSV G. This enables virus entry

mediated by VSV G, but does not result in subsequent rounds of

infection by VSV. By supplying the envelope glycoproteins of the

‘‘new’’ virus in trans, the resulting virus production and release is

of a pseudotyped ‘‘new’’ virus, which mimics native virus in terms

of infection, replication and release (see Fig. 1). To test this

concept, 293 T cells were transfected with plasmids encoding the

surface glycoproteins of NiV (G/F), concomitantly with YFP

(yellow fluorescent protein) to allow visualization of the transfec-

tion. Transfected cells were then either infected with pseudotyped

VSV-DG carrying RFP (allowing visualization of infected cells) or

left uninfected. A set of control wells with cells transfected with a

control plasmid were also infected with the pseudotyped virus. The

virus underwent multicycle replication in transfected cells as

Figure 1. Modified multicycle viral replication assay. When VSV G pseudotyped viruses infect viral glycoprotein (G/F)-expressing permissive
cells, multicycle replication is simulated where the initial entry is by VSV G pseudotyped virus but subsequent replication cycles are those of NiV
pseudotyped virus produced after budding.
doi:10.1371/journal.pone.0030538.g001

BSL2 Multi-Cycle Assay for Emerging Viruses
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indicated by an increase in RFP expression over time after

infection (Fig. 2). Even though the initial infection event is

mediated by VSV pseudotyped virus, the second, and subsequent,

rounds will be those of NiV due to the expression of the transfected

glycoproteins (G/F). For high-throughput screening (HTS) a

universal measure of assay quality and robustness, is the Z value. A

Z9 value 1.0 is considered to be perfect, and assays with a value

above 0.5 are required. The Z9 value for the multicycle replication

as compared to the uninfected control was 0.83 (table 1), rendering

it amenable to HTS.

cDNA immunization of rabbits to generate polyclonal
antibodies and inhibition of infection in the unmodified
MCR assay

In parallel, we tested whether cDNA immunization would

generate antibodies with high neutralizing activity and specificity.

Rabbits were immunized with pCAGGS-HeV F or pCAGGS-HeV

G. Serum was collected from the immunized animals and tested in

the original (16) MCR assay format. Briefly, 293 T cells transfected

with NiV F/G concomitantly with Venus-YFP were infected with

pseudotyped NiV and infection was measured 48 hrs post infection

by reading the intensity of RFP expression. Polyclonal antibodies

from all 4 rabbits inhibited infection in our original pseudotyped

viral entry assay format using NiV pseudotyped VSV (Fig. 3A). A

small amount of cell-cell fusion can be seen in the presence of anti-

HeV G antibodies while the anti-HeV F antibodies completely

inhibit fusion. However, the anti-HeV G antibodies, especially from

rabbit D, gave a better dose response than anti-HeV F antibodies

(Fig. 3B).

cDNA immunization of rats and evaluation of in-vitro
neutralizing activity of anti-NiV G polyclonal and
monoclonal antibodies using the new multicycle
pseudotyped virus assay

To test the universality of this approach, we immunized rats

with cDNA to generate antibodies against NiV G. Five rats were

immunized with pCAGGS-NiV G. As the first step, serum from

five rats were collected and tested for inhibition of infection in the

modified MCR assay. Infection was measured 48 hrs after

infection. Polyclonal antibodies from three rats had relatively

low titers of neutralizing activity. Polyclonal antibodies from Rat 2

and Rat 4 had much stronger neutralizing properties (Fig. 4A),

showing greater inhibition at higher dilutions than Rats 1, 3 and 5.

Monoclonal antibodies were also generated by immunizing rats

with pCAGGS-NiV G, and tested in the MCR assay. At a

concentration of 0.044 mg/ml, all monoclonal antibodies show

70%–80% inhibition of infection (Fig. 4B). However at a lower

concentration of 0.009 mg/ml, only antibody 1 inhibits 60% of

infection. Antibodies 2, 3 and 4 are able to inhibit only ,40% of

infection. The monoclonal antibodies were specific for NiV G by

FACS analysis (data not shown).

Validation of the cDNA-derived antibodies with authentic
viruses

We considered the possibility that the cDNA immunization

strategy may elicit antibodies that do not neutralize live viruses.

The conformation of the proteins produced by the cDNA could be

significantly different from that on the viral particles, resulting in

induction of antibodies whose specificity could be significantly

different from that induced during viral infection. For example,

immunization with high concentrations of Ebola GP did not

induce neutralizing antibodies [25]. In contrast, immunization

with VLPs or VSV/Ebola GP chimeric virus induced neutralizing

antibodies [26,27]. To validate our strategy for live Nipah and

Hendra viruses we performed a in vitro neutralization assay

(Table 2). The neutralizing capacity of the polyclonal rabbit and

monoclonal rat antibodies that we generated was compared to that

of the murine mAb anti-NiV F, Gip21, previously reported to

neutralize both NiV and HeV [18]. Although rabbit polyclonal

anti-HeV G sera did not exhibit neutralizing capacity at the

dilutions tested, both rabbit polyclonal anti-HeV F antibodies

neutralized HeV, and one of these neutralized NiV infection as

well. All rat monoclonal anti-NiV G antibodies inhibited NiV

infection, and one of them neutralized HeV as well. Together,

these results demonstrated that the immunization strategy applied

in this study allows for generation of anti-viral polyclonal and

monoclonal antibodies that neutralize live viruses.

Validation of the new pseudotyped virus assay
To validate our modified pseudotyped virus assay, we compared

the results of two rat polyclonal antibodies raised against NiV G

using the assay described above and our modified MCR assay.

These antibodies inhibited both the multicycle replication of NiV

pseudotyped virus –the unmodified version of the multicycle

replication assay, which uses the NiV pseudotype for infection

(Fig. 5A)– and our newly modified assay described above using

pseudotyped VSV for entry (Fig. 5B). However the effectiveness in

Figure 2. NiV multicycle replication using modified assay. Cells
were transfected with plasmids encoding NiV G and F (triangles) and
then infected with pseudotyped VSV. Transfected cells were also left
uninfected as a control (squares). Additionally, control cells transfected
with empty plasmid were also infected with pseudotyped VSV, showing
single cycle replication (circles). Relative fluorescent intensities of the
RFP were measured after 24, 48, 72 and 96 hours.
doi:10.1371/journal.pone.0030538.g002

Table 1. Z9 values of multicycle replication compared to no
infection control using VSV pseudotype at 72 hours post
infection.

Virus Z9 value

Influenza 0.78

Junin 0.51

Lujo 0.84

NiV 0.72

VSV 0.83

doi:10.1371/journal.pone.0030538.t001

BSL2 Multi-Cycle Assay for Emerging Viruses
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the modified assay (Fig. 5B) was lower compared to the inhibition

obtained when pseudotyped NiV was used for infection. For viral

fusion inhibitors, we found that efficacy at inhibiting viral entry

does not necessarily correlate with in vivo protection, while the

ability of an inhibitor to block the spread of virus through a

monolayer of cells after infection correlates positively with in vivo

efficacy [28,29]. Thus, this platform allows not only quick

screening of antivirals, it may also help to accurately estimate

the effectiveness of these compounds. Importantly, and perhaps

explaining the apparently lower antiviral efficacy in the newly

modified assay, this assay accounts for the context of viral spread,

as distinct from merely the entry event. The ability to curtail

multicycle replication even after infection has occurred is likely to

provide an important advantage in the success of antiviral therapy.

The modified MCR assay is adaptable to other enveloped
viruses

Once the assay was established, we investigated the application

of this system to other viruses. For this purpose, 293 T cells were

transfected with plasmids encoding the surface glycoproteins of

Lujo virus (Fig. 6A), Junin virus (Fig. 6B) or VSV (Fig. 6C)

concomitantly with YFP (yellow fluorescent protein) to allow

visualization of the transfection. Transfected cells were then either

infected with pseudotyped VSV-DG carrying RFP (allowing

visualization of infected cells) or left uninfected. As an additional

control, cells transfected with the control plasmid were also

infected with the pseudotyped virus (single cycle). All the viruses

underwent multicycle replication in cells transfected with the

cDNA of the viral glycoprotein(s) as indicated by an increase in

RFP expression over time post infection (Fig. 6). We observed

minimal differences in RFP expression between cells during the

initial round of infection (as expected) but as the length of

incubation increased, and subsequent rounds of infection occurred

in the multi-cycle system, RFP expression became 2–4 fold higher

in transfected cells at 72 and 96 hours, respectively. This reveals a

rapidly adaptible system that permits assessment of viral infection

and antiviral efficacy for any enveloped virus. The Z9 values for

the multicycle replication as compared to the uninfected controls

Figure 3. Multicycle replication (MCR) inhibition by antibody neutralization. (A) Cells coexpressing Nipah G/F and Venus-YFP were infected
with pseudotyped VSV-DG-RFP-Nipah F/G, in the presence of anti-F or anti-G rabbit polyclonal antibodies. 48 hrs post-infection, the relative
fluorescence intensities (RFI) were measured (B) and the spectral emission from the cells was converted into photographs (A). The bottom panel of
photographs show extensive fusion in cells in the absence of antibodies (control), while no fusion is observed in the cells treated with anti-F
antibodies, and some fusion is observed in the presence of anti-G antibodies. (B) polyclonal antibodies specific for HeV F or HeV G inhibit NiV
pseudotype infection. Anti-HeV G antibodies show better dose response than anti-HeV F antibodies.
doi:10.1371/journal.pone.0030538.g003

BSL2 Multi-Cycle Assay for Emerging Viruses
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were above 0.5 (table 1). This assay was performed in a 384 well

plate format and showed very small deviations over large number

of replicates.

To confirm that the modified assay(s) were useful, and specific

for antiviral efficacy evaluation, we tested chloroquine (data not

shown) – which we had previously shown to inhibit henipavirus

multicycle replication –against the viruses in the MCR assay [20].

Chloroquine showed very high antiviral activity against NiV but

very little activity against the other viruses at concentrations lower

than 20 mM. When chloroquine was used at 100 mM it effectively

blocked the VSV MCR assay as expected [30]. Note that

chloroquine is a positive control for the cell based assay and it is

not intended as a comparison for in vivo efficacy.

In addition to its utility for novel emerging viruses, this modified

assay format can be applied to highly pathogenic influenza viruses

that require a BSL3 facility. We adapted our MCR assay to

evaluate replication of the 1918 influenza virus. We observed

multicycle replication for this virus using TPCK treated trypsin

treatment with neuraminidase treatment in the modified assay

Figure 4. Inhibition of Multicycle replication by neutralizing
antibodies. (A) Polyclonal antibodies were raised against NiV G in rats.
While all the antibodies show inhibition of infection, the polyclonal
antibodies from Rat #2 and Rat #4 show the strongest effect. (B) Anti-
NiV monoclonal antibodies block NiV G/F in the MCR assay.
doi:10.1371/journal.pone.0030538.g004

Table 2. Antibody-mediated neutralization of live Nipah and
Hendra viruses.

Antibody Titer (NiV)* Titer (HeV)*

Polyclonal anti-HeV G (rabbit #C) ,50 ,50

Polyclonal anti-HeV G (rabbit #D) ,50 ,50

Polyclonal anti-HeV F (rabbit #A) 800 1200

Polyclonal anti-HeV F (rabbit #B) ,50 300

mAb anti-NiV G (rat hybridoma 2) 600 ,50

mAb anti-NiV G (rat hybridoma 1) 11400 200

mAb anti-NiV G (rat hybridoma 4) 2400 ,50

Murine mAb anti-NiV F GIP21** 300 600

*Relative neutralization titer is presented as a reciprocal dilution of antibody
samples that completely inhibited either NiV or HeV cytopathic effect.
**Control antibody [18].
doi:10.1371/journal.pone.0030538.t002

Figure 5. Validation of modified pseudotype assay validation
for NiV. Cells were transfected with plasmids encoding the NiV
glycoproteins F and G and then infected with either pseudotyped NiV
(A) or pseudotyped VSV (B) in presence of rat anti-NiV antibodies, Rat 2
(circles) or Rat 5 (squares). Relative fluorescent intensities of the RFP
were measured after 48 hrs.
doi:10.1371/journal.pone.0030538.g005

BSL2 Multi-Cycle Assay for Emerging Viruses
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(Fig. 6D). The Z9 value for the multicycle replication compared to

the uninfected control was 0.78.

Discussion

Passive immunotherapy addresses the problem of quickly

treating or protecting large populations of people against possible

exposure to a virus, especially in the absence of a vaccine. Passive

immunization is ideal for cases where the probability of exposure

to infection is low or the causative agent is unidentified. However,

quick generation of antibodies is key to an effective immunization

plan, particularly in the case of emerging viruses. One problem

that hinders the development of passive immunotherapy is the

effective generation of antibodies. Traditionally, antibodies have

been raised against either the dead/attenuated form of the

causative agent, or against the entire or a subunit of a protein

involved in the infection [13]. However, this method suffers from

problems of purity and amount, though a high level of immunity is

usually generated. cDNA immunization avoids the above

problems since the viral glycoproteins are expressed on the cell

surface in the animal, allowing the antibodies to be raised against

the native form of the protein and thus to attain high activity and

specificity [31,32,33]. This method is particularly suited for the

generation of antibodies against membrane proteins. We show

here that cDNA immunization of rats using cDNA corresponding

to the surface glycoproteins of viruses, (NiV in our example),

effectively generates monoclonal antibodies whose activity and

specificity can be tested using a platform adaptable to a broad

range of viruses.

An important advantage of the cDNA immunization method is

that it rests on the sequence information of the viral genome, as in

the case of envelope glycoproteins of unidentified infections,

including zoonoses that have recently adapted to infection of

humans. Often, transport of the infectious agent is not possible,

limiting the development of antibodies, since the resources required

for antibody generation may not be close to the site of viral

detection. This can be especially true of emerging diseases, as

highlighted by repeated NiV re-emergence in rural Bangladesh

[34]. In these cases, cDNA immunization offers a fast and effective

way to generate antibodies with specific neutralizing activity for the

virus under investigation. Our results indicate that the antibodies

raised by cDNA immunization neutralized live virus. Interestingly,

several of the anti-F antibodies raised against Hendra F also blocked

Nipah infection. While all the monoclonal anti-NiV G mAbs

neutralized NiV, just one of them exhibited significant cross-

neutralization against Hendra virus. Our data taken together with

Figure 6. The modified assay can be adapted to other viruses. Cells were transfected with plasmids encoding glycoproteins from Lujo (A),
Junin (B), VSV (C) or the influenza glycoprotein HA (D) then infected with pseudotyped VSV (triangles). Transfected cells were also left uninfected as a
control (squares). Additionally, cells transfected with control empty plasmid were also infected with pseudotyped VSV showing single cycle
replication (circles). Relative fluorescent intensities of the RFP were measured after 24, 48, 72 and 96 hours.
doi:10.1371/journal.pone.0030538.g006

BSL2 Multi-Cycle Assay for Emerging Viruses
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previously published reports [14,16,17,18] may indicate that

eliciting anti-F antibodies, at least for the cDNA immunization,

may lead to more broadly neutralizing antibodies [18].

The use of passive immunotherapy has the advantage of

generating immunity immediately in the patient. However,

evaluating the neutralizing activity of potential therapeutic

antibodies requires infection of cells with the virus of interest.

This is a limiting problem in antibody generation when the virus is

a BSL4 pathogen like NiV and HeV, or where there are difficulties

associated with transportation of the virus from the point of

detection to a suitable laboratory. The assay that we describe

overcomes these problems by using pseudotyped viruses to infect

cells that express glycoproteins of the same virus. Thus, the

neutralizing activity of the antibody can be analyzed and evaluated

using an assay that simulates multi-cycle replication of a virus

under BSL2 conditions. This not only increases the speed of the

development of effective antibody protection, it also significantly

reduces testing costs. The MCR assay distinguishes between

antibodies of differing neutralizing activity and specificity and

replicates the antiviral selectivity seen with live viruses. Antibodies

showing high inhibition at only low dilutions may be doing so due

to non-specific interactions with the surface glycoproteins, while

weak antibodies show low levels of infection inhibition.

One hurdle that we have not addressed in the current study

relates to the possibility that monoclonal antibodies developed

using cDNA immunization of rats have an associated risk of

invoking an immune response and human anti-rat antibodies.

Such events negate the intended therapeutic effect of the antibody.

Fortunately, the task of humanization to arrive at products that are

not recognized as antigens in the recipient is now relatively straight

forward. In the next phase of this research, we plan to use cDNA

immunization of mice genetically modified to produce humanized

antibodies. A human monoclonal antibody against Nipah G has

shown partial protection in the ferret animal model [16]. The

antibody was identified by screening a human Fab library and

soluble G protein [35]. The strategy described in this manuscript

would allow for the direct identification of neutralizing human

monoclonal antibodies, without intermediate steps.

We propose that the system we describe could be designed as a

kit that includes the genetic material for the VSV-DG-RFP [36],

ultimately requiring only the specific viral cDNA to be mixed

together with the transfection mixture just before addition to the

cells. A cost effective transfection reagent would be a major

advantage for such a kit, and therefore we adapted our assay to use

PEI [37] for transfection, bringing down the cost of the

transfection reagent by several fold and rendering the system

feasible at very low budget. The system that we propose has some

limitations. We can screen only for antivirals that target entry, and

not other steps in the viral life cycle, and we require viral envelope

proteins that are compatible with VSV.

In summary, we propose a novel platform for screening of

antiviral compounds and antibodies against newly emerging

viruses. This assay can be established rapidly using just the

sequence information of new and emerging viruses. The assay is

highly reproducible and sensitive and can be performed in a BSL2

facility, providing a safe method for potentially highly pathogenic

newly emerging viruses that otherwise require BSL3 or BSL4

containment facilities. The assay behaves consistently at low cell

numbers, and thus allows miniaturization to a 384 well format,

making it amenable to high-throughput screening. This concept

can also be easily applied to primary cells, which may reveal

different antiviral potencies from those in laboratory adapted

monolayers [28,29]. If used in comparison with the unmodified

multicycle replication assay, this strategy also reveals differences

between agents that inhibit entry, and agents that inhibit tissue

spread of viruses.

Materials and Methods

Cells and virus
293 T (human kidney epithelial) and Vero (African green

monkey kidney) cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM; Mediatech-Cellgro) supplemented with 10%

fetal bovine serum and antibiotics at 37uC in 5% CO2.

Pseudotyped viruses were generated using VSV-DG-RFP, a

recombinant VSV derived from the cDNA of VSV Indiana in

which the G gene is replaced with the Ds-Red gene (RFP).

Pseudotypes with NiV F and G were generated as described

previously [38]. Briefly, 293 T cells were transfected with plasmid

encoding VSV-G or NiVF/G. Five hours post-transfection, the

dishes were washed and infected (multiplicity of infection [MOI]

of 0.5) with VSV-DG-RFP complemented with VSV-G. Super-

natant fluid containing pseudotyped virus (NiV F/G or VSV-G)

was collected 18 h post-infection and stored at 280uC.

NiV isolated from the cerebrospinal fluid of a patient was

received from Dr. K.B. Chua and Dr. S.K. Lam (University of

Malaya, Kuala Lumpur, Malaysia). HeV was obtained from

Graham Lloyd at the exotic virus bank at Porton Down, England.

NiV and HeV stocks were prepared by infecting Vero-E6 cells as

previously described [39], in the INSERM Jean Mérieux biosafety

level 4 (BSL-4) laboratory in Lyon, France.

Chemicals
Chloroquine diphosphate salt was obtained from MP Biomed-

icals (cat# 193919)

Pseudotyped entry assay mimicking multicycle
replication

As described previously [20,38], NiVF/G glycoproteins were

pseudotyped onto VSV-DG–RFP and the resulting pseudotyped

viruses were used to infect NiV F/G-expressing cells at an MOI of

0.125 for simulation of multicycle replication. RFP production at

24, 48, 72 and 96 hr was analyzed on a microplate fluorescence

reader (Spectramax M5). For detecting RFP expression levels, the

wells were read by excitation at 535-nm and emission at 579-nm.

For the detection of YFP expression, the wells were read by

excitation at 510-nm and emission at 535-nm. For the modified

multicycle replication assay, VSV G glycoprotein was pseudotyped

onto VSV-DG–RFP and the resulting pseudotyped viruses were

used to infect viral glycoprotein(s)-expressing cells for a simulation of

multicycle replication. For single-cycle infection assays, the VSV-G

pseudotype was used at an MOI of 0.125 to infect 293 T cells

transfected with control plasmid. For Influenza virus, 2.5 ug/ml of

TPCK trypsin and 0.001 mu neuraminidase was added to the wells.

Antibodies
Polyclonal antibodies were raised in rabbits (anti-HeV F or anti-

HeV G) or rats (Anti-NiVG) by cDNA immunization with

plasmids expressing either HeV G, HeV F or NiV G using

standard, commercailly available, protocols (Genovac). Monoclo-

nal antibodies were produced using proprietary protocols by

Genovac, using the NiV G cDNA. Isotype of the mAbs used in this

study was IgG2b.

Virus neutralization assay
NiV and HeV neutralizing antibodies were tested using two-fold

dilutions of samples as described previously [18].Diluted antibod-
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ies were incubated with virus (25 PFUs/well in 96-well microtiter

plates) for 60 min at 37uC in DMEM (Gibco) supplemented with

2% FCS. A total of 2.56104 Vero cells were then added to each

well as indicator cells, and 96-well plates were incubated for 4 days

at 37uC. Relative neutralizing titers were defined as the reciprocal

dilution of antibody samples that completely inhibited the

cytopathic effect of either NiV or HeV.

Plasmids and reagents
The genes encoding influenza HA 1918, Nipah G and F were

commercially synthesized and then cloned into pCAGGS vector.

Junin and Lujo GPC in pCAGGS from Dr. Thomas Briese.

Testing of anti-NiV G antibodies
293 T cells were transfected with plasmids encoding NiV G/F

and YFP. Four hours post- transfection, antibodies were added at

the indicated dilutions and then the cells were infected with VSV-

G pseudotyped virus or with NiV F/G pseudotyped virus at an

MOI of 0.125.

Data Processing and Normalization
The Z9 values were used an assessment of quality [40], using the

16 values of the inhibitor and the blank for each microtiter plate as

follows:12(3*St.dev. inhibitor+3*St.dev. blank)/|Average inhibi-

tor2Average blank|
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3. Drosten C, Preiser W, GüNther S, Schmitz H, Doerr HW (2003) Severe Acute

Respiratory Syndrome: Identification of the Etiological Agent. Trends in
Molecular Medicine 9: 325–327.

4. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, et al. (2009) Antigenic
and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses

circulating in humans. Science 325: 197–201.

5. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, et al. (1999) Fatal

encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:
1257–1259.

6. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, et al. (1995) A morbillivirus

that caused fatal disease in horses and humans. Science (Washington) 268:

p94–97.

7. Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, et al. (2011) Date

Palm Sap Linked to Nipah Virus Outbreak in Bangladesh, 2008. Vector Borne
Zoonotic Dis.

8. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, et al. (2007)

Person-to-person transmission of Nipah virus in a Bangladeshi community.

Emerg Infect Dis 13: 1031–1037.

9. Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R, et al. (2010)
Nipah virus outbreak with person-to-person transmission in a district of

Bangladesh, 2007. Epidemiol Infect 138: 1630–1636.

10. Luby SP, Gurley ES, Hossain MJ (2009) Transmission of human infection with

Nipah virus. Clin Infect Dis 49: 1743–1748.

11. Hossain MJ, Gurley ES, Montgomery JM, Bell M, Carroll DS, et al. (2008)

Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 46:
977–984.

12. Sejvar JJ, Hossain J, Saha SK, Gurley ES, Banu S, et al. (2007) Long-term
neurological and functional outcome in Nipah virus infection. Ann Neurol 62:

235–242.

13. Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K, et al. (2006)

Feline model of acute nipah virus infection and protection with a soluble
glycoprotein-based subunit vaccine. J Virol 80: 12293–12302.

14. Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, et al.

(2004) Nipah virus: vaccination and passive protection studies in a hamster

model. J Virol 78: 834–840.

15. Wang X, Ge J, Hu S, Wang Q, Wen Z, et al. (2006) Efficacy of DNA
immunization with F and G protein genes of Nipah virus. Ann N Y Acad Sci

1081: 243–245.

16. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, et al. (2009) A

neutralizing human monoclonal antibody protects against lethal disease in a new

ferret model of acute nipah virus infection. PLoS Pathog 5: e1000642.

17. Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC, et al. (2006)
Antibody prophylaxis and therapy against Nipah virus infection in hamsters.

J Virol 80: 1972–1978.

18. Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L, et al.

(2009) Acute Hendra virus infection: Analysis of the pathogenesis and passive
antibody protection in the hamster model. Virology 387: 459–465.

19. Aljofan M, Porotto M, Moscona A, Mungall BA (2008) Development and
validation of a chemiluminescent immunodetection assay amenable to high

throughput screening of antiviral drugs for Nipah and Hendra virus. J Virol
Methods 149: 12–19.

20. Porotto M, Orefice G, Yokoyama CC, Mungall BA, Realubit R, et al. (2009)
Simulating henipavirus multicycle replication in a screening assay leads to

identification of a promising candidate for therapy. J Virol 83: 5148–5155.

21. Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C, et al. (2009)

Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-

associated arenavirus from southern Africa. PLoS Pathog 5: e1000455.

22. Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, et al. (2008) Identification

of a broad-spectrum arenavirus entry inhibitor. J Virol 82: 10768–10775.

23. Yonezawa A, Cavrois M, Greene WC (2005) Studies of ebola virus glycoprotein-

mediated entry and fusion by using pseudotyped human immunodeficiency virus

type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor
necrosis factor alpha. J Virol 79: 918–926.

24. Negrete OA, Chu D, Aguilar HC, Lee B (2007) Single Amino Acid Changes in
the Nipah and Hendra Virus Attachment Glycoproteins Distinguish EphrinB2

from EphrinB3 Usage. J Virol 81: 10804–10814.

25. Falzarano D, Geisbert TW, Feldmann H (2011) Progress in filovirus vaccine

development: evaluating the potential for clinical use. Expert review of vaccines

10: 63–77.

26. Geisbert TW, Feldmann H (2011) Recombinant vesicular stomatitis virus-based

vaccines against Ebola and Marburg virus infections. The Journal of infectious
diseases 204 Suppl 3: S1075–1081.

27. Marzi A, Ebihara H, Callison J, Groseth A, Williams KJ, et al. (2011) Vesicular

stomatitis virus-based Ebola vaccines with improved cross-protective efficacy.
The Journal of infectious diseases 204 Suppl 3: S1066–1074.

28. Talekar A, Pessi A, Porotto M (2011) Infection of primary neurons mediated by
nipah virus envelope proteins: role of host target cells in antiviral action. J Virol

85: 8422–8426.

29. Porotto M, Rockx B, Yokoyama C, Talekar A, DeVito I, et al. (2010) Inhibition
of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus

Fusion Activation during Viral Entry. PLoS Pathog 6(10): e1001168.
doi:10.1371/journal.ppat.1001168.

30. Porotto M, Orefice G, Yokoyama C, Mungall B, Realubit R, et al. (2009)

Simulating henipavirus multicycle replication in a screening assay leads to
identification of a promising candidate for therapy. J Virol 83: 5148–5155.

31. Lagerqvist N, Naslund J, Lundkvist A, Bouloy M, Ahlm C, et al. (2009)
Characterisation of immune responses and protective efficacy in mice after

immunisation with Rift Valley Fever virus cDNA constructs. Virol J 6: 6.

32. Zheng L, Wang F, Yang Z, Chen J, Chang H, et al. (2009) A single

immunization with HA DNA vaccine by electroporation induces early

protection against H5N1 avian influenza virus challenge in mice. BMC Infect
Dis 9: 17.

33. Chen H, Wen B, Deng Y, Wang W, Yin X, et al. (2011) The enhanced effect of
DNA immunization combined in vivo electroporation of hepatitis B Virus Core-

PreS1 and S-PreS1 plasmids. Clin Vaccine Immunol.

34. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, et al. (2009) Recurrent
zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007.

Emerg Infect Dis 15: 1229–1235.

35. Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA, et al. (2006) Potent

neutralization of Hendra and Nipah viruses by human monoclonal antibodies.

J Virol 80: 891–899.

36. Whitt MA (2010) Generation of VSV pseudotypes using recombinant DeltaG-

VSV for studies on virus entry, identification of entry inhibitors, and immune
responses to vaccines. J Virol Methods 169: 365–374.

37. Kirschner M, Monrose V, Paluch M, Techodamrongsin N, Rethwilm A, et al.

(2006) The production of cleaved, trimeric human immunodeficiency virus type

BSL2 Multi-Cycle Assay for Emerging Viruses

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e30538



1 (HIV-1) envelope glycoprotein vaccine antigens and infectious pseudoviruses

using linear polyethylenimine as a transfection reagent. Protein Expr Purif 48:
61–68.

38. Porotto M, Yokoyama CC, Palermo LM, Mungall B, Aljofan M, et al. (2010)

Viral entry inhibitors targeted to the membrane site of action. J Virol 84:
6760–6768.

39. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, et al. (2004)

Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J Virol
Methods 120: 229–237.

40. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for

Use in Evaluation and Validation of High Throughput Screening Assays.
J Biomol Screen 4: 67–73.

BSL2 Multi-Cycle Assay for Emerging Viruses

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e30538


