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ABSTRACT

The specificity-determining residue database (SDR
database) presents residue positions where muta-
tions are predicted to have changed protein function
in large protein families. Because the database pre-
calculates predictions on existing protein sequence
alignments, users can quickly find the predictions
by selecting the appropriate protein family or
searching by protein sequence. Predictions can be
used to guide mutagenesis or to gain a better under-
standing of specificity changes in a protein family.
The database is available on the web at http://para
dox.harvard.edu/sdr.

INTRODUCTION

The specificity-determining residue database (SDR data-
base) (http://paradox.harvard.edu/sdr) presents residue
positions that are predicted to have changed protein func-
tion when mutations occurred during evolution. There
are two distinctive features of the SDR database. First,
it predicts specificity-determining residue positions for
large protein families that likely have multiple protein
functional specificities. Second, it pre-computes these pre-
dictions so that they can be accessed quickly, without
requiring the user to input multiple sequence alignments
or know the function of proteins within the alignment.

In the past decade, there has been increased interest
in the development of methods to predict specificity-
determining residues. In general, the predictions of these
positions depend on a logical assumption: specificity-
determining residues will be conserved by groups of pro-
teins with the same function, but often different between
groups of proteins with different functions (1).

These methods can be divided into two classes based on
the number of subfamilies that are considered in the cal-
culation. The first class of methods considers protein
families that can be divided into two subfamilies (2–5).
For example, if a set of homologous proteins (also

known as a protein family) has two distinct functional
specificities, which residues are responsible for the
change in specificity?
The second class of methods, including the method

underlying the SDR database, considers more than two
subfamilies at a time (1,6–15). For a protein family that
includes proteins with many different functions, one
would like to determine which residues have been mutated
repeatedly during evolution to modify protein function.
As an example, if a position is alanine in proteins with
the first function, leucine for proteins with the second
function and arginine for proteins with the third function,
etc. such a position is likely to be determining the function
of proteins in the family.
Several years ago, Mirny and Gelfand developed a sta-

tistical model that found these residues when a multiple
sequence alignment could be divided into groups based on
function (1). An existing webpage builds off this method
to make predictions of specificity-determining residues
based on a user-provided multiple sequence alignment
and functional categorization of the proteins (7). While
additional careful comparisons are needed, a recent com-
parison of different methods found that this method (7)
predicted many specificity-determining residues in three
families with several functions (8).
Understandably, predictions have often focused on

smaller protein families where most protein sequences
can be functionally categorized. The SDR database com-
bines the statistical method of Mirny and Gelfand (1) with
an automated, approximate method of grouping proteins
by their functional specificities (16) that allows predic-
tion of specificity-determining residues for large protein
families. This method makes accurate predictions of the
specificity-determining residue positions in two large
families of transcription factors (17). In the SDR database,
we now used this method to pre-compute specificity-
determining residue predictions for all large families
found in a comprehensive protein database, PFAM (18).
In summary, the SDR database offers several advan-

tages. First, the SDR database requires minimal input
from the user (see below). Using the automated functional
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specificity grouping means that users do not have to create
multiple sequence alignments or functionally categorize
the proteins. As can be expected, such categorization is
very time consuming and approximate because of limited
experimental data. Second, the SDR database focuses
on large protein families, such as GPCRs, many of
which are of great biological interest. The larger number
of sequences in these families provides better statistics,
which should lead to more accurate calculations, as was
found for transcription factors (17). Finally, by being
automated, the method is consistent in the way that it
treats protein alignments. This could be an important
advantage for studies that compare predicted specificity-
determining residues in different protein families.

THE DATABASE

On the website, we present the statistical significance of
the predictions in the form of Z-scores (1,17) (the number
of standard deviations the calculated mutual information
is away from the expected value), and we display the most
significant positions both on a multiple sequence align-
ment and on existing protein structures. The predicted
specificity-determining residues can be conveniently
accessed by selecting the family from the search page or
using a query protein sequence to be matched to an exist-
ing family using the program HMMER (18). Selecting a
family leads to a webpage containing the family name, the
number of sequences used, a graph of the size of the giant
component (used for automated functional grouping) and
links to pages where significant predictions are highlighted
on a subset of the multiple sequence alignment or a pro-
tein structure, where available. Other links lead to text files
containing the Z-score for each position and the full multi-
ple sequence alignment organized by predicted functional
specificities. From the highlighted multiple sequence align-
ment, logo plots from WebLogo (19) are available for
each predicted position, showing which residues are
found at that position in the different functional groups.
A compressed file that contains all data files can be down-
loaded for further analysis.
The database contains 1346 protein families from the

PFAM 20.0 (18) and the GPCRDB 10.0 (20) databases.
As new sequences are added from newer releases of
PFAM and GPCRDB, the number of families covered
by the database should increase. A family was selected
from PFAM for prediction of specificity-determining resi-
dues if it contained at least 500 sequences in the full multi-
ple sequence alignment and if the family contained
position with not >30% of the position is made up of
gaps. From the GPCRDB, five families of G-protein
coupled receptors (GPCR) were selected: the full class A
family and four class A subfamilies (amine, olfactory,
opsin and peptide). Class A is the largest GPCR class,
and the four selected subfamilies are the largest subfami-
lies in this class. Loops were excluded from the GPCRDB
calculations because of the much lower sequence identity
in these regions. Because the sequence alignments in the
transmembrane regions should be more accurate, the cal-
culations are for the transmembrane regions alone. For all

families with more than 5000 sequences, 5000 sequences
were randomly selected from the multiple sequence align-
ment for the calculation because of computer memory
constraints. This is similar to using an older sequence
database where fewer sequences are available.

Further details and frequently asked questions are
available at the website.

STATISTICAL ANALYSIS OF PREDICTIONS

Because functional residues are often clustered in three
dimensions, we expect that specificity-determining resi-
dues will be in contact with one another more often
than other pairs of residues. As a test of quality of the
predictions, we randomly selected 800 proteins, each from
a different PFAM family, where the 3D structure is
known. For both pairs of predicted specificity-determining
residues and pairs of residues not predicted, we calculated
the fraction of pairs in within a given Cb distance
(Figure 1A). To ensure that the contacts between residues
are not due to proximity in sequence, we only considered
pairs separated by at least eight residues. Notably, pre-
dicted specificity-determining residues are much more
likely to be in contact than positions that are not pre-
dicted, supporting the quality of the predictions. As a
result, the predicted positions may also aid protein struc-
ture prediction.

AN EXAMPLE

As an example, we selected the transmembrane region of
the amine-binding subfamily of class A GPCRs (Table 1).
After the predictions were made, several crystal structures
of amine-binding GPCRs have become available. Several
of these structures are of an inverse agonist, carbazol,
bound to human b2 adrenergic receptor. It is expected
that carbazol uses the same binding pocket as the native
agonists.

While the specificity-determining residues in this family
are not known experimentally, the residues that form the
binding pocket are known. Some of these positions are
likely too important for the protein to mutate and remain
functional, but other positions are likely specificity-
determining residues determining ligand binding
specificity. Therefore, several of the predicted specificity-
determining positions should be near the ligand.

As a test of the prediction sensitivity of the method for
this family, we considered how many of the predictions are
close to carbazol in the solved structure. Four out of 10
predicted positions have Cb atoms within 5.5 Å of the
carazolol (21). The predicted positions in close proximity
are likely to be very important for amine-binding GPCR
ligand-binding specificity. The proximity of the predicted
residues further supports the predictions found in the
SDR database.

Other predicted positions may be involved in GPCR
function ways other than ligand binding, such as pro-
tein–protein interaction or degree of basal activation.
In the related opsin subfamily of class A GPCRs, several
of the predicted specificity-determining residues appear
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to play a role in G-protein coupling in the well-studied
protein bovine rhodopsin. Residue L226 is found at the
edge of intracellular loop 3, known to be important for
interaction with G-proteins (22), E113 and A117 are in
contact with residues where naturally occurring mutations
cause constitutively activity (G90D, A292E, K296E) (23)
and residue E134 is part of the D/ERY motif that appears
to play an important role in constitutive activation (24).

CONCLUSIONS

As shown in the example, the SDR database predicts
likely specificity-determining residues not only for

DNA-binding proteins, but also for proteins with other
functions, such as ligand binding. Predicted positions are
more likely to be in contact than other positions in a
protein. We expect that the database will provide useful
targets for experimental mutagenesis as well as the design
and modification of protein function. The predictions also
should lead to a better understanding protein function of
large protein families.
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alignment
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GPCRDB
numbering

Most
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2RH1
residue and
numbering

Cb

distance to
carbazol (Å)
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